用户名: 密码: 验证码:
不同结构纳米ZrO_2材料的制备、湿敏特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿度测量与控制与国民经济的发展和人们生产生活密切相关,目前已在工农业生产、日常生活、气象、环保等各个领域广泛应用。在各种测量湿度的方法中,电子式的湿度传感器因其可与现代控制、显示、记录装置相连而备受关注。随着物联网在工业、环境检测及智能小区等领域的发展,对传感器的发展也有了更高要求。对湿度传感器而言,感湿性能提高(高灵敏度、快速响应时间,良好的一致性和稳定性等)以及器件的集成化、微型化成为主要发展方向。由于纳米材料具有大比表面积和电子定向传导等优点,研究纳米结构的敏感材料在促进湿度传感器的发展上具有很重要的价值。
     本文首先设计了湿度传感器在线测量系统。该系统可以实时采集被测湿敏元件在不同湿度、不同频率下的阻抗、幅角、电容以及损耗等电学参量。提高了实验数据的准确度,并消除了人为因素引起的测量误差。
     本文主要研究了以下四种纳米ZrO2湿度传感器的感湿特性:(1)CMOS工艺兼容的ZrO2薄膜湿度传感器;(2)ZrO2∶TiO2分级结构异质纳米纤维湿度传感器;(3)碱离子掺杂纳米粉体ZrO2厚膜湿度传感器;(4)Mg~((2+))掺杂纳米纤维ZrO2厚膜湿度传感器。对每一类型的湿度传感器的研究均涉及湿敏材料制备、材料表征、传感器制作、性能测试和相应理论分析五部分内容。文中利用XRD、TG、DTA/DSC和FT-IR等材料表征结果分析了湿敏材料ZrO2晶体结构及其生长机理;利用SEM、TEM等表征观察材料的形貌,并结合BET、XPS表征结果探讨湿敏材料微结构对湿度传感器性能的影响。所研究的湿度传感器的性能包括:灵敏度、湿滞、响应-恢复、温度特性等。ZrO2湿度传感器体现了灵敏度高、湿滞小、响应快、热稳定性好等特点,在解决湿度传感器灵敏度低、稳定性差等问题上提供了重要的参考价值。
     从介电特性、直流特性和交流特性的角度探讨了纳米ZrO2湿度传感器的感湿机理。由介电损耗特性得知,在器件感湿过程中,感湿材料中的束缚电荷通过极化的方式参与了导电。同时器件的直流特性表明参与导电的载流子还包括电子和离子两种类型。在交流复阻抗分析法中引入电化学元件CPE和Warburg元件构建等效电路,并通过复阻抗分析软件ZView进行等效电路的最佳拟合。结合器件以上三种特性,确定了低、中、高湿段何种电荷对器件的传导机制起主导作用。并多角度分析了频率、温度分别对器件阻抗和复阻抗的影响。
     文章同时给出了纳米ZrO2湿度传感器的吸附模型以及质子在各模型中的传输机制。
Monitoring and controlling humidity have been widely used in industry, agriculture, daily life, meteorology and environmental protection which closely related to living of people and society development. Electric humidity sensors have been interested due to their connection with modern machines which can control, display and record. With the development of internet of things in industry, environment monitoring and intelligent community, higher requirement have to be needed for sensors. In view of humidity sensor, the main development views include higher humidity sensing properties (high sensitivity, rapid response time, good repeatability, long-term stability, etc.), integration and miniaturization of humidity sensors. Because of high surface area and oriented electron conduction of nanometer material, it is important to study sensitive materials with nanostructure for promoting the development of humidity sensors.
     A real-time test system has been developed for measuring humidity properties of humidity sensors. The testing system can be used to obtain electrical characteristics of humidity sensors at different humidity levels and measurement frequencies, such as impedance, phase angle, capacitance, dielectric loss, etc. Using the test system can improve the accuracy of experimental data and eliminates measurement errors caused by manual.
