用户名: 密码: 验证码:
基于厚膜工艺的不锈钢压力传感器设计与制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力传感器在各个行业各个领域都有着广泛的应用,是传感器大家族中需求量最大的品种。然而目前市场上的各种压力传感器都存在着这样或那样的缺点,无法满足不同应用领域的实际需求。
     针对当前主流压力传感器技术存在的不足,结合国内外行业发展状况,本文提出了两种非传统的基于厚膜工艺的不锈钢压力传感器,并对其进行研究。第一种是在430不锈钢弹性体上烧结厚膜电阻应变片制作不锈铁压力传感器。测试所需材料参数,借助于有限元法设计厚膜不锈钢压力传感器的结构和制造工艺,评估其的综合性能和可靠性。第二种是采用外延沉积技术制作半导体应变片,并将其通过厚膜工艺烧结在17-4PH不锈钢弹性体上制成不锈钢压力传感器,评估其主要性能指标;研究粘接剂材料特性和微观结构对传感器输出特性的影响。主要研究内容包括:
     (1)采用纳米压痕连续刚度法测试430不锈钢基片上介质层的力学性能,结果显示,其平均杨氏模量为126.56GPa,平均硬度为8.364GPa。测试厚膜电阻的性能参数,评估其作为力传感器应变片的可行性。厚膜电阻的应变系数约为10.2,电流噪声约为20dB,在40~125℃的温度系数小于230ppm/K,在125~220℃的温度系数小于250ppm/K。
     (2)自由落体试验和热冲击试验验证介质层和430不锈钢基片粘接的可靠性;微观结构分析表明不锈钢、介质层和厚膜电阻层在材料成分上是兼容的,证实了制作厚膜不锈钢压力传感器的可行性。
     (3)采用有限元模拟,确定介质层的厚度与在额定载荷下厚膜电阻在介质层-不锈钢弹性体上的印烧位置。模拟计算厚膜电阻的自热效应、介质层与不锈钢的热胀系数失配产生的热应力对厚膜不锈钢压力传感器输出特性和可靠性的影响,并提出相应的改进方法。
     (4)设计厚膜应变片式不锈钢压力传感器工艺流程,制作样品,评估其性能指标。该传感器在40~125℃的温漂小于2.5%,与精度相关的参数误差(线性度、迟滞和重复性误差)都在0.15%以内;在125~220℃范围内,该传感器的温漂不高于2.85%,与精度相关的参数误差都在0.3%以内。
     (5)采用外延沉积技术制造半导体应变片以提高其阻值一致性。借助于厚膜技术,用微熔玻璃作为粘接材料将半导体应变片烧结到17-4PH不锈钢弹性体上制作不锈钢压力传感器。该传感器在125℃的迟滞和重复性误差分别低于0.05%和0.12%,几乎完全等同于其在常温下的性能,表明微熔玻璃粘片工艺提高了传感器的高温性能。进一步的实验显示粘接剂微观结构缺陷会使应变片式压力传感器的迟滞和重复性误差恶化。
Pressure sensors, with demand being the largest among all sensors, are widely used invarious industry fields. However, most of the products currently available are not perfectenough to meet the requirements of some specific occasions.
     Taking the technical weaknesses of mainstream pressure sensors and the developmentstages at home and abroad into consideration, two types non-traditional steel pressuresensors based on thick film technology are proposed and investigated in this thesis. First,thick film resistors (TFRs) on430stainless steel substrate for strain sensor applicationsare investigated. The material parameters related to the sensors are tested and the steelpressure sensors are designed and manufactured by using finite element method (FEM).Second, a novel pressure sensor design using epitaxial silicon strain gages bonded on17-4PH stainless steel diaphragm based on thick film technology is also proposed andevaluated, and effects of the microstructure of the adhesive on the sensor performances areanalyzed. The main research efforts are as follows:
     (1) Nanoindentation test with the continuous stiffness method (CSM) is conductedon the dielectric-on-430steel substrate to obtain its mechanical properties. Test resultsshow that the average elastic modulus of the dielectric-on-steel substrate is126.56GPaand the average hardness is8.364GPa. The performance parameters of the thick filmresistors (TFRs) are measured to verify their feasibility as strain gages for pressure orforce sensors. Results show that gauge factor (GF) and noise indices (NI) of TFRs are10.2and20dB, respectively. And the temperature coefficients of resistivity (TCRs) are230ppm/K (40~125°C) and250ppm/K (125~220°C).
