用户名: 密码: 验证码:
Ti-Al-C系/TiB_2复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型三元层状碳化物Ti_2AlC和Ti_2AlC_2由于其优异的性能而受到材料科学工作者的广泛重视。由于综合了金属和陶瓷的诸多优良性能,它们同金属一样,在常温下,有很好的导热性能和导电性能,相对较低的Vickers硬度和较高的弹性模量,在常温下有延展性。同时,它具有陶瓷材料的性能,有高的屈服强度、高熔点、高热稳定性和良好的抗氧化性能,在高温下能保持高强度。而更为重要的是,它不同于传统碳化物陶瓷,可以象金属一样,用传统的加工方式进行加工,并具有比二硫化钼和石墨更低的超低磨擦系数和优良的自润滑性能。这些优异性能使其具有广阔的应用前景,并成为新材料研究中重要对象。由于Ti_2Al_C和Ti_3AlC_2的硬度相对较软(3-5GPa)以及低的蠕变强度,极大地限制了作为高温结构材料的使用。TiB_2由于较高的硬度和高的弹性模量,优异的化学稳定性,具有同Ti_2AlC和Ti_3AlC_2接近的导热系数,因此在本论文中,通过引入TiB_2颗粒来改善Ti_2AlC和Ti_3AlC_2材料的硬度和强度。分别研究了放电等离子烧结和热压烧结两种工艺合成Ti_2AlC-TiB_2和Ti_3AlC_2-TiB_2复合材料的制备过程;并研究了合成材料的反应机理、显微结构特征和物理性能。
     开展了热压法制备致密Ti_2AlC-TiB_2和Ti_3AlC_2-TiB_2复合材料的研究。在Ti_2AlC-TiB_2的制备过程中,分别探索了两种不同起始原料组成Ti/TiC/Al和TiC/Ti/B_4C/Al,以及引入不同体积TiB_2对反应合成影响规律。在Ti_3AlC_2-TiB_2复合材料的制备过程中,重点研究了硅用作合成助剂时,引入不同体积TiB_2对反应合成影响规律。经X-射线衍射、扫描电镜、能谱仪等表征方法对烧结产物的相组成和显微结构进行了研究。结果表明:在起始原料Ti/TiC/Al中直接掺加TiB_2时,很难合成杂质较少的Ti_2AlC-TiB_2复合材料,而以起始原料TiC/Ti/B_4C/Al,通过原位合成方法,1400℃和30MPa条件下能够合成5-25%TiB_2的致密Ti_2AlC-TiB_2复合材料,铝在合成中容易挥发,需要掺加0.05mol的铝,过高的Al量和过高的温度不利于Ti_2AlC的生成。1350℃和30MPa条件下,热压2TiC/Ti/Al/0.2Si/TiB_2可得到5-20%TiB_2的Ti_3AlC_2-TiB_2复合材料。硅的掺加能明显促进Ti_3AlC_2的反应合成,引入过高的TiB_2,能明显影响Ti_3AlC_2-TiB_2复合材料的合成,通过原位法合成Ti_3AlC_2-TiB_2复合材料时,引人TiB_2的量不能超过10%。
     应用放电等离子烧结工艺研究了Ti_2AlC-TiB_2和Ti_3AlC_2-TiB_2复合材料的反应合成。应用X-射线衍射、扫描电镜结合能谱仪研究不同起始组成粉料在不同
New layered ternary Ti_2AlC and Ti_3AlC_2 attract increasing interest owing to their unique properties. Ti_2AlC and Ti_3AlC_2 combine unusual properties of both metals and ceramics. Like metals, it is a good thermal and electrical conductor, relatively soft. Like ceramics, it is elastically stiff; exhibit excellent high temperature mechanical properties. It is resistant to thermal shock and unusually damage tolerant, and exhibit excellent corrosion resistance. Above all, unlike conventional carbides, they can be machined by using conventional tools without lubricant, which is of great technological importance for their application. Additionally, Ti_2AlC and Ti_3AlC_2 is an exceptional solid lubricant with an ultra-friction. These excellent properties mentioned above make them another family of technically important materials. Unfortunately, there are relatively soft (3-5GPa) and low creep strength, limit the potential application of as a high-temperature structural material. Incorporation of second phase is an effective way to overcome these weaknesses. Owing to the high hardness, high modulus, excellent chemical stability, and approximate thermal expansion coefficient, TiB_2 herein is chosen to produce Ti-Al-C/TiB_2 composites to increase the hardness and strength of Ti_2AlC and Ti_3AlC_2. Both spark plasma sintering and hot pressing were utilized for the synthesis of Ti_2AlC-TiB_2 and Ti_3AlC_2-TiB_2composites. Also, the microstructures, the physical properties as well as reaction mechanism of the obtained materials were investigated, respectively.
    In chapter 2, the synthesis of Ti_2AlC-TiB_2 and Ti_3AlC_2-TiB_2 composites were conducted by HP method. For the synthesis of Ti_2AlC-TiB_2 composite, two kinds of powder mixtures Ti/TiC/Al and TiC/Ti/B4C/Al were used. Additionally, different TiB_2 content was incorporated to explore the synthesis rule of Ti_2AlC-TiB_2 composite. Also, for the synthesis of Ti_3AlC_2-TiB_2 composite, when silicon was chosen as the synthesis additive, the effect of different TiB_2 content on the synthesis rule were specially studied Characterized by XRD, SEM and EDS, the results indicated that direct addition of TiB_2 in the starting mixtures Ti/TiC/Al lead to the fabrication Ti_2AlC-TiB_2 composite with impurity. Dense Ti_2AlC-TiB_2 composite (5-25%TiB_2) can be obtained by sintering TiC/Ti/B4C/Al mixture at 1400 ℃ with a pressure of 30 MPa in argon atmosphere, Al may easily vapor, it needs exceeds 0.05mol during the whole reaction. However, too much Al and higher temperature may not be in favor of forming Ti_2AlC. Dense Ti_3AlC_2 has been sintered by hot pressing with the start molar ratio2TiC/Ti/Al/0.2Si/TiB_2 at 1350 ℃ with a pressure of 30MPa in argon atmosphere. The additive Si accelerates the reaction synthesis and favors the crystal growth of Ti_3AlC_2.Incoporation of too much TiB_2 content can influence the reaction of Ti_3AlC_2.Through in-situ synthesis, addition of TiB_2 can not exceed 10vol%.
    In chapter 3, SPS was used to synthesize Ti_2AlC-TiB_2 and Ti_3AlC_2-TiB_2 composites X-ray diffraction (XRD) and scanning electron microscope (SEM)
引文
1. Barsoum M W. The M_(N+1)AX_N Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates. Prog Solid St Chem., 2000, 28: 201-281
    
