用户名: 密码: 验证码:
基于瓜环的纳米催化剂的制备和催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文探索了利用瓜环作为稳定剂和载体来制备具有潜在应用价值的高效纳米催化剂。基于瓜环的纳米催化剂的设计、制备和催化性能的研究证明,瓜环是一种优良的纳米材料稳定剂和载体。课题的设计思路是基于瓜环不易溶于常见溶剂、较高的热稳定性和化学稳定性、结构上的高度对称性等特点。这些都是传统纳米颗粒稳定剂和载体所不具备的特色。本论文的主要研究内容如下:
     1.利用不同构成单元数目的瓜环制备了四种钯纳米颗粒,CB[n]-Pd NPs(n=5,6,7,8)。瓜环的端口羟基与纳米颗粒表面原子之间的静电相互作用起到了稳定钯纳米颗粒的作用,同时利用瓜环的难溶性对钯纳米颗粒起到负载作用。研究了不同瓜环制备得到的钯纳米颗粒形貌特征,并探讨了不同瓜环如何因结构上的差异导致钯纳米颗粒形貌、分散度以及粒径大小等方面的差异。通过调节六元瓜环与金属前驱体之间的比例,制备了不同形貌的钯纳米颗粒,初步实现了基于瓜环的钯纳米颗粒的形貌控制。采用不同的还原方法可制备了孪晶面丰富、形状各异的基于瓜环的钯纳米颗粒,实现了钯纳米颗粒的形貌控制。
     2.探索了基于瓜环的钯纳米颗粒对碳碳偶合反应的催化效果。基于瓜环的钯纳米颗粒可以在醇/水体系中,较为温和的条件下高效催化Suzuki偶合反应。研究了催化Heck反应的条件,实现了对链状烯烃和卤代芳香烃的高效催化。
     3.利用不同的还原方法制备了四种基于瓜环的铂纳米颗粒,根据TEM、XRD等表征,详细分析了四种铂纳米颗粒的形貌特征。通过简单的合成手段制备出四种形貌新颖的铂纳米颗粒:1)具有较高比表面积和形貌复杂的三维铂纳米花;2)具有丰富孪晶面和堆叠层错结构的铂纳米颗粒;3)枝状生长的铂纳米颗粒;4)粒径~2 nm并且分散均匀的铂纳米颗粒。提出了不同形貌铂纳米颗粒的相应生长机理,进一步验证了瓜环在纳米材料制备过程中的独特优势。
     4.研究了基于瓜环的铂纳米颗粒的电化学性能。这种瓜环的铂纳米颗粒在对甲醇的电催化氧化中表现出较低的起始电势、高的电流密度以及If /Ib比值,是催化活性较高的、抗中毒能力较强的电催化剂。同时还研究了基于瓜环的钯纳米颗粒对甲酸的电化学性能,两种钯纳米颗粒都表现出较强的电催化能力。电化学性能的研究进一步说明了基于瓜环的纳米颗粒表面活性位点暴露充分,具有较高的催化活性。
     5.通过原位法合成了一种基于瓜环和多酸为基元的有机-无机杂化材料,CB[6]-POMs。通过单晶结构解析以及红外吸收等表征对该杂化材料的结构进行了深入的研究,发现通过氢键网络紧密联系有机构筑单元和无机构筑单元形成了有机-无机的超分子结构。该氢键网络还实现了电子在有机、无机构筑单元之间的传递,在可见光照射下,CB[6]为主的有机构筑单元作为光敏剂,电子跃迁至多酸为主的无机构筑单元的LUMO轨道并引发分子氧等生成相应自由基,最终实现光催化降解染料分子。CB[6]-POMs能够在可见光下对染料分子的光催化降解,是对多酸光催化剂可溶以及不可利用可见光等缺陷的弥补,同时也是瓜环在环境保护方面的重要应用。
The goal of this dissertation is to study the fabrication of nanocatalysts with high catalytic activities by using cucurbit[n]uril (CB[n], n=6) as stabilizer/support. CB[n] is a class of excellent stabilizer and support for nanomaterials, which are verified by experiments involving the design, preparation and performance investigation of nanocatalysts based on such material. The design of the projects is based on its insolubility in common solvents, high thermal stability, chemical stability, and symmetrical structure of CB[n]. The details are summarized as follows:
     1. Four types of palladium nanoparticles, CB[n]-Pd NPs (n=5, 6, 7, 8), were prepared using four different kinds of CB[n]. Pd nanoparticles can be stabilized by the electrostatic interactions between the surface atoms of the nanoparticles and the carbonyl-laced portals of CB[n]. CB[n] also acts as the support for the nanocatalysts due to its insolubility in common solvents. The morphologies of different CB[n]-Pd NPs (n=5-8) studied. The investigation concerning the differences of appearance, dispersity, and particle diameter were also carried out. Pd NPs with controlled shapes and size were prepared by changing the molar ratio of CB[6] to metal precursor. Additionally, many reduction methods were utilized to attain CB[n]-Pd NPs with different shapes and rich twinned planes.
