用户名: 密码: 验证码:
SiO_2气凝胶及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气凝胶(aerogel)是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。由于气凝胶具有独特的性能,气凝胶被广泛应用于催化剂及催化剂载体、高效隔热材料、切伦科夫传感器、集成电路、电容器以及宇宙尘埃搜集器等。因此,气凝胶具有重要的理论研究价值及广阔的应用前景。
     本文以正硅酸乙酯(TEOS)为原料,乙醇和水为溶剂,利用溶胶—凝胶法,首次采用水/正丁醇/正己烷三重溶液共沸交换的表面改性的方法,采用常压干燥工艺制备了SiO2气凝胶及TiO2/SiO2气凝胶、陶瓷纤维/SiO2气凝胶复合材料;对它们的结构及性能进行了测试分析,利用氮气吸附脱附法、X射线小角散射法研究了其分形特性。
     通过前期实验以及国内外研究学者的理论分析,确定了正硅酸已酯、乙醇、水的摩尔比为1:4:6,采用二步法制备SiO2气凝胶,研究了酸碱加入的间隔时间、温度对凝胶时间的影响,重点分析了非超临界干燥条件下制备SiO2气凝胶所需要的老化方式、表面改性过程,用三甲基氯硅烷(TMCS)做表面改性剂,对醇凝胶进行表面改性制备SiO2气凝胶,TMCS/H2O的最佳摩尔比为0.4。确定了采用水/正丁醇/正己烷三重溶液共沸的常压干燥工艺,分别在60℃和80℃干燥。
     通过XRD、SEM、TEM、FTIR、TG-DSC、N2吸附脱附等测试方法对SiO2气凝胶的物相、疏水性能、热稳定性能、微观结果及孔结构进行了测试分析得出一下结论:试验制得了组分为非晶无序的、具有良好的疏水性能的SiO2气凝胶的,且经过750℃热处理后的SiO2气凝胶仍呈非晶态。通过接触角的测试以及红外光谱分析得到,为了保持SiO2气凝胶的疏水性能,其热处理的温度不能超过400℃。本试验制得的SiO2气凝胶微观上是由SiO2气凝胶的圆形颗粒堆积而成的,颗粒大小均匀,比表面积达到868.5 m2/g,且孔径分布窄。样品经750℃煅烧后颗粒尺寸有所减小,孔径增大,整体颗粒与孔结构趋于均匀,但是整体微观形貌变化不大,说明750℃下,SiO2气凝胶的网络结构仍比较稳定,仍具有良好的纳米孔结构。
     采用直接添加TiO2粉体以及先驱体添加钛酸丁酯两种实验方法制备TiO2/SiO2气凝胶复合材料。TiO2粉末的添加可以得到具有很高的比表面积的SiO2气凝胶,当添加量为15%时,高达1107.38 m2/g。而添加钛酸丁酯后,比表面积急剧下降,具有相当高的微孔体积,存在大量的微孔(2nm以下的孔)。对甲基橙溶液的光催化活性实验表明:TiO2粉体掺杂SiO2气凝胶,提高了TiO2的光催化效果。当TiO2粉体的添加量为15%时,降解率最大;比较纯TiO2与TiO2/SiO2气凝胶的活性可知,将TiO2粉体分散在介孔材料中其催化活性可以得到充分发挥。
     采用先驱体加莫来石陶瓷纤维以及SiO2溶胶浸渍莫来石纤维预制体两种方法制备最大直径为103mm的纤维/SiO2气凝胶复合材料,两种方法得到的复合材料中,纤维都很好的起到了骨架的作用。方法一得到的复合材料中,纤维的添加,并没有影响气凝胶本身的特性,其孔隙率以及SiO2的颗粒形状良好;从孔体积来看,当添加纤维的量为20%时,其孔体积与纯SiO2气凝胶相近,此时的吸附—脱附曲线表明:具有较高的吸附量和孔容。方法二得到的复合材料中纤维预制体中的孔洞被SiO2气凝胶填充,但纤维与气凝胶的结合比较紧密,具有一定的强度。
     SAXS对SiO2气凝胶的研究中表明,热处理后由于颗粒变大使得低散射区的散射强度降低,而在反应釜中密闭的状态下制备的SiO2,由于颗粒小且均匀,得到的低散射区的散射强度就高;本实验所制得的SiO2气凝胶体系的小角散射均不遵守Porod定理,表现为不同程度的正偏离,这表明散射体系中有第二相(界而层)存在;反应釜中密闭制备、常压下制备、经400℃热处理的三种样品在高散射强度区呈现出表面分形,表面分形维数Ds分别为:2.65、2.48、2.11;在低散射强度区呈现出质量分形,分形质量分形维数Dm分别2.23、2.36、2.43。利用氮气吸附脱附法对复合材料的分形研究表明,所有样品的直线拟合相关度很高,所得分形维数Ds值均在2.4~2.9之间,因而均具有表面分形特性。其中添加纤维的气凝胶分形维数与纯凝胶非常接近,变化很小,说明表面复杂程度相似。添加钛酸丁酯的气凝胶的分形维数很高,在2.6~2.9之间,说明其具有比较复杂的结构。两种方法对纯SiO2气凝胶的分析得到的结构基本一致,且跟前面的测试分析结果相吻合,说明利用这两种方法得到的数据真实可靠。
Aerogels are high dispersive solid materials which consist of colloid particles or high polymer molecule and have continuous random network structure filling with gaseous dispersive medium. According to their low densities, low refractive indices, small pore sizes, and good transparencies, Much attention have been given to the aerogels for use in several applications:catalyst supprot, thermal insulators, Cherenkov detectors, monolithic, capacitors and cosmic dust capture etc.
     Silica aerogels, TiO2/SiO2 aerogels and Fiber/SiO2 were synthesized by two-step sol-gel polymerization of tetraethoxysilane (TEOS) in alcohol and using ambient pressure drying with ternary azeotropes as components of pore fluid. The physical properties such as density, appearance, hydrophobicity, surface area, pore size distribution and thermal stability were measured. According to the data of absorption-desorption experimental and Small Angle X-ray Scattering, the surface fractal of silica serogels and the composites were studied.