    2. Barsoum M W, Brodkio D, EI-Ranghy T. Layered machinable ceramics for high temperature application. Scripta Materiatia, 1997, 36 (5): 535-541
    
    3. W. Jeitschko, H. Nowotny, F. Benesovsky. Carbon Containing Ternary Compounds (H-Phase). Monatsh. Chem., 1963, 94: 672-676
    
    4. G Hug, E. Fries. Full-Potential Electronic Structure of Ti_2AlC and Ti_2AlN. Physical Review B, 2002,65(11): 113104-113107
    
    5. Y. C. Zhou, Z. M. Sun. Electronic Structure and Bonding Properties of Layered Machinable Ti_2AlC and Ti_2AlN Ceramics. Physical Review B, 2000, 61 (19): 12570-12573
    
    6. M. W. Barsoum, A. Crossley, S. Myhra. Crystal-chemistry from XPS Analysis of Carbide-Derived M_(n+1)AX_n (n=1) Nano-laminate Compounds. Journal of Physics and Chemistry of Solids, 2002, 63: 2063-2068
    
    7. S. F. Matar, Y. Le Petitcorps, J. Etourneau. Local Density Functional Calculations of the Electronic Structures of Ti_2AlC and Ti_3AlC. Journal of Materials Chemistry, 1997, 7 (1), 99-103
    
    8. S. F. Matar, Y. Le Petitcorps, J. Etourneau. Ab Initio Study of the Chemical Role of Carbon within TiAl Alloy System: Application to Composite Materials. Computational Materials Science, 1998, 10 (1-4): 314-318
    
    9. Z. M. Sun, R. Ahuaja, S. Li, et al. Structure and Bulk Modulus of M_2AlC (M=Ti, V, and Cr). Applied Physics Letters, 2003, 83 (5): 899-901
    
    10. Z. M. Sun, S. Li, R. Ahuja, et al. Calculated Elastic Properties of M_2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004, 129: 589-592
    
    11. S. E. Lofland, J. D. Hettinger, K. Harrell, et al. Elastic and Electronic Properties of Select M_2AX Phases. Applied Physics Letters, 2004, 84 (4): 508-510
    
    12. M. Pietzka, J. C. Schuster. Summary of the constitutional data on the Al-Ti-C system [J]. J. Phase Equlib., 1994, 15 (4): 392-399
    
    13. J. C. Schuster, H. Nowotny, C. Vaccaro. The Ternary Systems: Cr-Al-C, V-Al-C and Ti-Al-C and the Behavior of the H-phases (M_2AlC). Journal of Solid State Chemistry., 1980, 32: 213-219
    
    14. R. Tomoshige, T. Matsushita. Production of Titanium-Aluminum-Carbide Ternary Composites with Dispersed Fine TiC Particles by Combustion Synthesis and Their Microstructure Observation. Journal of the Ceramic Society of Japan, 1996, 104 (1206): 94-100
    15. H. Tanaka, R. Tomoshige, K. Imamura, et al. Hot-shock Consolidation and Mechanical/thermal Properties of Ti-Al-C Composites Using Explosive Shock Energy and Combustion Synthesis. Journal of the Ceramic Society of Japan, 1998, 106 (1235): 676-681