     (2) Reliable bonding between the dielectric and430steel substrate is confirmed byfree fall test and thermal shock test. Microstructure analysis shows the compatibility ofTFRs and the dielectric on steel substrate, which indicates the feasibility ofmanufacturing thick film steel pressure sensors.
     (3) The thickness of the dielectric and the positions of TFRs on thedielectric-on-steel are obtained by FEM. Effects of the thermal stresses and the self-heating of TFRs on the performance and reliability of the steel pressure sensors areevaluated, and the corresponding improvement measures are proposed.
     (4) Thick film based steel pressure sensors are designed and manufactured, and theperformance characteristics are evaluated. Test results show that the temperature driftsof the sensors are less than2.5%full scale (FS), and the accuracy-related parametererrors are no more than0.15%FS from40°C to125°C. And from125°C to220°C,the temperature drifts of the sensors are less than2.85%FS, and the accuracy-relatedparameter errors are no more than0.3%FS.
     (5) The strain gages with uniform resistance are obtained by growing an epi-siliconlayer on a single crystal silicon wafer using epitaxial deposition technique rather thanconventional photolithography and etching techniques. The inorganic glass frits ratherthan organic adhesives are used as the bonding material between the strain gages and the17-4PH SS diaphragm. Results show that the hysteresis and repeatability errors of sensorsare less than0.05%FS and0.12%FS at125°C, respectively, which are almost equal tothose at room temperature, showing the robust high temperature stability. Experimentalresults show that the defects in the organic adhesive greatly deteriorate the hysteresis andrepeatability errors of the sensors.
引文
[1]吕惠民,田敬民.压力传感器的研究现状与发展趋势.半导体技术,1998,23(2):11–14
    [2]吴荣军,张宝成,亢春梅.国外传感器市场发展现状及预测.传感器技术,2003,22(5):5–7
    [3]孙以材,刘玉岭,孟庆浩.压力传感器的设计制造与应用.第一版.北京:冶金工业出版社,2000.1
    [4]朱福龙.基于工艺力学的MEMS封装若干基础问题研究.博士学位论文.华中科技大学,2007.
    [5] J. Marek, H.-P. Trah, Y. Suzuki, et al. Sensors for Automotive Applications.Weinheim: WILEY-VCH Verlag GmbH&Co. KGaA,2003,123–125
    [6] B. Folkmer, P. Steiner and W. Lang. A pressure sensor based on a nitride membraneusing single-crystalline piezoresistors. Sens. Actuators A,1996,54:488–492
    [7] B. Folkmer, P. Steiner and W. Lang. Silicon nitride membrane sensors withmonocrystalline transducers.1995,51:71–75
    [8]吕乃康.厚膜混合集成电路.厚膜混合集成电路.第一版.陕西:西安交通大学出版社,1990.11–14
    [9] K. I. Arshak, D. Mcdonagh and M.A. Durcan. Development of new capacitive strainsensors based on thick film polymer and cermet technologies. Sens. Actuators A,2000,79:102–114
    [10] K. Arshak, D. Morris, A. Arshak, et al. Development of oxide thick film capacitorsfor a real time pressure monitoring system. Materials Science and Engineering C,2007,27:1406–1410
    [11] K. Arshak, D. Morris, A. Arshak, et al. Evaluating the suitability of thick-film TiO2capacitors for use in a wireless pressure measurement system. Materials Science andEngineering C,2006,26:1077–1081
    [12] P. J. Holmes. Changes in thick-film resistor values due to substrate flexure,Microelectron. Reliab.,1973,12:395–396