     The wet gels were synthesized via acid-base catalysis using tetraethyl orthosilicate as silica precursor and alcohol as solvent. The molar rate of TEOS, alcohol and water is 1:4:6. Alcohol was exchanged by n-butanol, and the gel surface was modified by a mixture mixed by n-butanol and trimethylchlorosilane (TMCS).Then the solvent was exchanged by several steps by saturated hydrocarbon, so as to obtain the pore fluids which contain azeotropic mixtures such as water, n-butanol and hexane. Ambient pressure drying was performed in two steps, at the boiling points of the ternary azeotropes (60℃)and the hydrocarbons(80℃), respectively.
     The structure and physical properties of these aerogels were investigated by several experimental methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM),thermo-gravimetric and differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FTIR), specific surface area analyzer,pore size analyzer and so on. The result shows that silica aerogels are coherent, amorphous form, hydrophobic and nanosized porous solids. And its high specific surface achieves 838.6 m2/g.
     Titania-silica aerogels with different Titania content were prepared. Two preparation methods differing mainly in approach to precursor hydrolysis were applied. The high specific surface area is obtained by adding TiO2 powder, and the maximal one is 1107.38 m2/g while the content of it is 15wt%. While adding tetraisopropyl orthotitanate as one of precursor, the specific surface area is sharp decline and the N2 adsorption and desorption experiment shows that there are a lot of micropores (<2nm). Methyl orange photocatalytic experimental result shows that:photodegradation rate of Methyl Orange is higher by TiO2 powder mixed in SiO2 aerogels than pure TiO2 powder, and when the content of TiO2 powder accounts for 15wt%, the best photocatalytic properties appears. Compare the photocatalytic experiment using TiO2 and TiO2/SiO2 as catalyst. It's easy to know that when mixed in the SiO2 aerogels, the catalytic of TiO2 is mucher better.
     Fiber/SiO2 aerogels with maximal diameter 103mm were synthesized using two different methods:the first one is adding fibers in precursors while the second one is dipping fiber's preformed units in the SiO2 sol. The characteristic of SiO2 aerogels haven't changed because of the adding of the fibers. When the content of fiber was 20%, the pore volume was similar to pure SiO2. Nitrogen adsorption and desorption isotherms indicated that the composite material had a big adsorptive capacity and pore volume.
     The results of SAXS shows that at low q-domain, the scattering intensity of SiO2 aerogels was low, because of heat treatment, the particles of SiO2 became bigger. While the the scattering intensity of SiO2 aerogels prepared in airproof reactor was higher. It also shows that the SAXS profiles do not agree with Porod's law and have positive slopes, suggesting that the dispersive interfacial layer exists between sol particle and dispersing agent. The three kinds of silica aerogels prepared in airproof reactor,ambient pressure, and heat treated at 400℃have different surface fractal dimension Ds at high scattering intensity region, the surface fractal dimension Ds were 2.65,2.48 and 2.11 respectively. And all of the three has have different mass fractal dimension Dm at low scattering intensity region, the mass fractal dimension Dm were 2.23,2.36 and 2.43 respectively. The results of N2 adsorption and desorption shows that the surface fractal dimension Ds of pure silica aerogels and composites were between 2.4-2.9. The Ds of fiber/SiO2 and pure silica aerogels were uniform, so their structures were very similar. The silica aerogels by adding tetrabutyl titanate have complicated surface, whose fractal dimension were between 2.6 and 2.9. The results from SAXS and N2 adsorption and desorption were so uniform, it indicated that the results were believable.
引文
[1]Wang J, Uma S, Klabunde K J. Visible Light Photocatalytic Activities of Transition Metal Oxide/silica Aerogels[J]. Microporous and Mesoporous Materials,2004,75: 143-147.
    [2]Buisson P, Hernandez C, Pierre M, et al. Encapsulation of Lipases in Aerogels[J]. Journal of Non-Crystalline Solids,2001,285(1-3):295-302.
    [3]Hu S.W., Willey R. J., Notari B.. An Investigation on the Catalytic Properties of Titania-Silica Materials [J]. Journal Non-Crystalline Solids,2003,220:240-248.
    [4]Dutoit D. C. M., Schneider M., Hutter R.. Titania-Silica Mixed Oxides IM Influence of Ti Content and Aging on Structural and Catalytic Properties of Aerogels [J]. Journal of Catalysis.1996,161:651-658.
    [5]Malinowska B., Walendziewski J., Robert D., et al. The Study of Photocatalytic Activities of Titanic and Titanic-Silica Aerogels [J]. Applied Catalysis B:Environmental,2003,46: 441-451.
    [6]Rubin M., Lampert C.M., Transparent Silica Aerogels for Window Insulation[J]. Solar Energy Mater,1983,7:393-400.
    [7]Buzykaev A. R., Danilyuk A. F., Ganzhur S. F., et al. Measurement of Optical Parameters of Aerogel. Nuclear Instruments and Methods in Physics Research A. 1999(433):396-400.
    [8]L. W. Hrubesh, and J. F. Poco Thin Aerogel Films For Optical, Thermal Acoustic and Electronic Applications [J]. Journal Non-Crystalline Solids,1995,188:46-53.
    [9]Emmerling A., Wang P., Popp G. Nanostructure and Optical Transparency of Silica Aerogels[J]. Journal De Physique Iv,1993,3:357-360.
    [10]Platzer W. J., Bergkvist M.. Bulk and Surface Light Scattering from Transparent Silica Aerogel[J]. Solar Energy Materials and Solar Cells.1993,31:243-251.
    [11]Wittwer V., Solar Collector With Monolithic Silica Aerogel [J]. Journal of Non-Crystalline Solids,1992,145:240-243.
    [12]Arisaka K., Borsato E., Boutigny D.. Four-layer Aerogel Cherenkov Counter[J]. Journal of Non-Crystalline Solids,1998,225:375-380.
    [13]Pajonk G. M.. Some Applications of Silica Aerogels[J]. Colloid Polym Science,2003, 281:637-651.