    16. M. Lopacinski, J. Puszynski, J. Lis. Synthesis of Ternary Titanium Aluminum Carbides Using Self-Propagating High-Temperature Synthesis Technique. Journal of the American Ceramic Society, 2001, 84 (12): 3051-3053
    17. A. G. Zhou, C. A. Wang, Z. B. Ge, et al. Preparation of Ti_3AlC_2 and Ti_2AlC by Self-propagating High-temperature Synthesis. Journal of Materials Science Letters, 2001, 20 (21): 1971-1973
    18.郭俊明,陈克新,周和平,等.碳含量对Ti-Al-C体系燃烧合成Ti_2AlC粉体的影响.稀有金属材料工程,2002,31(增刊1):16-19
    19. Z. B. Ge, K. X. Chen, J. M. Guo, et al. Combustion Synthesis of Ternary Carbide Ti_3AlC_2 in Ti-Al-C System. Journal of the European Ceramic Society, 2003, 23 (3): 567-574
    20.郭俊明,陈克新,葛振斌,等.不同钛碳摩尔比和铝含量对Ti-Al-C体系燃烧合成Ti_3AlC_2粉体的影响.稀有金属材料与工程,2003,32(7):561_565
    21.郭俊明,陈克新,葛振斌,等.燃烧合成三元碳化合物Ti_2AlC__(1-x).稀有金属材料与工程,2003,32(12):1029-1032
    22.郭俊明,陈克新,葛振斌,等.添加TiC对燃烧合成Ti_2AlC粉体的影响.金属学报,2003,39 (3):315-319
    23. Y. Khoptiar, I. Gotman. Ti_2AlC Ternary Carbide Synthesized by Thermal Explosion. Materials Letters, 2002, 57 (1): 72-76
    24. M. A. Pietzka, J. C. Schuster. The Ternary Boundary Phases of the Quaternary System Ti-Al-C-N, In: Concerted Action on Materials Science, Leuven Proceedings, Part A. 1992, Brussels, Belgium
    25. V. I. Ivchenko, T. Y. Kosolapova. Abrasive Properties of Ternary Compounds in the Ti-Al-C and Ti-Al-N Systems. Porosh. Metall., 1976, 164 (8): 56-59
    26. M. W. Barsoum, D. T. Brodkin, T. El-Raghy. Layered Machinable Ceramics for High Temperature Applications. Scripta Mater., 1997, 36 (5): 535-541
    27. M. W. Barsoum, T. El-Raghy. A Progress Report on Ti_3SiC_2, Ti_3GeC_2, and the H-Phase, M_2BX. Journal of Materials Synthesis and Processing. 1997, 5 (3): 197-216
    28. X. H. Wang, Y. C. Zhou. Solid-Liquid Reaction Synthesis and Simultaneous Densification of Polycrystalline Ti_2AlC. Z. Metallkd., 2002, 93 (1): 66-71
    29. M. W. Barsoum, M. Ali, T. El-Raghy. Processing and Characterization of Ti_2AlC, Ti_2AlN, and Ti_2AlC_(0.5)N_(0.5). Metallurgical and Materials Transactions A, 2000, 31A (7): 1857-1865
    30. M. W. Barsoum, I. Salama, T. El-Raghy, et al. Thermal and Electrical Properties of Nb_2AlC, (Ti, Nb)_2AlC and Ti_2AlC, Metallurgical and Materials Transactions A, 2002, 33A (9): 2775-2779
    31. Z. Wei, H. Wang, Y. Jin, et al. Microstructures and Mechanical Properties of as-cast TiAl Alloys with Higher C Additions. Journal of Materials Science, 2002, 37 (9): 1809-1812
    