    [13] D. E. Pitkanen, I. P. Cummings and I. A. Sartell. Material compatibility andprocessing relationships for copper thick film hybrids. part I: Int. Journ. HybridMicroelectronics,1979,2(2)
    [14] C. R. S. Needes, I. D. Mitchell, I. L. Wells, et al. Copper materials system: astate-of-the-art perspective for the1980s. Proceedings European HybridMicroelectronics Conference, Avignon,1981
    [15] M. Hrovat, D. Belavic, A. Bencan, et al. Thick-film resistors on zirconia substratesfor possible strain gauge applications. Journal of the European Ceramic Society,2003,23:1441–1448
    [16] M. Hrovat, D. Belavic and Andreja Bencan. Thick-film resistors on varioussubstrates as sensing elements for strain-gauge applications. Sens. Actuators A,2006,107:261–272
    [17] T. maeder, C. Jacq, H. Birol, et al. High-strength ceramic substrates for thick filmsensor applications.14th European Microelectrics and Packaging Conference&Exhibition, Friedrichshafen, Germany,2003.23–25
    [18] Z. Stanimirovic, M. M. Jevtic and I. Stanimirovic. Simultaneous mechanical andelectrical straining of conventional thick film resistors. Microelectrics Reliability,2008,48:59–67
    [19] K. I. Arshak, et al. An analisis of polymeric thick film resistors as pressure sensors.Sens. Actuators A,1995,49:41–45
    [20] G. Stecher, K. Spitzenberger and K. Muller. Pressure Sensor. US Patent:4382247,1983.
    [21] B. Puers, W. Sansen and S. Paszczynski. Assessment of thick film fabricationmethods for force sensors. Sens. Actuators A,1987,12:57–76
    [22]马以武,宋箭,常慧敏.基于压阻效应的厚膜力敏材料及传感器.电子元件与材料,1999,18(5):39–41
    [23]尤金斯库拉多伏斯克,迈克尔,斯特拉迪夫特.利用厚膜电阻器的压力传感器.中国专利:88107091,1989.
    [24] H. Chi-Shiung, H. Fang-Min and C. Hua-Pin. Characteristics of thick film resistorsembedded in low temperature co-fired ceramic (LTCC) substrates. Journal of theEuropean Ceramic Society,2007,27:2779–2784
    [25] S. Z. Marina, B. Darko, P. F. Kazimierz, et al. A procedure for validating the finiteelement model of a piezoresistive ceramic pressure sensor. IEEE transactions oncomponents and packaging technologics,2004,27(4):668–675
    [26] S. Z. Marina and B. Darko. Feasibility study of a thick-film PZT resonant pressuresensor made on a prefired3D LTCC structure. Int. J. Appl. Ceram. Technol.,2009,6(1):9–17
    [27] B. Darko, H. Marko, H. Janez, et al. The application of thick-film technology inC-MEMS. J Electroceram,2007,19:363–368
    [28] S. Z. Marina, B. Darko and N. Franc. Finite-element model-based fault diagnosis, acase study of a ceramic pressure sensor structure. Microelectronics Reliability,2007,47:1950–1957
    [29] B. Hansu, M. Thomas, N. Ingo, et al. Fabrication of a Mmillinewton force sensorusing low temperature cofired ceramic (LTCC) technology. Sens. Actuators A,2007,134:334–338
    [30] C. Jacq, Th. Maeder and P. Ryser. Sensors and packages based on LTCC andthick-film technology for severe conditions. Sadhana,2009,34(4):677–687
    [31] S. Z. Marina, B. Darko and M. Srecko. The warm-up and offset stability of alow-pressure piezoresistive ceramic pressure sensor. Sens. Actuators A,2010,158:198–206
    [32]马以武,常慧敏,戈瑜.厚膜压力传感器.传感器世界,1997,3(3):17–22
    [33]马以武,常慧敏,刘高升等.厚膜应变式力传感器.中国专利:952405091,1997.