     Four kinds of humidity sensors based on zirconia have been mainly studied in the present dissertation, including CMOS process compatible ZrO2thin film humidity sensor, ZrO2:TiO2hierarchical hetero-nanofibers humidity sensor, alkaline doped nano-powder ZrO2thick film humidity sensor and Mg2+-doped nanofibers ZrO2thick film humidity sensor. Preparation and characterization of humidity sensing materials, fabrication and measurement of humidity sensors, and related theory on humidity sensing properties of sensor have been researched for the four kinds of humidity sensors. Crystal structure and growth mechanism of nano-ZrO2have been analyzed via using some important characterization technologies, including XRD, TG, DTA/DSC, FT-IR, etc. Morphologies of ZrO2have been characterized by SEM and TEM methods. The influences of micro structures of sensing materials on the humidity sensing properties of sensors have been discussed via BET and XPS technologies. In the present dissertation, the humidity properties of sensors include sensitivity, humidity hysteresis, response and recovery, temperature properties, and so on. High sensitivity, small hysteresis, rapid response and good thermal stability of the ZrO2humidity sensors have been exhibited, which will provide an important reference value for solving low sensitivity and poor stability issues of humidity sensors.
     Humidity sensing mechanisms of nano ZrO2humidity sensors have been discussed in view of dielectric properties, DC and AC characteristics. The bound charges contribute to the conduction of sensor in mean of polarization during the humidity sensing process, according to the dielectric loss properties of the sensors. And electronics and ions also play the conduction role by analyzing the DC transient characteristics of the sensors. The equivalent circuits with electrochemical elements CPE and Warburg have been created by using AC impedance method, which simulated and fitted using the complex impedance analysis software ZView perfectly. According to the afore-mentioned three characteristics of the sensors, it has been determined which kinds of charge play the major role in the conduction process of the sensor at low, medium and high humidity ranges. The influences of measurement frequency and measurement temperature on the impedances and complex impedances of the sensor have been discussed in different views.
     In the present dissertation, the adsorption models of the nano-ZrO2humidity sensors and the transmission mechanisms of proton among which have been also discussed.
引文
[1]Traversa E, Ceramic sensors for humidity detection:the state-of-the-art and future developments [J]. Sensors and Actuators B:Chemical,1995,23:135-156.
    [2]Visscher G J W, Kornet J G, Long-term tests of capacitive humidity Sensors [J]. Measurement Science and Technology,1994,5:1294-1302.
    [3]全宝富,邱法斌.电子功能材料及元器件[M].长春:吉林大学出版社,2001.
    [4]黄晓因,徐丽芬.高温环境下相对湿度测量误差及干湿球系数计算理[J].气象科技,2005,33:367-372.
    [5]Rittersma Z M. Recent achievements in miniaturised humidity sensors-a review of transduction techniques [J]. Sensors and Actuators A:Physical,2002,96:196-210.
    [6]Visscher G J W. Standard psychrometers:a matter of (p)references [J]. Measurement Science and Technology,1995,6:1451-1461.
    [7]Yeo T L, Sun T, Grattan K T V. Fibre-optic sensor technologies for humidity and moisture measurement [J]. Sensors and Actuators A:Physical,2008,144:280-95.
    [8]许建照,赵莉,丰爱国.湿度、露点和干燥度[J].电子机械工程,2009,25:25-27.
    [9]GE sensing, General Eastern Chilled Mirror Hygrometer [p/OL].2007. http://www.ge-mcs.com/download/moisture-humidity/920_423a.pdf
    [10]Matsuguchi M, Uno T, Yamanaka A, et al. Improvements in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly (vinyl alcohol) film [J]. Sensors and Actuators B:Chemical,2004,97:74-80.
    [11]Holbo HR. A dew-point hygrometer for field use [J]. Agricultural Meteorology,1981, 24:117-130.
    [12]应皆荣,张泉荣,万春荣,等.陶瓷湿敏元件的长期稳定性问题及改进措施[J],功能材料,2001,32:7-11.
    [13]Gopel W, Hesse J, Zemel J N, Sensors A Comprehensive Survey [M], New York:VCH Verlagsgesellschaft mbH,1991.