    32. T. Fujii, S. Sodeoka, K. Ameyama. Microstructure Formation Process and Grain Refinement of Heptane Added Ti-Al Mechanically Alloyed Powders. Journal of Japan Institute of Light Metals, 1997, 47 (6): 329-336
    
    33. K. Ameyama, M. Hashii, N. Imai, et al. Effect of HIP Temperatures on the Microstructure and Mechanical Properties of Carbide Dispersed Ti-48Al-1Mn Mechanically Alloyed Compacts. Journal of Japan Institute of Metals, 1996,60 (1): 944-951
    
    34. T. Kawabata, M. Tadano, O. Izumi. Effect of Carbon and Nitrogen on Mechanical Properties of TiAl Alloys. ISIJ International, 1991, 31 (10): 1161-1167
    
    35. H. Mabuchi, K. Harada, H. Tsuda, Y. Nakayama. Fabrication of Ti_2AlC/TiAl Composites Using Combustion Reaction Process. ISIJ International, 1991, 31 (10): 1272-1278
    
    36. H. Mabuchi, H. Tsuda, Y. Nakayama. Investigation of In Situ Synthesis of TiAl-Based Composites by the Combustion Reaction. Journal of the Japan Society of Powder and Powder Metallurgy, 1992, 39 (6): 468-473
    
    37. H. Mabuchi, S. Shiraishi, H. Tsuda, et al. Synthesis of TiAl-(TiB_2+Ti_2AlC) Composites Using Combustion Reaction Processing, Following Arc-melting. Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44 (6): 535-541
    