     2. The catalytic performances of CB[n]-Pd NPs (n=6, 7) for C-C coupling reactions were investigated. With ethanol/water as solvent, Suzuki reactions proceeded smoothly under mild conditions. The conditions for the Heck reactions were also tested. Up to 99% yield was obtained employing aryl halides and chain olefins as the coupling partners in the presence of CB[6]-Pd NPs.
     3. Four different CB[6]-Pt NPs were fabricated using different reduction methods, and their morphologies were studied based on TEM and XRD. In addition, four Pt NPs with novel morphologies were synthesized via simple procedure: 1) Pt nanoflowers with 3D complicated surface structures and high surface area; 2) Pt nanoparticles with rich twinned planes and stacking faults; 3) Pt nanoparticles with branch; 4) Pt nanoparticles with good dispersion and with particles size less than 2 nm. The growth mechanisms of CB[6]-Pt NPs with different morphologies were proposed, which further demonstrated the unique merits of CB[n] in the fabrication of nanoparticles..
     4. The electrochemical performance of CB[6]-Pt NPs were studied. Such nanoparticles showed low onset potential, high current density, and high If / Ib value for methanol oxidation, which indicates that the CB[6]-Pt NPs exhibit excellent catalytic properties and good anti-poisoning abilities for methanol MORs. Then, the catalytic performances of CB[6]-Pd NPs for electrooxidation of formic acid were studied, which shows good electrocatalytic activities. These results further certified that CB[n]-M NPs (M= Pd, Pt) have excellent catalytic performances because the active sites on surface of these nanoparticles are fully exposed.
     5. An organic-inorganic hybrid compound which is composed of CB[6] and polyoxometalate (POMs) was prepared by using in-situ method. Supramolecules were formed via abundant hydrogen bonding interaction of organic and inorganic building blocks. Under visible light irradiation, the organic building block could act as a sensitizer and transfer electrons to the LUMO of POMs via the hydrogen bonding network, thereby, inducing the formation of radicals that are responsible for the degradation of dye molecules. As photocatalysts, CB[6]-POMs is superior to the POMs, owing to its utilization of visible light and insolubility in common solvents. Thess studies also show the great potential of CB[6] in environmental protection.
引文
[1] Behrend R, Meyer E, Rusche F. 1905. Condensation Products from Glycoluril and Formaldehyde[J]. Liebigs Ann. Chem., 339: 1-37.
    [2] Freeman W, Mock W, Shih, N. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368.
    [3] Kim J, Jung I, kim S, et al. 2000. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8)[J]. J. Am. Chem. Soc., 122: 540-541.
    [4] Day A, Arnold A. 2000. Method for Synthesis Cucurbiturils. WO 0068232.
    [5] Liu S, Ruspic C, Mukhopadhyay P, et al. 2005. The Cucurbit[n]uril Family: Prime Components for Self-Sorting Systems[J]. J. Am. Chem. Soc., 127: 15959-1597.
    [6] Lee J, Samal S, Selvapalam N, et al. 2003. Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry[J]. Acc. Chem. Res., 36: 621-630.
    [7] Kim K, Selvapalam N, Oh D. 2004. Cucurbiturils– a New Family of Host Molecules[J]. J. Incl. Phenom. Macro., 50: 31-36.
    [8] Buschmann H, Cleve E, Jansen K, et al. 2001. Complex formation between cucurbit[n]uirl and alkali, alkaline earth and ammonium ions in aqueous solution[J]. Incusion Phenom. Md. Recognit. Chem., 40: 117-120.
    [9] Buschmann H, Cleve E, Jansen K, et al. 2001. Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution[J]. Anal. Chim. Acta, 437: 157-163.
    [10] Huang W, Zavalij P, Isaacs L. 2008. Folding of Long-Chain Alkanediammonium Ions Promoted by a Cucurbituril Derivative[J]. Org. Lett., 10: 2577-2580.
    [11] Kim H, Heo J, Jeon W, et al. 2001. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host: Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. Angew. Chem. Int. Ed., 40: 1526-1529.
    [12] Ko Y, Kim E, Hwang I, et al. 2007. Supramolecular assemblies built with host-stabilized charge-transfer interactions[J]. Chem. Commun., 1305-1315.
    [13] Whang D, Jeon Y, Heo J, et al. 1996. Self-Assembly of a Polyrotaxane Containing a Cyclic“Bead”in Every Structural Unit in the Solid State: Cucurbituril Molecules Threaded on a One-Dimensional Coordination Polymer[J]. J. Am. Chem. Soc., 118: 11333-11334.
    [14] Wang W, Kaifer A. 2006. Electrochemical Switching and Size Selection in?Cucurbit[8]uril-Mediated Dendrimer Self Assembly[J]. Angew. Chem. Int. Ed., 45: 7042-7046.