    [14]Chen Z. Lu C. Humidity Sensors:A review of materials and mechanisms [J]. Sensor Letters,2005,3:274-295.
    [15]Sberveglieri G, Murri R, Pinto N. Characterization of porous Al2O3-SiO2/Si sensor for low and medium humidity ranges [J]. Sensors and Actuators B:Chemical,1995, 23:177-180.
    [16]Nahar R K, Khanna V K. Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor [J]. Sensors and Actuators B:Chemical,1998,46: 35-41.
    [17]Dickey E, Varghese 0, Ong K, et al. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films [J]. Sensors,2002,2:91-110.
    [18]Nahar R K. Study of the performance degradation of thin film aluminum oxide sensor at high humidity [J]. Sensors and Actuators B:Chemical,2000,63:49-54.
    [19]Mai L H, Hoa P T M, Binh N T, et al. Some investigation results of the instability of humidity sensors based on alumina and porous silicon materials [J]. Sensors and Actuators B:Chemical,2000,66:63-65.
    [20]昊海霞,王占和,李印增.一种电容式Al2O3湿度传感器[J],微电子学,2003,33:456-458.
    [21]史青,张晓卫,金懋昌.a-Al2O3电容薄膜湿度传感器[J],电子科技大学学报,1997,26:387-390.
    [30]方湘怡,武明堂,姜芸,李正。多孔SiO2厚膜湿度传感器的制造及其湿敏特性[J].电子元件与材料,1995,14:19-22.
    [22]Cosentino I C, Muccillo E N S, Muccillo R. The influence of Fe2O3 in the humidity sensor performance of ZrO2:TiO2-based porous ceramics [J]. Materials Chemistry and Physics,2007,103:407-414.
    [23]Aoki H, Azuma Y, Asaka T, et al. Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li20 and V205 [J]. Ceramics International,2008,34:819-822.
    [24]Tai W P, Oh J H. Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films [J]. Sensors and Actuators B:Chemical,2002,85:154-157.
    [25]Traversa E, Gnappi G, Montenero A, et al. Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors [J]. Sensors and Actuators B: Chemical,1996,31:59-70.
    [26]Ying J, Wan C, He P. Sol-gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors [J]. Sensors and Actuators B:Chemical,2000,62: 165-170.
    [27]Su P G, Huang S C. Humidity sensing and electrical properties of a composite material of SiO:and poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride [J]. Sensors and Actuators B:Chemical,2005,105:170-175.
    [28]Su P G, Huang S C. Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material [J]. Sensors and Actuators B:Chemical,2006,113:142-149.
    [29]Su P G, Tsai W Y. Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate) [J]. Sensors and Actuators B:Chemical,2004,100:417-422.
    [31]Dellwo U, Keller P, Meyer J U. Fabrication and analysis of a thick-film humidity sensor based on MnWO4 [J]. Sensors and Actuators A:Physical,1997,61:298-302.
    [32]QU W, Meyer J U. Thick-film humidity sensor based on porous MnWO4 material [J]. Measurement Science and Technology,1997,8:593.
    [33]QU W, Wlodarski W, Meyer J U. Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4 [J]. Sensors and Actuators B:Chemical,2000,64:76-82.
    [29]Edwin Suresh Raj A M, Mallika C, Sreeedharan 0 M, et al. Manganese oxide-manganese tungstate composite humidity sensors [J]. Materials Letters,2002,53:316-320.
    [35]Zhang L, Lu C, Wang Y, et al. Hydrothermal synthesis and characterization of MnWO4 nanoplates and their ionic conductivity [J]. Materials Chemistry and Physics,2007, 103:433-436.
    [36]Pelino M, Cantalini C, Sun H T, et al. Silica effect on α-Fe2O3 humidity sensor [J]. Sensors and Actuators B:Chemical,1998,46:186-193.
    [37]Chauhan P, Annapoornt S, Trikha S K. Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing [J]. Thin Solid Films,1999, 346:266-268.
    [38]Neri G, Bonavita A, Milone C, et al. Gold promoted Li-Fe2O3 thin films for humidity sensors [J]. Sensors and Actuators B:Chemical,2003,92:326-330.