    [14]Glom M., Wiener M., Petriccevic R., et al. Integration of Carbon Aerogels in PEM Fuel Cells [J]. Journal of Non-Crystalline 3399Solids,2001,285:283-287.
    [15]Ahmed M.S., Attia Y.A.. Aerogel Materials for Photocatalytic Detoxification of Cyanide Wastes in Water [J]. Journal of Non-Crystalline Solids,1995,186:402-407.
    [16]Tsou P.. Silica Aerogel Captures Cosmic Dust Intact [J]. Journal of Non-Crystalline Solids,1995,186:415.
    [17]Cho W., Saxena R., Rodriguez O., et al. Effects of Sintering on Dielectric Constants of Mesoporous Silica [J]. Journal of Non-Crystalline Solids,2004,350:336-344.
    [18]Kim G S, Hyun S. H.. Synthesis and Characterization of Silica Aerogel Films for Inter-metal Dielectrics via Ambient Drying [J]. Thin Solid Films,2004,460:190-200.
    [19]Krauss O., Gerlach R., Fricke J.. Experimental and Theoretical Investigations of SiO2 Aerogel Matched Piezo [J]. Transducers Ultrasonics,1994,32(3):217-221.
    [20]Hasegawa T.. A Large Silica Aerogel Cherenkov Counter for SKS. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, spectrometers[J]. Detectors and Associated Equipment,1994,342(2-3):383-388.
    [21]Hrubesh L. W. Aerogel Applications [J]. Journal of Non-Crystalline Solids,1998,225: 335-342.
    [22]Kistler, S. S., Coherent Expanded Aerogels and Jellies[J]. Nature,1931,127(3211):741.
    [23]Kistler, S. S., Coherent Expanded Aerogels[J]. J Physical Chem.,1932,36:52.
    [24]Shewale P. M., Rao A. V., Gurav J. L.. Synthesis and Characterization of Low Density and Hydrophobic Silica Aerogels Dried at Ambient Pressure using Sodium Silicate Precursor [J]. Journal of Porous Materials,2009,16:101-108.
    [25]Lee C. J., Kim G. S., Hyun S. H.. Synthesis of Silica Aerogels from Waterglass via New Modified Ambient Drying [J]. Journal Materials Science,2002,37:2237-2241.
    [26]Rao A. P., Pajonk G M., Rao A.V.. Effect of Preparation Conditions on the Physical and Hydrophobic Properties of two Step Processed Ambient Pressure Dried Silica Aerogels [J]. Journal Materials Science,2005,40:3481-3489.
    [27]Nakanishi K., Minakuchi H., Soga N.. Structure Design of Double-Pore Silica and Its Application to HPLC [J], Journal of Sol-Gel Science and Technology,1998,13:163-169.
    [28]Nakanishi K., Minakuchi H., Soga N., et al. Double Pore Silica Gel Monolith Applied to Liquid Chromatography [J]. Journal of Sol-Gel Science and Technology,1997,8: 547-552.
    [29]Hegde N. D., Rao A. V.. Effect of Processing Temperature on Gelation and Physical Properties of Low Density TEOS Based Silica Aerogels [J], Journal of Sol-Gel Science and Technology,2006,38:55-61.
    [30]Bhagat S. D., Kim Y. H., Ahn Y. S.. Jeong-Gu Yeo. Textural Properties of Ambient Pressure Dried Water-glass Based Silica Aerogel Beads:One Day Synthesis [J], Microporous and Mesoporous Materials,2006,96:237-244.
    [31]李学伟,李垚,张赛镭,等.稻壳灰制备掺杂Ti02硅气凝胶研究[J].稀有金属材料与工程,2007,36(8):43-45.
    [32]刘朝辉,苏勋家,侯根良,等,超级绝热材料Si02气凝胶的制备及应用[J].化工新型材料,2005,33(12):21-22.
    [33]Harreld J. H., Ebina T., Tsubo N., et al. Manipulation of Pore Size Distributions in Silica and Ormosil Gels Dried under Ambient Pressure Conditions [J]. Journal of Non-Crystalline Solids,2002,298:241-251.
    [34]Rao A. V., Hegde N. D., Hirashima H..Absorption and Desorption of Organic Liquids in Elastic Superhydrophobic Silica Aerogels [J]. Journal of Colloid and Interface Science, 2007,305:124-132.
    [35]张志华,倪星元,沈军,等.疏水型Si02气凝胶的常压制备及吸附性能研究[J].同济大学学报(自然科学版),2005,33(12):1641-1645.
    [36]邓忠生,等.疏水性Si02气凝胶[J].无机材料学报,2000,15(2):381-384.
    [37]Zhou B., Shen J., Wu Y., et al. Hydrophobic Silica Aerogels Derived from Polyethoxydisiloxane and Perfluoroalkylsilane [J]. Materials Science and Engineering C 2007,27:1291-1294.
    [38]Brinker C. J., Sherer G. W.. The Physics and Chemistry of Sol-Gel Processing [M]. New York,Acad. Press,1990.
    [39]Tillotson T. M., Hrubesh L. W.. The Effects of the Homogeneity of Non-crystalline Pb---Ti---O Gels on the Complex Thermal Processes Leading to PbTiO3 Formation [J]. Journal of Non-Crystalline Solids,1992,145:144-147.
    [40]Pope E.J.A., Mackenzie J.D.. Sol-gel Processing of Silica:Ⅱ. The Role of the Catalyst [J]. Journal of Non-Crystalline Solids.1986,87:185-198.
    [41]Rao A. V., Haranath D.. Effect of Methyltrimethoxysilane as A Synthesis Component on the Hydrophobicity and Some Physical Properties of Silica Aerogels [J]. Microporous and Mesoporous Materials,1999,30:267-273.
    [42]Rao A. V., Bhagat S. D., Hirashima H., et al. Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (MTMS) Precursor [J]. Journal of Colloid and Interface Science, 2006,300:279-285.
    [43]Einarsrud M.-A., Nilsen E., Rigacci A., et al. Strengthening of Silica Gels and Aerogels by Washing and Aging Processes [J]. Journal of Non-Crystalline Solids,2001,285:1-7.