    [15] Ong W, Gomez-Kaifer M, Kaifer A. 2002. Cucurbit[7]uril: A Very Effective Host for Viologens and Their Cation Radicals[J]. Org. Lett., 4: 1791-1794.
    [16] Zhang F, Yajima T, Li Y, et al. 2005. Iodine-Assisted Assembly of Helical Coordination Polymers of Cucurbituril and Asymmetric Copper(ii) Complexes[J]. Angew. Chem. Int. Ed., 44:3402-3407.
    [17] Jeon W, Kim E, Ko Y, et al. 2005. Molecular Loop Lock: A Redox-Driven Molecular Machine Based on a Host-Stabilized Charge-Transfer Complex[J]. Angew. Chem. Int. Ed., 44:87-91.
    [18] Ko Y, Kim H, Kim Y, et al. 2008. U-Shaped Conformation of Alkyl Chains Bound to a Synthetic Host[J]. Angew. Chem., 120: 4174-4177.
    [19] Jeon Y, Kim S, Ko Y, et al. 2005. Novel molecular drug carrier: encapsulation of oxaliplatinin cucurbit[7]uril and its effectson stability and reactivity of the drug[J]. Org. Biomol. Chem., 3: 2122-2125.
    [20] Park K, Suh K, Jung H, et al. 2009. Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs[J]. Chem. Commun., 71-73.
    [21] Kim K, Selvapalam N, Ko Y, Park K, et al. 2007. Functionalized cucurbiturils and their applications[J]. Chem. Soc. Rev., 36: 267-279.
    [22] Mock W, Irra T, Wepsiec J, et al. 1983. Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis[J]. J. Org. Chem., 48: 3619–3620.
    [23] Mock W, Irra T, Wepsiec J, et al. 1989. Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation[J]. J. Org. Chem., 54: 5302–5308.
    [24] Krasia T, Steinke J. 2002. Formation of oligotriazoles catalysed by cucurbituril[J]. Chem. Commun., 22-23.
    [25] Jon S, Ko Y, Park S, et al. 2001. A Facile, Stereoselective [2+2] Photoreaction Mediated by Cucurbit[8]uril[J]. Chem. Commun. 1938-1939.
    [26] Koner A, Marquez C, Dickman M, et al. 2010. Transition-Metal-Promoted Chemoselective Photoreactions at the Cucurbituril Rim[J]. Angew. Chem. Int. Ed., 50: 545-548.
    [27] Kim K, Jeon W, Kang J, et al. 2003. A Pseudorotaxane on Gold: Formation of Self-Assembled Monolayer, Reversible Dethreading and Rethreading of the Ring, and Ion-Gating Behavior[J]. Angew. Chem. Int. Ed., 42: 2293-2296.
    [28] Kim K, Kim D, Lee J, et al. 2004. Growth of poly(pseudorotaxane) on gold usingbost-stabilized charge-transfer interaction[J]. Chem. Commun., 848-849.
    [29] Angelos S, Yang Y, Patel K,et al. pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes[J]. Angew. Chem. Int. Ed., 47:2222-2226.
    [30] Freigag M, Galoppini E. 2010. Cucurbiuril Complexes of Viologens Bound to TiO2 Films[J]. Langmuir, 26: 8262-8269.
    [31] Karcher S, Kornmuller A, Jekel M. 2001. Cucurbituril for water treatment. Part I: Solubility of cucurbituril and sorption of reactive dyes[J]. Wat. Res., 35: 3309-3316.
    [32] Karcher S, Kornmuller A, Jekel M. 2001. Cucurbituril for water treatment. Part II: Ozonation and oxidative regeneration of cucurbituril[J]. Wat. Res., 35: 3317-3324.
    [33]张立德,牟季美,纳米材料制备技术,科学出版社,2001.
    [34]王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001
    [35] Iijima S. 1991. Helical Microtubules of Graphite Carbon[J]. Nature, 354: 56-58.
    [36] Talapin D, Lee J, Kovalenko M, et al. 2010. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications[J]. Chem. Rev.,110: 389-458.
    [37] Nieman G, Weertman J, Siegel R. 1991. Mechanical behavior of nanocrystalline Cu and Pd[J]. J. Mater. Res., 6: 10102-1027.
    [38] Jain P, ElSayed I, El-Sayed M. 2007. Au nanoparticles target cancer[J]. Nano Today, 2: 18-29.
    [39] Webster T, Ergun C, Doremus R, et al. 2000. Enhanced functions of osteoblasts on nanophase ceramics[J]. 21: 1803-1810.
    [40] Siegel R W. 1997. Mechanical Properties of Nanophase Materials[J]. Materials Science Forum, 235-238: 851-860.
    [41] Sundaram M, Chalmers S, Hopkins P, et al. 1991. New Quantum Structures[J]. Science, 254: 1326-1335.