    [39]Neri G, Bonavita A, Galvagno S, et al. Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions [J]. Sensors and Actuators B:Chemical, 2005,111-112:71-77.
    [40]Tulliani J M, Bonville P. Influence of the dopants on the electrical resistance of hematite-based humidity sensors [J]. Ceramics International,2005,31:507-514.
    [41]HU S, CHEN H, FU G, et al. Humidity sensitive properties of K+-doped SnO2-LiZnVO4 [J]. Sensors and Actuators B:Chemical,2008,134:769-772.
    [42]Sundaram R. Comparative study on micromorphology and humidity sensitive properties of thick film and disc humidity sensors based on semiconducting SnWO4-SnO2 composites [J]. Sensors and Actuators B:Chemical,2007,124:429-436.
    [43]Tai W P, OH J H. Preparation and humidity sensing behaviors of nanocrystalline SnO2/TiO2 bilayered films [J]. Thin Solid Films,2002,422:220-224.
    [44]Kuse T, Takahashi S. Transitional behavior of tin oxide semiconductor under a step-like humidity change [J]. Sensors and Actuators B:Chemical,2000,67:36-42.
    [45]Licanerski B W, Nitsch K, Teterycz H, et al. Humidity insensitive thick film methane sensor based on SnO2/Pt [J]. Sensors and Actuators B:Chemical,1999,57:192-196.
    [46]Parthibavarman M, Hariharan V, Sekar C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method [J].Materials Science and Engineering:C,2011,31:840-844.
    [47]Hu S, Fu G. Humidity-sensitive properties based on liquid state LiZnVO4-doped SnO2 [J]. Sensors and Actuators A:Physical,2010,163:481-485.
    [48]Wang J, Xu B, Liu G, et al. Improvement of nanocrystalline BaTiO3 humidity sensing properties [J]. Sensors and Actuators B:Chemical,2000,66:159-160.
    [49]Yuk J, Trocayzski T. Sol-gel BaTiO3 thin film for humidity sensors [J]. Sensors and Actuators B:Chemical,2003,94:290-293.
    [50]He Y, Zhang T, Zheng W, et al. Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning [J]. Sensors and Actuators B:Chemical,2010,146: 98-102.
    [5l]Zhou M, Ahmad A. Sol-gel processing of In-doped CaZrO3 solid electrolyte and the impedimetric sensing characteristics of humidity and hydrogen [J]. Sensors and Actuators B:Chemical,2008,129:285-291.
    [52]Chen X, Rieth L, Miller M S, et al. High temperature humidity sensors based on sputtered Y-doped BaZrO3 thin films [J]. Sensors and Actuators B:Chemical,2009, 137:578-585.
    [53]He H Y, Huang J F, Cao L Y, et al. Humidity sensitivity of MnTiO3 film prepared via chemical solution deposition process [J]. Sensors and Actuators B:Chemical, 2008,132:5-8.
    [54]Pingale S S, Patil S F, Vinod M P, et al. Mechanism of humidity sensing of Ti-doped MgCr2O4 ceramics [J]. Materials Chemistry and Physics,1996,46:72-76.
    [55]Laobuthee A, Wongkasemjit S, Traversa E, et al. MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors [J]. Journal of the European Ceramic Society,2000,20:91-97.
    [56]Pokhrel S, Jeyaraj B, Nagaraja K S. Humidity-sensing properties of ZnCr2O4-ZnO composites [J]. Materials Letters,2003,57:3543-3548.
    [57]Shan J, Kotnala R K, Singh B, et al. Microstructure-dependent humidity sensitivity of porous MgFe2O4-CeO2 ceramic [J]. Sensors and Actuators B:Chemical,2007,128: 306-311.
    [58]Liu X, Wang R, Zhang T, et al. Synthesis and characterization of mesoporous indium oxide for humidity-sensing applications [J]. Sensors and Actuators B:Chemical, 2010,150:442-448.
    [59]Kleperis J, Kundzins M, Vitins G, et al. Gas-sensitive gap formation by laser ablation in In2O3 layer:application as humidity sensor [J]. Sensors and Actuators B:Chemical,1995,28:135-138.