    [44]Deng, Z., Wang, J., Wei, J., et al. Physical Properties of Silica Aerogels Prepared with Polyethoxydisiloxanes [J]. Journal of Sol-Gel Science and Technology,2000,19: 677-680.
    [45]Moner-Girona M., Roig A., Molins E.. Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents [J]. Journal of Sol-Gel Science and Technology,2003,26:645-649.
    [46]Kirkbir F., Murata H., Meyers D., et al. Drying and Sintering of Sol-Gel Derived Large SiO2 Monoliths [J]. Journal of Sol-Gel Science and Technology,1996,6:203-217.
    [47]Dieudonne Ph., Hafidi Alaoui A., Delord P., et al. Transformation of Nanostructure of Silica Gels during Drying [J]. Journal of Non-Crystalline Solids,2000,262:155-161.
    [48]Wu G. M., Wang J., Shen J., et al. Properties of Sol-Gel Derived Scratch-resistant Nano-porous Silica Films by a Mixed Atmosphere Treatment [J]. Journal of Non-Crystalline Solids,2000,275:169-174.
    [49]Mezza P., Phalippou J., Sempere R.. Sol-gel Derived Porous Silica Films [J]. Journal of Non-Crystalline Solids,1999,243:75-79.
    [50]Hdach H., Woignier T., Phalippou J. et al. Effect of Aging and pH on the Modulus of Aerogels [J]. Journal of Non-Crystalline Solids,1990,121:202.
    [51]Haereid S., Dahle M., Lima S., et al.1995a. Preparation and Properties of Monolithic Silica Xerogels from TEOS-Based Alcogels Aged in Silane Solutions [J]. Journal of Non-Crystalline Solids,1995,186:96-103.
    [52]Haereid, S., Nilsen, E., Einarsrud, M.A.. Properties of Silica Gels Aged in TEOS [J]. Journal of Non-Crystalline Solids,1996,204:228-234.
    [53]Titulaer M.K., Jansen J.B.H., Geus J.W.. Fluid Composition Effects on Silica Gel Aging [J]. Journal of Non-Crystalline Solids,1994,170:11-20.
    [54]Chou, K., Lee, B.I.. Solvent Effect on Ageing of Silica Gels [J]. Journal Materials Science,1994,29:3565-3571.
    [55]Einarsrud M.-A., Nilsen E.. Strengthening of Silica Gels and Aerogels by Washing and Aging Processes [J]. Journal of Non-Crystalline Solids,2001,285:1-7.
    [56]Einarsrud M.-A., Kirkedelen M. B., Nilsen E., et al. Structural Development of Silica Gels Aged in TEOS [J]. Journal of Non-Crystalline Solids,1998,231:10-16.
    [57]Einarsrud M.-A., Nilsen E.. Strengthening of Water Glass and Colloidal Sol Based Silica Gels by Aging in TEOS [J]. Journal of Non-Crystalline Solids,1998,226:122-128.
    [58]Reichenauer G... Thermal Aging of Silica Gels in Water [J]. Journal of Non-Crystalline Solids 2004,350:189-195.
    [59]Strom R. A., Masmoudi Y., Rigacci A.. Strengthening and Aging of Wet Silica Gels for Up-scaling of Aerogel Preparation [J]. Journal of Sol-Gel Science and Technology,2007, 41:291-298.
    [60]Rao A. V., Rao A. P., Kulkarni M. M.. Infiuence of Gel Aging and Na2SiO3/H2O Molar Ratio on Monolithicity and Physical Properties of Water-glass-base Aerogels Dried at Atmospheric Pressure [J]. Journal of Non-Crystalline Solids,2004,350:224-229.
    [61]Soleimani Dorcheh A., Abbasi M. H.. Silica Aerogel; Synthesis, Properties and Characterization [J]. Journal of Materials Processing Technology,2008,199:10-26.
    [62]梁长海.维持凝胶织构的干燥理论、技术及应用[J],功能材料,1997,28(1):10-14.
    [63]Cuunington GR., Lee S.M.. Radiative Propertyes of Fiber-reinforced Aerogel:Theory Versus Experiment [J]. Journal of Thermophysics and Heat Transfer,1998,12(1):17-22.
    [64]陈应飚,叶钊,李炬城,等.凝胶的干燥[J].附件化工,2002,(2):20-22.
    [65]Kocon L., Despetis F., Phalippou J. Ultralow Density Silica Aerogels by Alcohol Supercritical Drying [J]. Journal of Non-Crystalline Solids,1998,225:96-100.
    [66]Mulder C.A.M., G.vanlierop J.. Aerogels[A]. Proceeding of the First International Symposium[C], Berlin, Springer Verlag,1986:68-72.
    [67]相宏伟,钟炳,彭少逸.超临界流体干燥理论、技术与应用[J].材料科学与工程,1995,13(2):38-42,53.
    [68]沈军,周斌.纳米孔超级绝热材料气凝胶的制备与热学特性[J].过程工程学报,2002,2(4):341-345.
    [69]倪文,刘凤梅.纳米孔超级绝热材料的原理及制备[J].新型建筑材料,2002,(1):36-38
    [70]Tamon H., Sone T., Okazki M.. Control of Mesoporous Structure of Silica Aerogel Prepared from TMOS [J]. Journal of Colloid and Interface Science,1997,188:162-167.
    [71]Kocon L., Despetis F., Phalippou J.. Ultralow Density Silica Aerogels by Alcohol Supercritical Drying [J]. Journal of Non-Crystalline Solids 1998,225:96-100.
    [72]Aravind P.R., Mukundan P., Krishna Pillai P., et al. Stability Through Hybrid Sol-Gel Route Followed by Subcritical Drying [J]. Microporous and Mesoporous Materials,2006, 96:14-20.
    [73]沈军,周斌.纳米孔超级绝热材料气凝胶的制备与热学特性[J].过程工程学报,2002,2(4):341-345.
    [74]黄耀东,周斌.Si02气凝胶的常压干燥制备[J].全国第三届纳米材料和技术应用会议论文集(上卷),南京,2003:69-72.
    [75]李雪,赵海雷.硫酸—水玻璃体系成胶特点的研究[J].华北地区硅酸盐学会第八届学术技术交流会论文集,2005:246-250.