    [42] Prashant K, Huang X, Ivan H, et al. 2008. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine[J]. Acc. Chem. Res., 41: 1578-1586.
    [43] Peng Z, Yang H. 2009. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property[J]. Nano Today, 4: 143-164.
    [44] Arruebo M, Fernández-Pacheco R, Ibarra M, et al. 2007. Magnetic nanoparticles for drug delivery[J]. Nano Today, 2: 22-32.
    [45] Hvolbak B, Janssens T, Clausen B, et al. 2007. Catalytic activity of Au nanoparticles[J]. Nano Today, 2: 14-18.
    [46]李泓,陈立泉. 2000.锂离子电池纳米材料研究[J].电化学, 6: 131-145.
    [47]黎先财,赖志华,罗来涛. 2003.纳米材料在催化领域的应用[J].化学世界, 44: 554-557.
    [48] Chen J, Lim B, Lee E, et al. 2009. Shape-controlled synthesis of platinum nanocrystals for catalytic anc electrocatalytic applications[J].Nano Today, 4: 81-95.
    [49] Polshettiwar V, Varma R. 2010. Green chemistry by nano-catalysis[J]. Green Chem., 12: 743-754.
    [50] Bell A, 2003. he Impact of Nanoscience on Heterogeneous Catalysis [J]. Science, 299: 1688-1691.
    [51] Schlgl R, Hamid S. 2004. Nanocatalysis: Mature Science Revisited or Something Really New[J]. Angew. Chem. Int. Ed., 43: 1628-1637.
    [52] Phan N, Sluys M, Jones C. 2006. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings–Homogeneous or Heterogeneous Catalysis, A Critical Review[J]. Adv. Synth. Catal. 348: 609-679.
    [53] Stamenkovic V, Fowler B, Mun B, et al. 2007. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J]. Science, 315: 493-497.
    [54] Reetz M, Westermann E. 2000. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles[J]. Angew. Chem. Int. Ed., 39: 165-168.
    [55] Astruc D, Lu F, Aranzaes J. 2005. Nanoparticles as recyclable catalysts The frontier between homogeneous and heterogeneous catalysis[J]. Angew. Chem., Int. Ed., 44: 7852-7872.
    [56] Somorjai G, Tao F, Park J. 2008. The Nanoscience Revolution: Merging of Colloid Science, Catalysis and Nanoelectronics[J]. Top. Catal., 47: 1-14.
    [57] VanSanten R.A. 2009. Complementary Structure Sensitive and Insensitive Catalytic Relationships[J]. Acc. Chem. Res., 42: 57-66.
    [58] Hu A, Gordon T Y, Lin W. 2005. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones[J]. J. Am. Chem. Soc., 127:12486-12487.
    [59] Phan N, Gill C, Nguyen J, et al. 2006. Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst[J]. Angew. Chem. Int. Ed., 45: 2209-2212.
    [60] Abu-Reziq R, Alper H, Wang D, et al.2006. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts[J]. J. Am. Chem. Soc., 128: 5279-5282.
    [61] Dalaigh C, Corr S, Gunko Y, et al. A Magnetic-Nanoparticle-Supported4-N,N-Dialkylaminopyridine Catalyst: excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability[J]. Angew.Chem.,Int. Ed.,2007, 46,4329-4332.
    [62] Polshettiwar V, Varma R. 2009. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number[J]. Org. Biomol. Chem., 7:37-40.
    [63] Shi F, Tse M, Zhou S, et al. 2009. Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe3O4[J]. J. Am. Chem. Soc., 131: 1775-1779.
    [64] Polshettiwar V, Baruwatiand B, Varma R. 2009. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol[J]. GreenChem., 11: 127-131.
    [65] Lim B, Xia Y. 2011. Metal Nanocrystals with Highly Branched Morphologies[J]. Angew. Chem. Int. Ed., 50: 76-85.
    [66] Joo S, Park J, Tsung C, et al. 2009. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J]. Nat. Mater., 8:126-131.
    [67] Xie X, Li Y, Liu Z, et al. 2009. Low-temperature oidation of CO catalysed by Co3O4 nanorods[J]. Nature, 458: 746-749.
    [68] Lee I, Delbecq F, Morales R, et al. 2009. Tuning selectivity in catalysis by controlling particle shape[J]. Nat. Mater., 8: 132-138.
    [69] Heitbaum M, Glorius F, Escher I. 2006. Asymmetric Heterogeneous Catalysis[J]. Angew. Chem. Int. Ed., 45: 4732-4762.
    [70] Ranganath K, Kloesges J, Schafer A. 2010. Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of Fe3O4/Pd nanoparticles[J]. Angew. Chem. Int. Ed., 49: 7786-7789.
    [71] Yin L, Liebscher J. 2007. Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts[J]. Chem. Rev., 107: 133-173.
    [72] Astruc D, Lu F, Aranzaes J. 2005. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis[J]. Angew. Chem. Int. Ed., 44: 7582-7872.