    [60]Vaivars G, Kleperis J, Zubkans J, et al. Influence of thin film coatings on the gas sensitivity properties of narrow laser cut gap in In2O3 on glass substrate [J]. Sensors and Actuators B:Chemical,1996,33:173-177.
    [61]Nakatou, Miura N. Impedancemetric sensor based on YSZ and In2Os for detection of low concentrations of water vapor at high temperature [J]. Electrochemistry Communications,2004,6:995-998.
    [62]Zheng W, Lu X, Wang W, et al. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers [J]. Sensors and Actuators B:Chemical,2009,142: 61-65.
    [63]Chang S P, Chang S J, Lu C Y, et al. A ZnO nanowire-based humidity sensor [J]. Superlattices and Microstructures,2010,47:772-778.
    [64]Erol A, Okur S, Comba B, et al. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process [J]. Sensors and Actuators B:Chemical,2010,145: 174-180.
    [65]Joanni E, Baptista J L. ZnO-Li2O humidity sensors [J]. Sensors and Actuators B: Chemical,1993,17:69-75.
    [66]Ushio Y, Miyayama M, Yanagida H. Fabrication of thin film CuO/ZnO heterojunction and its humidity sensing properties [J]. Sensors and Actuators B:Chemical,1993, 12:135-139.
    [67]Costa M E V, Mantas P Q, Baptista J L. Effect of electrode alterations on the a. c. behaviour of Li2O-ZnO humidity sensors [J]. Sensors and Actuators B:Chemical,1995, 27:312-314.
    [68]Wan Q, Li Q H, Chen Y J, et al. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires [J]. Applied Physics Letters, 2004,84:3085-3087.
    [69]Wang X H, Ding Y F, Zhang J, et al. Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance [J]. Sensors and Actuators B:Chemical,2006,115:421-427.
    [70]Wang X, Zhang J, Zhu Z, et al. Humidity sensing properties of Pd2·-doped ZnO nanotetrapods [J]. Applied Surface Science,2007,253:3168-3173.
    [71]ZhouX, Zhang J, Jiang T, et al. Humidity detection by nanostructured ZnO:A wireless quartz crystal microbalance investigation [J]. Sensors and Actuators A:Physical, 2007,135:209-214.
    [72]Qi Q, Zhang T, Yu Q, et al. Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing [J]. Sensors and Actuators B:Chemical,2008,133: 638-643.
    [73]Zhang N, Yu K, Zhu Z, et al. Synthesis and humidity sensing properties of feather-like ZnO nanostructures with macroscale in shape [J]. Sensors and Actuators A:Physical,2008,143:245-250.
    [74]Qi Q, Zhang T, Wang S, et al. Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery [J]. Sensors and Actuators B:Chemical,2009, 137:649-655.
    [75]Wang W, Li Z, Liu L, et al. Humidity sensor based on LiCl-doped ZnO electrospun nanofibers [J]. Sensors and Actuators B:Chemical,2009,141:404-409.
    [76]Chatzandroulis S, Tserepi A, Goustouridis D, et al. Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor [J]. Microelectronic Engineering,2002,61-62:955-961.
    [77]Li L Y, Dong Y F, Jiang W F, et al. High-performance capacitive humidity sensor based on silicon nanoporous pillar array [J]. Thin Solid Films,2008,517:948-951.
    [78]Chen H J, Xue Q Z, Ma M, et al. Capacitive humidity sensor based on amorphous carbon film/n-Si heterojunctions [J]. Sensors and Actuators B:Chemical,2010,150: 487-489.
    [79]Bruzzi M, Miglio S, Scaringella M, et al. First study of humidity sensors based on nanostructured carbon films produced by supersonic cluster beam deposition [J]. Sensors and Actuators B:Chemical,2004,100:173-176.
    [80]Miglio S, Bruzzi M, Scaringella M, et al. Development of humidity sensors based on nanostructured carbon films [J]. Sensors and Actuators B:Chemical,2005, 111-112:140-144.