    [34]马以武,宋箭,常慧敏等.纳米Al2O3掺杂对厚膜应变电阻性能的影响.功能材料,1998,29(4):386–389
    [35]马以武,刘高升,常慧敏等.厚膜集成压力传感器.中国专利: ZL96223575,1998.
    [36]赵以贵.厚膜微压传感器的研究.硕士学位论文.合肥工业大学,2004.
    [37]潘晓光,汤清华.厚膜压力传感器的研究.华中理工大学学报,1997,25(5):82–84
    [38] L. Fraigi and L. Malatto. Thick film weldable strain gauges. Sens. Actuators A,1995,46+47:222–224
    [39] C. Jacq, Th. Maeder and P. Ryser. High-strain response of piezoresistive thick-filmresistors on titanium alloy substrates. Journal of the European Ceramic Society,2004,24:1897–1900
    [40] C. Jacq, Th. Maeder and S. Vionnet. Low-temperature thick-film dielectrics andresistors for metal substrates. Journal of the European Ceramic Society,2005,25:2121–2124
    [41] M. Petzold, H. Knoll and J. Bagdahn. Strength assessment of wafer-bondedmicromechanical components using the micro chevron test. Reliability, testing andcharacterization of MEMS and MOEMS conference, San Francisco:2001.22–24
    [42] M. Petzold, et al. Strength assessment of wafer-bonded micromechanicalcomponents using the Micro-Chevron-Test. Proceedings of the SPIE4558, SanFrancisco:133–142
    [43] J. Bagdahn, M. Bernasch and M. Petzold. Influence of the frequency on fatigue ofdirectly wafer-bonded silicon. Microsyst Technol,2006,12:430–435
    [44] K. Notzold, J. Graf and R. Müller-Fiedler. A four-point-bending-test for thestability assessment of glass frit bonded micro sensors. Microelectron. Reliab.,2008,48:1562–1566
    [45] K. Birkelund, P. Gravesen, S. Shiryaev, et al. High-pressure silicon sensor withlow-cost packaging. Sens. Actuators A,2001,92:16–22
    [46] C. Dresbach, A. Krombholz, M. Ebert, et al. Mechanical properties of glass fritbonded micro packages. Microsyst Technol,2006,12:473–480
    [47] R. Knechtel. Glass frit bonding: an universal technology for wafer levelencapsulation and packaging. Microsyst Technol,2005,12:63–68
    [48] F. Ribeirob, J. Mac-aira, R. Cruz, et al. Laser assisted glass frit sealing ofdy-sensitized solar cells. Solar Energy Material&Solar Cells,2012,96:43–49
    [49] S. C. Choong, et al. Effect of passivation on frit glass bonding method for waferlevel hermetic sealing on MEMES devices. In: Proceedings of5th EPTC,2003.307–310
    [50] A. Prümm, K.H. Kraft, P. Gottschling, et al. Monocrystalline thin-film waferlevelencapsulation of microsystems using porous silicon. Sens. Actuators A,2012,188:507–512
    [51] K. Glien, J. Graf, R. Müller-Fiedler, et al. Strength and reliability properties ofglass frit bonded micro packages. In: Proceedings of DTIP, Montreux:2004.119–124
    [52] W. A. Leasure, N. Woodruff and C. Gravel. Glass bonding techniques forsemiconductor strain gages. Experimental Mechanics,1971:235–240
    [53] X. Song and S. Liu. A performance prediction model for a piezoresistive transducerpressure sensor.5th International Conference on Electronics Packaging Technology,Shanghai, China:2003.30–35
    [54] N. M. White and J. D. Turner. Thick-film sensors: past, present and future. Meas.Sci. Technol,1997,8:1–20
    [55] M. Prudenziati and B. Morten. Piezoresistive properties of thick-film resistors anoverview. Hybrid Circuits,1986,10:20–23
    [56] S. Liu and Y. Liu. Modeling and simulation for microelectronics package assembly:manufacturing, reliability and testing. John Wiley and Sons:2011,425–511
    [57] Y. D. Kim, C. S. Lee and S. J. Kwon. Novel3D force sensor using ultra-thin siliconstrain gauges bonded on metal membrane. Transducers2009, Denver, USA:2009.1920–1923
    [58]虎轩冬等编.厚膜微电子技术.电子元件与材料编辑部,1989.