    [73] Gontard L, Chang L, Hetherington C, et al. 2007. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles[J]. Angew. Chem. Int. Ed., 46: 3683-3685.
    [74] Prekumar T, Geckeler K. 2006. Nanosized CuO Particles via a Supramolecular Strategy[J]. Small, 2: 616-620.
    [75] Corma A, Garcia H, Montes-Navajas P, et al. 2007. Gold Nanoparticles in Organic Capsules: A Supramolecular Assembly of Gold Nanoparticles and Cucurbituril[J]. Chem.Eur.J., 13:6359–636.
    [76] Lee T, Scherman O. 2010. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles[J]. Chem. Commun., 46: 2438-2440.
    [77] Rica R, Velders A. 2011. Biomimetic Crystallization of Ag2S Nanoclusters in Nanopore Assemblies[J]. J. Am. Chem. Soc., 133: 2875–2877.
    [78] Liu J, Du X, Zhang X. 2011.? Enzyme-Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica[J]. Chem. Eur. J., 17: 810-815.
    [79] Coulston R, Jones S, Lee T, et al. 2011. Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril[J]. Chem. Commun., 47: 164-166.
    [80] Tian F, Cheng N, Nouvel N, et al. 2010. Site-Selective Immobilization of Colloids on Au Substrates via a Noncovalent Supramolecular "Handcuff"[J]. Langmuir, 26: 5323-5328.
    [81] Kim C, Agasti S, Zhu Z, et al. 2010. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells[J]. Nat. Chem. 2: 962-966.
    [1] Neumann H, Beller M. 2010. From Noble Metal to Nebel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis[J]. Angew. Chem. Int. Ed., 49: 9047-9050.
    [2] Miyaura N, Suzuki A. 1995. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J]. Chem. Rev., 95: 2457-2483.
    [3] Magano J, Dunetz J. 2011. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals[J]. Chem. Rev., 111: 2177-2250.
    [4] Molnar A. 2011. Efficient, Selective, and Recyclable Palladium Catalysts in Carbon-Carbon Coupling Reactinos[J]. Chem. Rev., 111: 2251-2320.
    [5] Polshettiwar V, Varma R. 2010. Green chemistry by nano-catalysis[J]. Green Chem., 12: 743-754.
    [6] Barnard C. 2008. Palladium-Catalysed C-C Coupling: Then and Now[J]. Paltinum Matals Rev., 52: 38-45.
    [7] Polshettiwar V, Luque R, Fihri A. 2011. Magnetically Recoverable Nanocatalysts[J]. Chem. Rev.,?10.1021/cr100230z.
    [8] Astruc D, Lu F, Aranzaes J. 2005. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis[J]. Angew. Chem. Int. Ed., 44: 7582-7872.
    [9] Bardelang D, Udachin K, Leek D. 2007. Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n=6,8)[J]. CrystEngComm., 9: 973-975.
    [10] Song J, Wen L, Shao L, et al. 2006. Preparation and characterization of novel Pd/SiO2 and Ca–Pd/SiO2 egg-shell catalysts with porous hollow silica[J]. Appl. Surf. Sci., 253: 2678-2684.
    [11] Canton P, Meneghini C, Riello P, et al. 2001. Thermal Evolution of Carbon-Supported Pd Nanoparticles Studied by Time-Resolved X-ray Diffraction[J]. J. Phys. Chem. B, 105: 8088-8091.
    [12] Xia Y, Xiong Y, Lim B, et al. 2008. Shape-Controlled Synthesis of Metal Nanocrysstals: Simple Chemistry Meets Complex Physics[J]. Angew. Chem. Int. Ed., 48: 60-103.
    [13] Lim B, Jiang M, Tao J, et al. 2009. Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions[J]. Adv. Funct. Mater., 19: 189-200.
    [14] Xiong Y, McLellan J, Chen J, et al. 2005. Kinetically Controlled Synthesis of Triangularand Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties[J]. J. Am. Chem. Soc., 127: 17118-17127.
    [15] Lee A, Baddeley C, Hardacre C, et al. 1995. Structural and Catalytic Properties of Novel Au/Pd Bimetallic Colloid Particles: EXAFS, XRD, and Acetylene Coupling[J]. J. Phys. Chem., 99: 6096-6102.
    [16] Lee T, Scherman O. 2010. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles[J]. Chem. Commun., 46: 2438-2440.
    [17] Corma A, Garcia H, Montes-Navajas P, et al. 2007. Gold Nanoparticles in Organic Capsules: A Supramolecular Assembly of Gold Nanoparticles and Cucurbituril[J]. Chem. Eur. J., 13: 6359-6364.
    [18] Premkumar T, Geckeler K. 2006. Nanosized CuO Particles via a Supramolecular Strategy[J]. Small, 2: 616-620.
    [19] Rica R, Velders A. 2011. Biomimetic Crystallization of Ag2S Nanoclusters in Nanopore Assemblies[J]. J. Am. Chem. Soc., 133:2875-2877.