    38. H. Nagayama, R. Ramaseshan, H. Mabuchi, et al. Microstructure and Mechanical Properties of Ll_2-(A1, Cr)_3Ti/TiB_2+Ti_2AlC Composites Produced by Reactive Arc-Melting. JIM, Material Transactions, 2000, 41 (8): 1064-1067
    39. A. Kakitsuji, H. Miyamoto, H. Mabuchi, et al. Microstructure and Mechanical Properties of Ll_2-(Al, Cr)_3Ti/Ti_2AlC Composites Prepared by Combustion Synthesis. JIM, Materials Transactions, 2002, 43 (3): 447-450
    40. R. Ramaseshan, A. Kakitsuji, S. K. Seshadri, et al. Microstructure and Some Properties of TiAl-Ti_2AlC Composite Produced by Reactive Processing. Intermetallics, 1999, 7 (5): 571-577
    41. R. Ramaseshan, H. Tsuda, K. Morii. Microstructure and Properties of γ-TiAl/Ti_2AlC Composites Produced by Reactive Processing from Elemental Powders. Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45 (4): 330-335
    42. B. C. Mei, Y. Miyamoto. Fabrication of Dense TiAl/Ti_2AlC Composites by Pulse-Electric Current Sintering. Trans. JWRI, 1999, 28 (1): 27-33
    43. B. C. Mei, J .S. Lin, Y. Miyamoto, et al. Microstructures and Mechanical Properties of TiAl/Ti_2AlC Composites Prepared by Pulsed Electric Current Sintering. ISIJ International, 2000, 40 (Supplement): 77-81
    44. B. C. Mei, Y. Miyamoto. Investigation of TiAl/Ti_2AlC Composites Prepared by Spark Plasma Sintering. Materials Chemistry and Physics, 2002, 75 (1-3): 291-295
    45. J. Rosier, A. G. Evans. The Effect of Reinforcement Size on the Creep Strength of Intermetallic Matrix Composites. Materials Science and Engineering A, 1992, 153 (1-2): 438-443
    46. J. Roesler, J. J. Valencia, C. G. Levi, et al. The High Temperature Behaviour of TiAl Containing Carbide Reinforcements. In: Intermetallic Matrix Composites; Proceedings of the MRS Symposium. Pittsburgh, PA: Materials Research Society, 1990. 241-248
    47. V. I. Ivchenko, M. I. Lesnaya, V. F. Nemchenko, et al. Some Physical Properties of Ternary Compounds in the Ti-Al-C System. Porosh. Metall., 1976, 161 (5): 45-48
    48. Y. C. Zhou, X. H. Wang. Deformation of Polycrystalline Ti_2AlC Under Compression. Materials Research Innovation, 2001, 5: 87-93
    49.李小雷,周爱国,汪长安等.自蔓延高温合成Ti_3AlC_2和Ti_2AlC及其反应机理.硅酸盐学报,2002,30(3):407-410
    50. J. X. Chen, Y. C. Zhou. Strengthening of Ti_3AlC_2 by incorporation of Al203. Scripta Materiatia, 2004 (50): 897-901
    51. Linh H. Ho-Duc, Tamer El-Raghy, Michel W. Barsoum. Synthesis and characterization of 0.3 V TiC—Ti_3SiC_2 and 0.3 Vf_3 SiC—Ti_3SiC_2 composites. Allo and Comp., 2003, 350: 303-312
    52. M. W. Barsoum, z L. H. Ho-Duc, M. Radovic, and T. El-Raghy Long Time Oxidation Study of Ti_3SiC_2, Ti_3SiC_2 /SiC, and Ti_3SiC_2 /TiC Composites in Air. Journal of The Electrochemical Society, 2003: 150~154