    [76]赵大方,陈一民.疏水SiO2气凝胶的低成本制备[J].硅酸盐学报,2004,2(5):548-552.
    [77]史非,王立久.介孔SiO2气凝胶的常压干燥制备研究[J].无机化学学报,2005,21(11):1633-1636.
    [78]Hegde N. D., Hirashima H., Venkateswara Rao A.. Two Step Sol-Gel Processing of TEOS based Hydrophobic Silica Aerogels using Trimethylethoxysilane as Aco-precursor [J]. Journal of Porous Materials,2007,14:165-171.
    [79]Rao A. P., Rao A. V., Gurav J. L.. Effect of Protic Solvents on the Physical Properties of the Ambient Pressure Dried Hydrophobic Silica Aerogels using Sodium Silicate Precursor [J]. Journal of Porous Mater,2008,15:507-512.
    [80]Suratwala T. I., Hanna M. L., Miller E. L., et al. Surface Chemistry and Trimethylsilyl Functionalization of Stober Silica Sols [J]. Journal of Non-Crystalline Solids,2003,316: 349-363.
    [81]陈龙武,甘礼华,侯秀红.SiO2气凝胶的非超临界干燥法制备及其形成过程[J].物理化学学报,2003,19(9):819-823.
    [82]Prakash S. S., Brinker C. J., Hurd A. J., et al. Silica Aerogel Films Prepared at Ambient Pressure by using Surface Derivatization to Induce Reversible Drying [J]. Nature (London),1995,375(63):431-439.
    [83]Harreld J. H., Dong W.,Dunn B.. Ambient Pressure Synthesis of Aerogel-like Vanadium Oxide and Molybdenum Oxide [J]. Materials Research Bulletion,1998,33(4):561-567.
    [84]吴广明,鲁鸿雁,王钰,等.SiO2气凝胶薄膜常压制备与强化研究[J].物理化学学报,2002,51(1):104-110.
    [85]沈军,汪国庆,王钰,等.SiO2气凝胶的常压制备及其热传输特性[J].同济大学学报(自然科学版),2004,32(8):1106-1110.
    [86]甘礼华,陈龙武,张宇星.非超临界干燥法制备Si02气凝胶[J].物理化学学报.2003,19(6):504-508.
    [87]Schmidt M., Schwertfeger F.. Applications for Silica Aerogel Products [J]. Journal of Non-Crystalline Solids,1998,225:364-368.
    [88]Bernasconi A. Low-Temperature Specific Heat and Thermal Conductivity of Silica Aerogels[J]. Journal of on-Crystalline Solids.1992,145:202-206.
    [89]Kim G S, Hyun S H. Synthesis of Window Glazing Coated with Silica Aerogel Films via Ambient Drying [J]. Journal of Non-Crystalline Solids,2003,320 (1-3):125-132.
    [90]Tillotson T.M., Sunderland W.E., Thomas I.M., et al. Synthesis of Lanthanide and Lanthanide-Silicate Aerogels [J]. Journal of Sol-Gel Science and Technology.1994(1): 241-249.
    [91]Ashley C.S.. Chemical Processing of Advanced Materials [M], New York, Wiley,1992: 989.
    [92]Jensen K.I.. Passive Solar Component Based on Evacuated Monolithic Silica Aerogel [J]. Journal of Non-Crystalline Solids,1992,145:237-239.
    [93]Svendson S.. Solar Collector with Monolithic Silica Aerogel [J]. Journal of Non-Crystalline Solids,1992,145:240-243.
    [94]Kawai H., Haba J., Homma T.. Tests of a Silica Aerogel Cherenkov Counter [J]. Nuclear Instruments and Methods in Physics Research A,1985,228:314-322.
    [95]T. Bellunato. Performance of Aerogel as Cherenkov Radiator [J]. Nuclear Instruments and Methods in Physics Research A,2004,519:493-507.
    [96]Wang J., Uma S., Klabunde K.J.. Visible Light Photocatalytic Activities of Transition Metal Oxide/silica Aerogels [J]. Microporous and Mesoporous Materials,2004,75: 143-147.
    [97]刘迎新,未作君,陈吉祥,等.溶胶凝胶法制备Ni-Si02催化剂的表征与性能[J].物理化学学报,2004,20(7):780~784.
    [98]Kraume I M. Synthesis of Silica Aerogels and Their Application as a Drug Delivery System:[D].Berlin:Technischen Universitat Berlin,2002.
    [99]Ahola M S, Sailynoja E S, Raitavuo M H et al. In Vitro Release of Heparin from Silica Xerogels[J]. Biomaterials,2001,22:2163-2170.
    [100]Kortesuo P., Ahola M., Karisson S., et al. Sol-Gel-Processed Sintered Silica Xerogel as a Carrier in Controlled Drug Delivery [J]. Biomed Mater Res,1999,44:162-167.
    [101]Schwertfeger F., Zimmermann A., Krempel H.. Use of Inorganic Aerogels in Pharmacy [P] United States,6280744,2001.
    [102]Smirnova I., Mamic J., Arlt W.. Adsorption of Drugs on Silica Aerogels [J]. Langmuir, 2003,19:8521-8525.
    [103]Smirnova I., Suttiruengwong S., Arlt W., Feasibility Study of Hydrophilic and Hydrophobic Silica Aerogels as Drug Delivery Systems [J]. Journal of Non-Crystalline Solids,2004,350:54-60.
    [104]Ayers M R, Hunt A J. Synthesis and Properties of Chitosan-Silica Hybrid Aerogels [J]. Journal of Non-Crystalline Solids,2001,285:123-127.
    [105]Yang Y. M., Wang J. W., Tan R. X.. Immobilization of Glucose Oxidase on Chitosan-SiO2 Gel [J]. Enzyme and Microbial Technology,2004,34:126-131.
    [106]Tsou P.. Silica Aerogel Captures Cosmic Dust Intact [J]. Journal of Non-Crystalline Solids,1995,186:415-427.
    [107]Jang K. Y, Kim K.. Study of Aol-gel Processing for Fabrication of Hollow Silica-Aerogel Spheres [J]. Journal of Vacuum Science and Technoloy,1989, 48:1732-1735.