    [59] P. D. Dargie. Sensor interfacing: a hybrid solution case study of collaborationbetween USITT and British Technology Group Short Course Notes. Thick-filmTechnology: Theory and Applications, Southampton, University of Southampton,1992.
    [60] K. I. Arshak, F. Ansari and D. Collins. Analysis of thick-film strain resistors onstainless steel and ceramic substrates. Int. J. Electron.,1994,76:365–376
    [61] C. Canali, D. Malavisi and M. Prudenziati, et al. Piezoresistive effects in thick-filmresistors. J. Appl. Phys.,1980,51:3282–3286
    [62] A. Catteneo, R. Dell’Acqua, F. Forlani, et al. Low-cost thick-film pressure sensor.Society of Automotive Engineers, SP45(SAE)1980,49–54
    [63] D. Crescini, V. Ferrari, D. Marioli, et al. Triaxial thick-film load cell Sensors Mater.,1993,5:45–55
    [64] Di. Flore and M. Haskard. Thick-film pressure transducers, Microelectron. J.,1986,17:35–41
    [65] L. Fraigi, D. Lupi and L. Malatto. A thick-film pressure transducer for carspropelled by natural gas. Sens. Actuators A,1994,41+42:439–441
    [66] K. M. Holford, C. P. Bakopoulos and N. M. White. The development of a highpressure thick-film sensor. Proc. IMechE Mechatronics Conf., Cambridge:1990.47–59
    [67] D. Marioli, P. Rolla and A. Taroni. Insulated metal substrates for thick-film sensorsapplications Proc.9th European Hybrid Microelectronics Conf., Nice:1993.261–268
    [68] M. Prudenziati, B. Morten, F. Cilloni, et al. Very high strain sensitivity in thick-filmresistors: real and false super gauge factors. Sens. Actuators A,1989,19:401–414
    [69] B. Puers, W. Sansen and Paszczynski. Assessment of thick-film fabrication methodsfor force (pressure) sensors. Sens. Actuators A,1987,12:57–76
    [70] R. P. Sion. A theoretical and experimental investigation of accelerometer designusing thick-film technology. PhD Thesis University of Southampton,1993.
    [71] R. P. Sion, J. K. Atkinson and J. D. Turner. A novel accelerometer using thick-filmtechnology. Sens. Actuators A,1993,37+38:348–351
    [72] N. White and A. Cranny. Design and fabrication of thick-film sensors. HybridCircuits,1987,12:32–35
    [73] N. M. White and J. E. Brignell. A planar thick-film load cell. Sens. Actuators A,1991,25–27:313–319
    [74] N. M. White. A study of the piezoresistive effect in thick-film resistors and itsapplication to load transduction. PhD Thesis University of Southampton,1988.