    [20] Xiong Y, Chen J, Wiley B, et al. 2005. Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size[J]. J. Am. Chem. Soc., 127: 7332-7333.
    [21] Xiong Y, Mclellan J, Yin Y, et al. 2007. Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions[J]. Angew. Chem. Int. Ed., 46:790-794.
    [22] An Q, Li G, Tao C, et al. 2008. A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces[J]. Chem. Commun., 44: 1989-1991
    [23] Jeon H, Uhm S, Jeong B, et al. 2011. On the origin of reactive Pd catalysts for an electrooxidation of formic acid[J]. Phys. Chem. Chem. Phys., 13: 6192-6196.
    [24] Yin L, Liebscher J. 2007. Carbon?Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts[J]. Chem. Rev., 107: 133?173.
    [25] Costa N, Kiyohara P, Monteiro A, et al. 2010. A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions[J]. J. Catal., 276: 382-389.
    [26] Shimizu K, Maruyama R, Komai S, et al. 2004. Pd–sepiolite catalyst for Suzuki coupling reaction in water: Structural and catalytic investigations[J]. J. Catal., 227: 202-209.
    [27] Zheng Z, Li H, Liu T, et al. 2010. Monodisperse noble metal nanoparticles stabilized in SBA-15: Synthesis, characterization and application in microwave-assisted Suzuki–Miyaura coupling reaction[J]. J. Catal., 270: 268-274.
    [28] Senra J, Malta F, Souza A, et al. 2008. Palladium on Calcium Carbonate Combined to 2-Hydroxypropyl-α/β-cyclodextrins: A Selective Catalytic System for Aqueous Heck Coupling and Hydroarylation[J]. Adv. Synth. Catal., 350: 2551-2558.
    [29] Senra J, Malta L, Costa M, et al. 2009. Hydroxypropyl-α-Cyclodextrin-Capped Palladium Nanoparticles: Active Scaffolds for Efficient Carbon-Carbon Bond Forming Cross-Couplings in Water[J]. Adv. Synth. Catal., 351: 2411-2422.
    [30] Li Y, Hong X, Collard D, et al. 2000. Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution Org. Lett., 2: 2385–2388.
    [31] Narayanan R, El-Sayed M. A. 2004. Effect of Colloidal Catalysis on the Nanoparticle Size Distribution: Dendrimer-Pd vs PVP-Pd Nanoparticles Catalyzing the Suzuki Coupling Reaction[J]. J. Phys. Chem. B, 108: 8572-8580.
    [32] Kim S, Kim M, Lee W, et al. 2002. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[J]. J. Am. Chem. Soc., 124: 7642-7643.
    [33] Marck G, Villiger A, Buchecker R. 1994. Aryl couplings with heterogeneous palladium catalysts[J]. Tetrahedron Lett. 35: 3277-3280.
    [34] Heidenreich R, K?hler K, Krauter J, et al. 2002. Pd/C as a Highly Active Catalyst for Heck, Suzuki and Sonogashira Reactions[J]. Synlett, 1118-1122.
    [35] Narayanan R, El-Sayed M. 2004. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution[J]. Nano Lett., 4: 1343–1348
    [36] Heck R, Nolley J, 1972. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides[J]. J. Org. Chem., 37:2320-2322.
    [37] Selander N, Szabo K. 2011. Catalysis by Palladium Pincer Complexes[J]. Chem. Rev., 111: 2048-2076.
    [38] Reimann S, Stutzel J, Frahm R, et al. 2011. Identification of the Active Species Generated from Supported Pd Catalysts in Heck Reactions: An in situ Quick Scanning EXAFS Investigation[J]. J. Am. Chem. Soc., 133: 3921–3930.
    [39] Cassol C, Umpierre A, Machado G, et al. 2005. The role Of Pd Nanoparticles in Ionic Liquid in the Heck Reaction[J]. J. Am. Chem. Soc., 127: 3298-3299.
    [40] Phan N, Sluys M, Jones C. 2006. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings–Homogeneous or Heterogeneous Catalysis, A Critical Review[J]. Adv. Synth. Catal. 348: 609-679.
    [1] Chen A, Holt-Hindle P. 2010. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications[J]. Chem. Rev., 110: 3767-3804.
    [2] Tian N, Zhou Z, Sun S, et al. 2007. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 316: 732-735.
    [3] Song H, Rioux R, Hoefelmeyer J, et al. 2006. Hydrothermal Growth of Mesoporous SBA-15 Silica in the Presence of PVP-Stabilized Pt Nanoparticles: Synthesis, Characterization, and Catalytic Properties[J]. J. Am. Chem. Soc., 128: 3027-3037.
    [4] Lim B, Yu T, Xia Y. 2010. Shaping a Bright Future for Platunum-Based Alloy[J]. Angew. Chem. Int. Ed., 49: 9819-9820.