    [108]Akimov Y. K.. Fields of Application of Aerogels [J]. Instruments and Experimental Techniques,2003,46 (3):287-299.
    [109]Marliere C., Woignier T, Dieudonne P et al. Two Fractal Strctures in Aerogel [J]. Journal of Non-Crystalline Solids,2001,285 (1-3):175-180.
    [110]Reidy R. F., Allen A J,S.Krueger. Small Angle Neutron Scattering Characterization of Colloidal and Fractal Aerogels [J]. Journal of Non-Crystalline Solids,2001,285 (1-3):181-186.
    [111]Golob P.. Current Status and Future Perspectives for Inert Dusts for Control of Stored Product Insects [J].Journal of Stored Products Research,1997,33:69-79.
    [112]Alkemper Buchholz T., Murakami K., et al.. Solidification of Aluminium Alloys in Aerogel Moulds [J]. Journal of Non-Crystalline Solids,1995,186:395-401.
    [113]Pacheco S., Tapia J., Medina M. et al.. Cadmium Ions Adsorption in Simulated Wastewater using Structured Alumina-Silica Nanoparticles [J]. Journal of Non-Crystalline Solids,2006,352:5475-5481.
    [114]Sun J. J., Akdogan E. K., Klein L. C., et al.. Characterization and Optical Properties of Sol-Gel Processed PMMA/SiO2 Hybrid Monoliths[J]. Journal of Non-Crystalline Solids, 2007,353:2807-2812.
    [115]Mackenzie J. D.. Sol-Gel Research—Achievements Since 1981 and Prospects for the Future [J]. Journal of Sol-Gel Science and Technology,2003,26:23-27.
    [116]Joseph P. C., Lukehart C. M.. Formation of Crystalline Germanium Nanoclusters in a Silica Xerogel Matrix from an Organogermanium Precursor[J]. Chemisty Materials. 1996,8:1268-1274.
    [117]Carpenter J. P., Lukehart C. M., Molne S. B.. Formation of Crystalline Nanoclusters of Ag, Cu, Os, Pd, Pt, Re, or Ru in a Silica Xerogel Matrix from Single-Source Molecular Precursors [J]. Chemitr Materials,1997,9:3164-3170.
    [118]Tamon H., SONE T., MIKAM I M.. Preparation and Characterization of Silica-Titania and Silica-Alumina Aerogels[J]. Journal of Colldid and Interface Science.1997,188: 493-500.
    [119]Deng Z. S., Wang J., Zhang Y. L.. Preparation and Photocatalytic Activity of TiO2-SiO2 Binary Aeragels [J]. NanoStructured Materials,1999,11(8):1313-1318.
    [120]Ismail a A.A., Ibrahim I.A., Ahmedb M.S. Sol-gel Synthesis of Titania-Silica Photocatalyst for Cyanide Photodegradation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163:445-451.
    [121]Brodzik K., Walendziewski J., Stolarski M., et al.. The Influence of Preparation Method on the Physicochemical Properties of Titania-Silica Aerogels:Part Two[J]. Journal of Porous Materials,2008,15:541-549.
    [122]Yoda S., Tasaka Y., Uchida K., et al.. TiO2-impregnated SiO2 Aerogels by Alcohol Supercritical Drying with Zeolite [J]. Journal of Non-Crystalline Solids,1998,225: 105-110.
    [123]Himmel B., Gerber Th., Burger H.. Structural Characterization of SiO2-Al2O3 Aerogels [J]. Journal of Non-Crystalline Solids,1995,186:149-158.
    [124]Goodwin T J. Leppert J. Smith C A, et al. Synthesis of Nanocrystalline Gallium Nitride in Silica Acrogcls[J]. Appllicd Physics Letters.1996,69:3230-3232
    [125]Zhou H. J., Cai W. P., Zliang L. D., et al. Pliotoluminescence of Indium-oxide Nanoparticles Dispersed Ivitliin Pores of Mesoporous Silica[J]. Appllied Physics Letters.1999,75:495-497.
    [126]刘敬肖,曾淼,史非等.SiO2气凝胶/壳聚糖复合药物载体材料的制备和表征[J].功能材料,2007,38(9):1527-1530.
    [127]White S., Rask D.. Light Weight Supper Insulating Aerogel PTile Composite have Potential Industry[J]. Material Technology,1999,14(1):13-17.
    [128]董志军,李轩科,袁观明.莫来石纤维增强SiO2气凝胶复合材料的制备及性能研究[J].化工新型材料,2006,34(7):58-61.
    [129]王衍飞,张长瑞,冯坚等.SiO2气凝胶/短切石英纤维多孔骨架复合材料的制备与性能[J].硅酸盐学报,2009,37(2):234-237.
    [130]王衍飞,张长瑞,冯坚等.SiO2气凝胶复合短切莫来石纤维多孔骨架复合材料的制备及性能[J].国防科技大学学报,2008,30(6):24-28.
    [131]杨丽丽,硅气凝胶常压制备及增强改性研究[D].哈尔滨土业大学硕士学位论文, 2005年6月.
    [132]Arlon J. H., Michael R. R., Cao W.. Aerogel Composites Using Chemical Vapor Infiltration [J].Journal of Non-Crystalline Solids,1995,185:227-232.
    [133]Lee D., Stevens P. C, Zeng S. Q., et al.. Thermal Characterization of Carbon-opacified Silica Aerogels [J]. Journal of Non-Crystalline Solids,1995,186:285-290.
    [134]Piao L Y, Lia Y D, Chen J L. Methane Decomposition to Carbon Nanotubes and Hydrogen on an Alumina Supported Nickel Aerogel Catalyst [J]. Catalysis Today,2002, 74:145-155.
    [135]赵丽,余家国,程蓓,赵修建.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-566.
    [136]王英滨.常压干燥溶胶·凝胶法制备SiO2气凝胶机器性能的实验研究[D].北京:中国地质大学矿物学、岩石学、矿床学专业,2002,6.