    [75] J. E. Brignell, N. M. White and A. W. J. Cranny. Sensor applications of thick-filmtechnology. IEEE Proc. I,1988,135:77–84
    [76] Q. M. Reynolds and M. G. Norton. Thick-film platinum temperature Sensor. Proc.of Test and Transducers,1985,2:31–44
    [77] B. Morten, M. Prudenziati, F. Sirotti, et al. Magnetoresistive properties of Ni-basedthick-films, J. Mater. Sci.: Mater. Electron.,1990,1:118–122
    [78] M. Prudenziati and B. Morten. The state of the art in thick-film sensorsMicroelectron. J.,1992,23:133–141
    [79] T. Kwikkers. Two thick-film thermal sensors. Hybrid Circuits,1988,16:39–42
    [80] J. Nicolics and W. Smetana. A laser power detector built up by application ofthick-film technology. Sens. Actuators A,1991,25–27:235–239
    [81] L. Percsi and Harsanyi. Thick-film laser power detector. Hybrid Circuits,1994,35:25–27
    [82] W. Smetana and J. Nicolics. Application of integrated thick-film thermocouples fora laser power detector. Sens. Actuators A,1993,37+38:565–570
    [83] J. S. Choi, M. Bhalodia, S. Samph, et al. Processing and diagnostic for thick-filmsuperconductors produced from Y–Ba–Cu–O materials. Hybrid Circuits,1989,19:17-22
    [84] M. Hrovat, S. Bernik and D. Kolar. Thick-film superconductors—preliminaryresults. Hybrid Circuits,1988,16:4–6
    [85] M. Hrovat, S. Bernik, D. Kolar, et al. Thick-film superconductors based on Bi2O3modified Y–Ba–Cu–O and Bi–Sr–Ca–Cu–O systems. Hybrid Circuits,1989,19:5–12
    [86] H. Baudry. Screen printing piezoelectric devices. Proc.6th EuropeanMicroelectronics Conf., Bournemouth:1987.456–463
    [87] H. D. Chen, K. R. Udayakumar, L. E. Cross, et al. Dielectric, ferroelectric, andpiezoelectric properties of lead zirconate titanate thick-films on silicon substrates. J.Appl. Phys.,1995,77(4):3349–3353
    [88] H. Moilanen, S. Lepp¨avuori and A. Uusim¨aki. Fabrication of piezoelectricthick-film low voltage multilayer actuators using a new double paste printingtechnique. Sens. Actuators A,1993,37+38:106–111
    [89] H. Moilanen, J. Lappalainen, L. Laitinen, et al. Piezoelectric micromovementactuator and force sensor hybridization using a thick-film double-paste printingmethod. Sens. Actuators A,1994,41+42:421–425
    [90] B. Morten, G. De Cicco and M. Prudenziati. Piezoelectric properties of PZTthick-films. Proc.7th European Hybrid Microelectronics Conf., Hamburg:1989.8.4
    [91] B. Morten, G. De Cicco, A. Gandolfi, et al. Advances in ferroelectric thick-filmmaterials and sensors. Proc.8th European Hybrid Microelectronics Conf.,Rotterdam:1991.392–399
    [92] M. Prudenziati, B. Morten and G. De Cicco. Piezoelectric thick-film materials andsensors. Microelectron. Int.,1995,38:5–11
    [93]李耀霖.厚膜电子元件.第一版.广东:华南理工大学出版社,1991.20–21
    [94]张泰华.微纳米力学测试技术及其应用.北京:机械工业出版社,2004.
    [95] W. C. Qliver and G. M. Pharr. An improved technique for determining hardness andelastic modulus using load and displacement sensing indentation experiments. J.Mater. Res.,1992,7(6):6483
    [96] G. M. Pharr. Measurement of mechanical properties by ultra-low load indentation.Mater. Sci. Eng. A,1998,253:151–159
    [97] L. J. Brady. Mechanism of conduction in thick-film cermet resistors. Proc. IEEEElectron. Compon. Confer. Washington D.C.:1967.