    [5] Feng L, Hoang D, Tsung C, et al. 2011. Catalytic properties of Pt cluster decorated CeO2 nanostructures[J]. Nano Research, 4: 61-71.
    [6] Yang J, Frenkel A, Cuenya B. 2010. Shape-Dependent Catalytic Properties of Pt Nanoparticles[J]. J. Am. Chem. Soc., 132: 15714-15719.
    [7] Narayanan R, El-Sayed M. 2004. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution[J]. Nano Lett., 4: 1343-1348.
    [8] Bardelang D, Udachin K, Leek D. 2007. Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n=6,8)[J]. CrystEngComm., 9: 973-975.
    [9] Xie J, Zhang Q, Lee J, et al. 2008. The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications[J]. ACS Nano, 2: 2473-2480.
    [10] Khoury C, Vo-Dinh T. 2008. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization[J]. J. Phys. Chem. C, 112: 18849
    [11] Lim B, Jiang M, Camargo P, et al. 2009. Pd-Pt Bimetallic Nanodendrities with High Activity for Oxygen Reduction[J]. Science, 324:1302-1305.
    [12] Su L, Jia W, Zhang L, et al. 2010. Facile Synthesis of a Platium Nanoflower Monolayer on a Single-Walled Carbon Nanotube Membrane and Its Application in Glucose Detection[J]. J. Phys. Chem. C, 114: 18121-18125.
    [13] Narayanaswamy A, Xu H, Pradhan N, et al. 2006. Formation of Nearly Monodisperse In2O3 Nanodots and Oriented-Attached Nanoflowers: Hydrolysis and Alcoholysis vs Pyrolysis[J]. J. Am. Chem. Soc., 128: 10310-10319.
    [14] Tsung C, Kuhn J, Huang W, et al. 2009. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation[J]. J. Am. Chem. Soc., 131: 5816-5822.
    [15] Seo W, Shim J, Oh S, et al. 2005. Phase- and Size-Controlled Synthesis of Hexagonal and Cubic CoO Nanocrystals[J]. J. Am. Chem. Soc., 127: 6188-6189.
    [16] Yeung C, Yu K, Fu Q, et al. 2005. Engineering Pt in Ceria for a Maximum Metal-Support Interaction in Catalysis[J]. J. Am. Chem. Soc., 127: 18010-18011.
    [17] Zhang J, Li S, Wu J, et al. 2009. Plasmon-Mediated Synthesis of Silver Triangular Bipyramids[J]. Angew. Chem. Int. Ed., 48: 7787-7791.
    [18] Sieber B, Addad A, Szunerits S, et al. 2010. Stacking Faults-Induced Quenching of the UV Luminescence in ZnO[J]. J. Phys. Chem. Lett., 1: 3033-3038.
    [19] Xia Y, Xiong Y, Lim B, et al. 2008. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics[J]. Angew. Chem. Int. Ed., 48: 60-103.
    [20] Song Y, Yang Y, Medforth C, et al. 2003. Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures[J]. J. Am. Chem. Soc., 126: 635-645.
    [21] Skrabalak S, Xia Y. 2009. Pushing Nanocrystal Synthesis toward Nanomanufacturing[J]. ACS Nano, 3: 10-15.
    [22] Mohanty A, Garg N, Jin R. 2010. A Universal Approach to the Synthesis of Noble Metal Nanodendrities and Their Catalytic Properties[J]. Angew. Chem., 122: 5082-5086.
    [23] Wang D, Li Y. 2011. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications[J]. Adv. Mater., 23: 1044-1060.
    [24] Jiang M, Lim B, Tao J, et al. Expitaxial overgrowth of platinum on palladium nanocrystals[J]. 2010. Nanoscale, 2: 2406-2411.
    [25] Wang Y, Shen Y, Xia A, et al. 2010. A Simple Method To Construct Bifunctional Fe3O4/Au Hybrid Nanostructures and Tune Their Optical Properties in the Near-Infrared Region[J]. J. Phys. Chem. C, 114: 4297-4301.
    [26] Komarneni S, Li D, Newalkar B, et al. 2002. Microwave polyol process for Pt and Ag nanoparticles[J]. Langmuir, 18: 5959-5962.
    [27] Liu Z, Hong L, Tham M, et al. 2006. Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells[J]. J. Power Sources, 161: 831-835.
    [28] Kang J, Menard L, Nuzzo R, et al. 2006. Unusual Non-Bulk Properties in Nanoscale Materials: Thermal Metal-Metal Bond Contraction ofγ-Alumina-Supported Pt Catalysts[J]. J. Am. Chem. Soc., 128: 12068-12069.
    [29] Fuente A, Pulgar G, Gonzalez F, et al. 2001. Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation[J]. Appl. Catal. A: Gen., 208: 35-46.
    [30] Park K, Choi J, Kwon B, et al. 2002. Chemical and electronic effects of Ni in Pt/Ni andPt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. J. Phys. Chem. B, 106: 1869-1877.