    [137]E.J.A. Pope, J.D. Mackenzie. Sol-gel Processing of Silica:Ⅱ. The Role of the Catalyst [J]. Journal of Non-Crystalline Solids.1986,87:185-198.
    [138]Thitinun S., Thanabodeekij N., Alexander M. Jamieson A. M., et al.. Sol-gel Processing of Spirosilicates [J], Journal of the European Ceramic Society,2003,23:417-427.
    [139]林健.催化剂对正硅酸乙酯水解-聚合机理的影响[J],无机材料学报,1997,12(3):363-370.
    [140]何飞.SiO2和SiO2-Al2O3复合干凝胶超级隔热材料的制备与表征[D].哈尔滨:哈尔滨工业大学,2006.6.
    [141]高朋召,王红洁,金志浩.SiO2溶胶-凝胶转变过程的动力学研究及应用[J].复合材料学报,2003,20(4):122-128.
    [142]Hrubesh,L.W. Aerogel Applications [J]. Journal of Non-Crystalline Solids,1998,225: 335-342.
    [143]Strφm, R. A., Masmoudi, Y, Rigacci, A., et al. Strengthening and Aging of Wet Silicagels for Up-scaling of Aerogel Preparation [J]. J Sol-Gel Sci Techn,2007,41: 291-298.
    [144]Brinker CJ, Scherer GW. Sol-gel Science[M]. Academic Press Inc., London.1990.
    [145]Haerei d S., Anderson J., Einarsrud M. A., et al. Thermal and Temporal Aging of TMOS-based Aerogel Precursors in Water [J]. Journal of Non-Crystalline Solids.1995, 185:221-226.
    [146]Hiemenz P.C.. Principles of Colloid and Surface Chemistry [M], Marcel Dekker, New York,1977.
    [147]Brinker C.J., Scherer G.W., Sol-gel Science, Academic [M], New-York,1989.
    [148]Schuth, F., Sing K.S.W., Weitkamp, J.. Hand Book of Porous Solids [M], Weinheim (Federal Republic of Germany), WILEY-VCH Verlag GmbH,2002:2023.
    [149]Schwertfetger F., Frank D., Schmidt M.. Hydrophobic Waterglass based Aerogels without Solvent Exchange or Supercritical Drying[J]. Journal of Non-Crystalline Solids,1998,225:24-29.
    [150]Bisson, A., Rodier, E., Rigacci, A., Lecomte, D., Achard, P.. Study of eEvaporative Drying of Treated Silica Gels [J]. Journal of Non-Crystalline Solids.2004,350: 230-237.
    [151]Shlyakhtina A.V., Young-Jei Oh.. Transparent SiO2 Aerogels Prepared by Ambient Pressure drying with Ternary Azeotropes as Components of Pore Fluid [J]. Journal of Non-Crystalline Solids,2008,354:1633-1642.
    [152]Kogan V. B., Fedotova M. D.. Application of Gas-liquid Chromatography to the Study of Liquid Oligomers [J]. Polymer Science U.S.S.R.,1968,10(8):1972-1976.
    [153]Yoldas B. E., Modification of Polymer-gel Structures[J]. Journal of Non-Crystalline Solids.1984,63:145-154.
    [154]Schwertfeger F., Glaubitt W., Schubert V.. Hydrophobic Aerogels from Si(OMe)4/ MeSi(OMe)3 Mixtures[J], Journal of Non-Crystalline Solids.1992,145:85-89.
    [155]Lele K., Kim S.Y., Yoo K.P., Low-density, Hydrophobic Aerogels [J], Journal of Non-Crystalline Solids.1995,186:18-22.
    [156]Brunauer S., Emmett P. H., Teller E., Adsorption of Gases in Multimolecular Layers[J]. Journal of American Chemical Socity, 1938,60:309.
    [157]Barrett E.P., Joyner L.G., Halenda P.P.. The Determination of Pore Volume and Area Distributions in Porous Substances. Ⅰ.Computation Isotherms [J]. J. Am. Chem. Soc, 1951,73(1):373-380.
    [158]Gregg S.J., Sing K.S.W.. Adsorption, Surface Area and Porosity [M].2nd edition. San Diego, Academic Press,1982:89-105.
    [159]严继民,张启元,高敬琮.吸附与凝聚[M].北京:科学出版社,1986:155-177.
    [160]Sing K.S.W., Everett, D.H., Haul R.A.W., et al. IUPAC Recommendations 1984, Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface Area and Porosity [J]. Pure & Appl. Chem.,1985,57(4): 603-619.
    [161]Rouquerol J., Avnir D., Fairbridge C.W., et al. IUPAC Technical Report, Recommendations for the Characterization of Porous Solids [J]. Pure & Appl. Chem., 1994,66(8):1739-1758.
    [162]蔡文田.含挥发性有机物废气之活性碳吸附与触媒焚化处理研究[D].国立台湾大学环境工程学研究所博士论文1994.
    [163]Bikerman J. J., Surface Chemistry:Theory and Applications [M],2nd edn. Academic, New York,1958, p.343.
    [164]Nagaraja D. Hegde, Hirashima H., Rao A. V.. Two Step Sol-Gel Processing of TEOS based Hydrophobic Silica Aerogels using Trimethylethoxysilane as a Co-precursor [J], Journal of Porous Mater,2007,14:165-171.
    [165]Phalippou J., Despetis F., Calas S., et al.. Comparison between Sintered and Compressed Aerogels[J]. Optical Materials.2004,26:167-172.
    [166]果世驹.粉末烧结理论[M].冶金工业出版社,2002:16-18.
    [167]Yoshinaka M.. Formation and Sintering of TiO2 Solid Solution in the System TiO2-SiO2[J]. Journal of American Ceramics Society.1997,80(10):2749-2753.
    [168]徐如人.分子筛与多孔材料化学[M].北京,科学出版社,2004年,145-148.
    [169]B. Sonuparlak. Tailoring the Microstructure of Ceramic and Ceramic Matrix Composites Through Processing[J]. Composites Sciences and Technology.1990,37: 299-312
    [170]常安国.多晶莫来石耐火纤维的开发及其应用[J].中国铸机,1994(1):49-55
    [171]管鄂,袁家锌,戴锦春.新型PMF节能材料[J].节能,1996,(12):17-19
    [172]张济忠.分形[M].北京:清华大学出版社,1995.