    [98] F. Forlani. Meccanismi di conduzione in film resistivi depositati per serigrafia. AltaFrequenza,1972,41:921
    [99] R. M. Hill. Conduction theory applied to thick film resistors. IERE Conf. Proc.,1975,31:251
    [100] N.C. Halder. Electron tunneling and hopping possibilites in RuO2thick films.Electrocomponent Science and Technology,1983,11:21–34
    [101] G. E. Pike and C. H. Seager. Electrical properties and conduction mechanisms ofRu-based thick-film resistors. J. Appl. Phys.,1977,48:5152–5169
    [102] F. Forlani and M. Prudenziati. Electrical conduction by percolation in thick-filmresistors. Electrocomput. Sci. Technol.,1976,3:77–83
    [103] M. Prudenziati, A. Rizzi, P. Davioli, et al. Tunneling in thick-film resistors and theminimum of resistance. Nuovo Cimento,1983,3:697–710
    [104] R. M. Scarisbrick. Electrically conducting mixtures. J. Phys D: Appl. Phys.,1973,6:2098–2110
    [105] A. A. Barlian, W. T. Park, J. R. Mallon, et al. Review: semiconductorpiezoresistance for Microsystems. Proceedings of the IEEE,2009,97(3):513–552
    [106] M. H. Bao. Micro Mechanical Transducers-Pressure Sensors, Accelerometers andGyroscopes. Amsterdam: Elsevier,2000,219–222
    [107]张传禹,堵永国,张为军.304不锈钢基片用绝缘介质浆料的研制.电子元件与材料,2004,23(8):17–19
    [108]徐芝纶.弹性力学.第四版.北京:高等教育出版社,2006.3–6
    [109]张维新.朱秀文.毛赣如.半导体传感器.第一版.天津:天津大学出版社,1990.1–10
    [110] B. Morten and M. Prudenziati. Thick film sensors. Amsterdam: Elsevier,1994,189–208
    [111] James J. Licari and Leonard R. Enlow. Hybird microcircuit technology handbook.朱瑞廉译.第二版.北京:电子工业出版社,2001.75
    [112] M. Hrovat, D. Belavic and Z. Samardzija. Characterization of thick film resistorseries for strain sensors. Journal of the European Ceramic Society,2001,21:2001–2004
    [113]吴家龙.弹性力学.第一版.北京:高等教育出版社,2001.282–285
    [114]王泽鹏,张秀辉,胡仁喜等.北京:机械工业出版社,2010.15–20
    [115] C. S. Smith. Piezoresistance effect in germanium and silicon. Physical Review,1954,94:42–49
    [116] C. Herring. Transport properties of a many valley semiconductor. Bell Syst. Tech.J.,1955,34:237–290
    [117] C. Herring. Transport and deformation potential theory for many-valleysemiconductors with anisotropic scattering. Phys. Rev.,1956,101:944–961
    [118] J. A. Hoerni. Planar silicon diodes and transistors. Electron Devices Meeting,1960International,1960,6:50
    [119]付兴铭.汽车用扩散硅压力传感器的设计与封装研究.硕士学位论文.华中科技大学,2006.
    [120] H. Rolnick. Tension coefficient of resistance of metals. Phys. Rev.,1930,36:506–512
    [121]王化祥,张淑英.传感器原理及应用.天津:天津大学出版社,1999.35–38
    [122]刘广玉.微传感器设计、制造与应用.北京:北京航空航天大学出版社,2008.35–36
    [123] P. Ruther, J. Bartholomeyczik, A. Trautmann, et al. Novel3D piezoresistive siliconforce sensor for dimensional metrology of micro components. IEEE Sensors,2005,1006–1009
    [124] A. Tibrewala, A. Phataralaoha and S. Buttgenbach. Simulation, fabrication andcharacterization of a3D piezoresistive force sensor. Sens. Actuators A,2008,147:430–435
    [125] D. Lopez, R. S. Decca, E. Fischbach et al. MEMS-based force sensor: design andapplications. Bell Labs Technical Journal,2005,10(3):61–80
    [126] M. Gel and I. Shimoyama. Force sensing submicrometer thick cantilevers withultra-thin piezoresistors by rapid thermal diffusion. J. Micromech. Microeng,2004,14:423–428
    [127] Method of making pressure transducer and application. US Patent: No.7412892B1,2008.
    [128]安静. P型硅外延片工艺技术的研究.硕士学位论文.河北工业大学,2011.
    [129] W. Kern. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc.,1990,137(6):1887–1892

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700