    [31] Bianchini C, Shen P. 2009. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells[J]. Chem. Rev., 109: 4183-4206.
    [32] Bai L, Zhu H, Thrasher J, et al. 2009. Synthesis and Electrocatalytic Activity of Photoreduced Platinum Nanoparticles in a Poly(ethylenimine) Matrix[J]. ACS Appl. Mater. Interfaces, 1: 2304-2311.
    [33] Lin Y, Cui X, Yen C, et al. 2005. Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells[J]. J. Phys. Chem. B, 109: 14410-14415.
    [34] Liu Z, Ling X, Su X, et al.2004. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct methanol Fuel Cell[J]. J. Phys. Chem. B, 108: 8234-8240.
    [35] Xu C, Lin W, Mu X, et al. 2010. Nanoporous PtRu Alloys for Electrocatalysis[J]. Langmuir, 10: 7437-7443.
    [36] Park S, Xie Y, Weaver M, et al. 2002. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles: Comparison of Particle-Size-Dependent Rates of Methanol, Formaic Acid, and Formaldehyde Electrooxidation[J]. Langmuir, 18: 5792-5798.
    [37] 1Mazumder V, Sun S. 2009. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation[J]. J. Am. Chem. Soc., 131: 4588-4589.
    [38] Patra S, Viswanath B, Barai K, et al. 2010. High-Surface Step Density on Dendritic Pd Leads to Exceptional Catalytic Activity for Formic Acid Oxidation[J]. ACS Appl. Mater. & Interfaces, 2: 2965-2969.
    [39] Lee H, Habas S, Somorjai G, et al. 2008. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid[J]. J. Am. Chem. Soc., 130: 5406-5407.
    [1] Lagona J, Mukhopadhyay P, Chakrabarti S, et al. 2005. The Cucurbit[n]uril Family[J]. Angew. Chem. Int. Ed., 44: 4844-4870.
    [2] Kim K, Selvapalam N, Ko Y, Park K, et al. 2007. Functionalized cucurbiturils and their applications[J]. Chem. Soc. Rev., 36: 267-279.
    [3] Lee J, Samal S, Selvapalam N, et al. 2003. Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry[J]. Acc. Chem. Res., 36: 621-630.
    [4] Fang X, Kgerler P, Isaacs L, et al. 2009. Cucurbit[n]uril-Polyoxoanion Hybrids[J]. J. Am. Chem. Soc., 131: 432-433.
    [5] Long D, Burkholder E, Cronin L. 2007. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices[J]. Chem. Soc. Rev., 36: 105-121.
    [6] Papaconstantinou E. 1989. Photochemistry of polyoxometallates of molybdenum and tungsten and/or vanadicum[J]. Chem. Soc. Rev., 18: 1-31.
    [7] Bardelang D, Udachin K, Leek D. 2007. Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n=6,8)[J]. CrystEngComm., 9: 973-975.
    [8] Sheldrick G, G. M. SHELXTL, Version 6.10; Bruker AXS Inc., Madison, Wisconsin, USA, 2000.
    [9] Brown I, Altermatt D. 1985. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr. Sect. B: Struct. Sci., 41: 44-247.
    [10] Chao J, Wang H, Xia B, et al. 2006. Metal acetylacetonate domains grown on H-terminated porous silicon at room temperature and their specific I-V behavior[J]. J. Phys. Chem. B., 110: 24565-24570.
    [11] Leftheriotis G, Papaefthimiou S, Yianoulis P, et al. 2001. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films[J]. Thin Solid Films, 384: 298-306.
    [12] Watras M, Teplyakov A. 2005. Infrared and computational investigation of vanadium-substituted Keggin [PVnW12-nO40](n+3)- polyoxometallic anions[J]. J. Phys. Chem. B, 109: 8928-8934.
    [13] Lee T, Scherman O.A. 2010. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles, Chem. Commun., 46: 2438-2440.
    [14] Panda N, Sahoo H, Mohapatra S, et al. 2011. Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3-SiO2 composite[J]. J. Hazard. Mater., 185: 359-365.
    [15] Chen C, Zhao W, Lei P, et al. 2004. Potosensiteized degradation of dyes in polyoxometallate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications[J]. Chem. Eur. J., 10: 1956-1965.
    [16] Yang H, Liu T, Cao M, et al. 2010. A water-insoluble and visible light induced polyoxometallate-based photocatlyst[J]. Chem. Commun., 46: 2429-2431.
    [17] Kim S, Yeo J, Choi W. 2008. Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometallate as an electron transfer catalyst[J]. Appl. Catal. B, 84: 148-155.
    [18] Chen C, Wang Q, Lei P, et al. 2006. Photodegradation of dye pollutants catalyzed by porous K3PW12O40 under visible irradiation[J]. Environ. Sci. Technol., 40: 3965-3970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700