    53. Radhakrishnan R, Henager Jr CH, Brimhall JL, Bhaduri SB. Synthesis of Ti_3SiC_2/ SiC composites using displacement reactions in the Ti-Si-C system. Script Mat, 1996; 34(12): 1809-1814
    54.陈秀华,项金钟,胡永茂等,制备Ti_3SiC_2/SiC复合材料的动力学研究[J].云南大学学报(自然科学版),2002,24(1A):203~205
    55. Shi-Bo Li, Jian-Xin Xie, Li-Tong Zhang, Lai-Fei Cheng. Mechanical properties and oxidation resistance of Ti_3SiC_2/SiC composite synthesized by in situ displacement reaction of Si and TiC Mate. Lett., 2003, 57: 3048-3056
    56. Luo YM, Li S, Chen J, Gang R, Qiang J, Pan W. Fabrication Al_2O3-Ti_3SiC_2 composites and mechanical properties evaluation. Mater Res Bulletin, 2003, 38: 69-78
    57. Wang H J, Jin ZH, Miyamoto Y. Effect of Al_2O_3 on mechanical properties of Ti_3SiC_2/Al_2O_3 composite. Ceram Int., 2002, 28: 931-934
    58. E. Benko, P. Klimczyk, S. Mackiewicz, T. L. Barr, E. Piskorska. cBN-Ti_3SiC_2 composites. Diamond and Related Materials, 2004, 13: 521-525
    59.高濂,官本大树.放电等离子烧结技术,无机材料学报,1997,12(2):129-132.
    60.张东明等.放电等离子烧结TiB_2过程中Pa第二峰研究,无机材料学报,2001,16(5):872-876
    61. J. J Sun, J. B. Li, G. L. Sun, W. G Qu. Synthesis of dense NiZn ferrites by spark plasma sintering, Ceram. Inter., 2002, 28: 855-858
    62. L. Gao, H. Z. Wang, et al. Fabrication of YAG-SiC nanocomposites by spark plasma sintering, J. Euro. Ceram. Soc. 2002, 22: 785-789.
    63. W. Pan, L. D. Chen, A. Okubo, T. Hirai. Tough multilayered α-β Si3N4 ceramics prepared by spark plasma sintering, Mater. Lett., 2001, 49: 239-243
    64. D. S. Perera, M. Tokita, S. Moricca. Comparative study of fabrication of Si_3N_4/SiC composites by spark plasma sintering and hot isostatic pressing, J. Euro. Ceram. Soc. 1998, 18: 401-404.
    65. A. G. Zhou, C. A. Wang, Y. Huang, Synthesis and mechanical properties of Ti_3AlC_2 by spark plasma sintering, J. Mater. Sci. 2003, 38: 3111-3115
    66.刘康时,黄励知,吴柏源等编.陶瓷工艺学.北京:中国建筑工业出版社,1980:193-195
    67.林红,朱春城,赫晓东。黑龙江大学自然科学学报,2003,20(4):92-96
    68.渡边忠彦。日本金属学报,1986,vol.2:1081
    69.徐学文。纳米层状三元化合物Ti_3AlC_2的制备,结构与性能研究。武汉理工大学硕士论文。2004
    70.洪小林。可加工三元层状碳化物Ti_2AlC的合成研究。武汉理工大学博士论文。2004
    71. J. Q. Zhu, B. C. Mei. Effect of Aluminum on Synthesis of Ti_3SiC_2 by Spark Plasma Sintering (SPS) from Elemental Powders. Journal of Materials Synthesis and Processing, 2002, 10 (6): 353-358
    72. J. Q. Zhu, B. C. Mei. Fabrication of High-Purity Ti_3SiC_2 by Spark Plasma Sintering (SPS) of Elemental Powders. Journal of Materials Science Letters, 2003, 22 (12): 889-890
    73. J. Q. Zhu, B. C. Mei, Y. L. Chen. Preparation of Ti_3SiC_2 with Aluminum by Means of Spark Plasma Sintering. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2003, 18 (1): 37-40