    [173]孙博玲.分形维数(Fractaldimens}on)及其测量方法[J].东北林业大学学报,2004,32(3):116-119.
    [174]郝柏林.分形和分维[J].科学,1986(1):55-56.
    [175]朱金兆,朱清科.分形维数计算方法研究进展[J].北京林业大学学报,2002,24(2):71-78.
    [176]王慧,曾令可.分形理论及其在材料学中的应用[J].材料开发与应用.2000,15(5):39-43.
    [177]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997.
    [178]B. B. Mandelbrot. The Fractal Geometry of Nature [M], Freeman:San Francisco,1982.
    [179]沈军,王珏,吴翔,二氧化硅气凝胶的纳米结构与分形特征[J].同济大学学报,1996,24(1):76-81.
    [180]Sinko K., Torma V., Kovacs A.a, SAXS Investigation of Porous Nanostructures [J]. Journal of Non-Crystalline Solids,2008,354:5466-547.
    [181]郭玉忠,黄瑞安,孙家林1SiO2溶胶系水解缩合实验研究[J].硅酸盐学报,2001,29(2):157-162.
    [182]Geis S., Lobmann P., Fricke J., SAXS Investigation of Morphology Changes in Lead-titanate Aerogels [J]. Journal of Non-Crystalline Solids,1998,225:226-229.
    [183]Vollet D.R., Donatti D.A., Ibanez Ruiz A., A SAXS Study of the Nanostructural Characteristics of TEOS-derived Sonogels upon Heat Treatment up to 1100℃[J]. Journal of Non-Crystalline Solids,2002,306:11-16.
    [184]赵忠华,何亚东,薛平,超高分子量聚乙烯微孔材料成型研究与结构分析[J].塑料,2001,30(4):55-59.
    [185]左榘,陈天红,冉少锋,高分子凝胶化反应的分形几何研究方法[J].高分子材料科学与工程,1997,13(S1):1-5.
    [186]李敬生,MARK RODGER P.,剪切力下弱作用势胶体颗粒聚团的特点[J].物理化学学报,1997,13(1):20-27.
    [187]李敬生,边选霞,剪切力作用下流体力学关联对胶体聚团的影响[J].化学物理学报,1997,10(6):524-528.
    [188]李敬生,MARKRODGER P.,具有多体效应的胶体聚团的特征[J].物理化学学报,1997,13(1):28-35.
    [189]郭玉忠,黄瑞安,王剑华,锡酸四丁酯水解缩合实验研究[J].材料科学与工程,2001,19(1):94-98.
    [190]赵振国.介孔吸附剂表面分形分析[J].化学学报.2004,62(2):219-223
    [191]P. Meng, J. R. Schlup and L. T. Fan. A Comparative Study of Surface Fractality between Polymeric and Particulate Titania Aerogels, [J] J. Non-Cryst. Solids. 1998,197:88-93
    [192]G. Beaucage, H. K. Kammler, S. E. Pratsinis. Particle Size Distributions from Small-angle Scattering using Global Scattering Functions[J]. Journal of Applied Physics, 2004,28:523-535.
    [193]裴光文、钟维烈、仄书彬,单晶、多晶和非晶物质的X射线衍射[M].山东大学出版,济南,1989:386.
    [194]Emmerling A., Fricke J.. Small Angle Scattering and the Structure of Aerogels[J]. Journal of Non-Crystalline Solids,1992,145:113-120.
    [195]Guinier A., Fournet G, Small-Angle Scattering of X-ray[M], John Wiley, New York, 1955.
    [196]Krakovsky I., Urakawa H., Kajiwara K., et al.. Time Resolved Small Angle X-ray Scattering of Inorganic-organic Gel Formation Kinetics [J]. Journal of Non-Crystalline Solids,1998,231:31-40.
    [197]Emmerling A., Petricevic R., Beck A., et al.. Relationship between Optical Transparency and Nanostructural Features of Silica Aerogels [J] Journal of Non-Crystalline Solids,1995,228:240-248.
    [198]D. Posselt, J.S. Pedersen, K. Mortensen, A SANS Investigation on Absolute Scale of a Homologous Series of Base-catalysed Silica Aerogels [J].Journal of Non-Crystalline Solids,1992,145:128-132.
    [199]G. Porod, General theory, in:O. Glatter,O. Kratky (Eds.), Small Angle X-RayScattering [M], Academic Press, London,1982.
    [200]李志宏孙继红赵军平等.用小角X射线散射法研究溶胶结构[J].物理学报,2000,49(4):775-780.
    [201]李志宏,赵军平,吴东等.小角X射线散射中Porod正偏离的校正[J].化学学报,2002,58(9):1147-1150.
    [202]Cohaut N., Guet J. M., Diduszko R.. SAXS Tnvestigations on the Porosity of Pitch Based Carbon Fibres [J]. Carbon,1996,34:674-676
    [203]张明,孟繁玲,孟昭富,小角X射线散射研究碳纤维基体微结构[J].吉林大学自然科学学报,1997,1:66-68.
    [204]Zhao Zhenguo. Surface Fractal Analysis of Mesoporous Adsor-bents[J]. Acta Chimica Sinica,2004,62(2):219-223.
    [205]Pfeifer P., Welz U., Wippermann H.. Fractal Surface Dimension of Proteins: Lysozyme[J]. Chemical Physics Letters,1985,113:535-540.
    [206]Emmett P.H., Surface Area Measurements a New Tool for Studying Contact Catalysts[J]. Advances in Catalysis,1948,1:65-90.
    [207]Adamson A. W., Gast A P.. Physical Chemistry of Surfaces[M]. New York:John Wiley& Sons,1997.
    [208]Avnir D., Kaufman V. R.. Alcohol is an Unnecessary Additive in the Silicon Alkoxide Sol-Gel Process[J]. Journal of Non-Crystalline Solids,1987,92:180-182.
    [209]赵振国.Langmuir方程在稀溶液吸附中的应用[J].大学化学,1999,14(5):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700