    74. J. Q. Zhu, B. C. Mei, L. P. He, et al. Synthesis of Ti_3SiC_2 by Spark Plasma Sintering (SPS) of Elemental Powders. Transaction of Nonferrous Metal Society of China, 2003, 13 (1): 46-49
    75. J. Q. Zhu, B. C. Mei, J. Liu, et al. Synthesis of High-Purity Ti_3SiC_2 and Ti_3AlC_2 by Hot-Pressing (HP). Journal of Materials Science Letters, 2003, 22 (15): 1111~1112
    76.朱教群,梅炳初,陈艳林.放电等离子烧结制备Ti_3SiC_2材料的研究.材料科学与工程,2002,20(4):564-567
    77.朱教群,梅炳初,陈艳林.放电等离子烧结工艺合成Ti_3SiC_2的研究.硅酸盐学报,2002,30 (5):649-652
    78.朱教群,梅炳初,陈艳林.层状三元碳化物Ti_3SiC_2及其制备研究.武汉理工大学学报,2002,24(5):36-39
    79.朱教群,梅炳初,陈艳林.以铝为助剂结合放电等离子烧结制备Ti_3SiC_2无机材料学报,2003,18(3):700-704
    80.朱教群,梅炳初,陈艳林.放电等离子烧结含铝Ti_3SiC_2相的形成规律研究。武汉理工大学学报,2003,25(4):5-7
    81. J. C. Viala, N. Peillon, F. Bosselet, J. Bouix. Phase equilibria at 1000'C in the Al-C-Si-Ti quaternary system: an experimental approach, Mater. Sci. Eng. A. 229 (1997) 95-113.
    82. A. K. Khanra et al Effect of NaCI on the synthesis of TiB_2 powder by a self-propagating high-temperature synthesis technique. Materials Letters 2004 (58): 733-738
    83. Zhang J. Y et al. Kinetica of TiB_2 grain growing during HP-sintering. J. Wuhan university of technology-Mater. Sci. Ed. 2001, 16(4): 21-24
    84.陈百义,SHS法合成TiB_2-TiC复合材料.宁夏工程技术,2004,3(2):160-162
    85.唐田,张东明,付正义,SPS烧结层状TiB_2/BN陶瓷的界面研究,陶瓷学报,2001,22(3):121-124
    86.贾英全,秦红英.TiB_2/Ni金属陶瓷热压烧结工艺的研究,粉末冶金工业,2000,10(1):28-31
    87.章桥新.TiB_2的价电子结构及其性能研究,陶瓷学报,2000,21(3):159-161
    88.罗学涛,谢小林,邓克明.TiB_2粉料的合成与纯化研究,南昌航空工业学院学报,2001,15(1):6-10
    89.纪嘉明等.TiB_2和ZrB_2晶体结构与性能的电子理论研究,中国有色金属学报,2000,10(3):358-360
    90.王荣明等.TiB_2颗粒增强NiAlFe基复合材料显微组织研究,材料工程,1999,9:10-12
    91.熊拥军等.TiB_2颗粒增强铜基复合材料的研究,中南工业大学学报,2001,32(3):294-297
    92.林红等.TiC-TiB_2复相陶瓷的制备及其抗氧化性,黑龙江大学自然科学学报,2003,20(4):92-96
    93.林红等.TiC-TiB_2复相陶瓷的自蔓延高温合成研究,粉末冶金技术,2004,22(4):195-199
    94.朱和国等.XD合成Al_2O_3,TiB_2/Al复合材料的热力学分析,中国有色金属学报,2001,11(3):382-385
    95.朱和国等.Al_2O_3,TiB2颗粒增强铝基复合材料的XD合成,金属学报,2001,37(3):321-324
    96.辜萍等.硼化物助烧剂对TiB2陶瓷烧结及力学性能的影响,2000,28(3):275-278
    97.罗学涛等.无机材料学报,热压烧结TiB_2陶瓷的显微结构和力学性能研究,2000,15(3):541-545
    98.张树玉等.原位反应TiB_2/Cu-Zr复合材料的力学与电学性能,功能材料,2001,31(3):269-270
    99.董仕节,雷永平,史耀武.原位生成TiB_2/Cu复合材料的研究,西安交通大学学报,2000,34(5):69-74
    100.何代华等.自蔓延高温合成技术焊接制备(TiB_2+Fe)-Fe结构材料,陶瓷学报,2001,22(3):147-151
    101. K. L. Tee et al. n situ processing of Al-TiB2 composite by the stir-casting technique, Journal of Materials Processing Technology, 1999, 89: 513-519
    102. M. S. Wong, Y. C. Lee. Deposition and characterization of Ti-B-N monolithic and multilayer coatings, Surface and Coatings Technology 1999, 120: 194-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700