    [81]Zhang Y, Yu K, Xu R, et al. Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor [J]. Sensors and Actuators A:Physical,2005,120: 142-146.
    [82]Lukaszewicz J P, Skompska M. A novel carbon-based ionic conductor for humidity sensors [J]. Sensors and Actuators B:Chemical,2006,113:970-977.
    [83]Jiang W F, Xiao S H, Feng C Y, et al. Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars [J]. Sensors and Actuators B:Chemical,2007,125:651-655.
    [84]Adhikari B, Majumdar S. Polymers in sensor applications [J]. Progress in Polymer Science,2004,29:699-766.
    [85]Yang M J, Li Y, Camaioni N, et al. Polymer electrolytes as humidity sensors:progress in improving an impedance device [J]. Sensors and Actuators B:Chemical,2002,86: 229-234.
    [86]Rubinger C P L, Martins C R, De Paoli M A, et al. Sulfonated polystyrene polymer humidity sensor:Synthesis and characterization [J]. Sensors and Actuators B: Chemical,2007,123:42-49.
    [87]Sun A, Huang L, Li Y. Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium [J]. Sensors and Actuators B:Chemical,2009,139: 543-547.
    [88]Feng C D, Sun S L, Wang H, et al. Humidity sensing properties of Nation and sol-gel derived SiO2/Naf ion composite thin films [J]. Sensors and Actuators B:Chemical, 1997,40:217-222.
    [89]Su P G, Sun Y L, Lin C C.A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films [J]. Sensors and Actuators B:Chemical,2006,115:338-343.
    [90]Wu R J, Sun Y L, Lin C C, et al. Composite of TiO2 nanowires and Nafion as humidity sensor material [J]. Sensors and Actuators B:Chemical,2006,115:198-204.
    [91]Lee H, Lee S, Jung S, et al. Nano-grass polyimide-based humidity sensors [J]. Sensors and Actuators B:Chemical,2011,154:2-8.
    [92]Tang Q Y, Chan Y C, Zhang K. Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films [J]. Sensors and Actuators B: Chemical,2011,152:99-106.
    [93]Yoo K P, Lim L T, Min N K, et al. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films [J]. Sensors and Actuators B: Chemical,2010,145:120-125.
    [94]Boltshauser T, Baltes H. Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide [J]. Sensors and Actuators A:Physical, 1991,26:509-512.
    [95]Boltshauser T, Azeredo Leme C, Baltes H. High sensitivity CMOS humidity sensors with on-chip absolute capacitance measurement system [J]. Sensors and Actuators B:Chemical,1993,15:75-80.
    [96]Kuroiwa T, Hayashi T, Ito A, et al. A thin film polyimide based capacitive type relative humidity sensor [J]. Sensors and Actuators B:Chemical,1993,13:89-91.
    [97]Story P R, Galipeau D W, Mileham R D. A study of low-cost sensors for measuring low relative humidity [J]. Sensors and Actuators B:Chemical,1995,25:681-685.
    [98]Ralston A R K, Klein C F, Thoma P E, et al. A model for the relative environmental stability of a series of polyimide capacitance humidity sensors [J]. Sensors and Actuators B:Chemical,1996,34:343-348.
    [99]Schroth A, Sager K, Gerlach G, et al. A resonant poliyimide-based humidity sensor [J]. Sensors and Actuators B:Chemical,1996,34:301-304.
    [100]Matsuguch M, Kuroiwa T, Miyagishi T, et al. Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films [J]. Sensors and Actuators B:Chemical,1998,52:53-57.
    [101]Harpster T J, Stark B, Najafi K. A passive wireless integrated humidity sensor [J]. Sensors and Actuators A:Physical,2002,95:100-107.
    [102]Harrey P M, Ramsey B J, Evans P S A, et al. Capacitive-type humidity sensors fabricated using the offset lithographic printing process [J]. Sensors and Actuators B:Chemical,2002,87:226-232.
    [103]Gu L, Huang Q A, Qin M. A novel capacitive-type humidity sensor using CMOS fabrication technology [J]. Sensors and Actuators B:Chemical,2004,99:491-498.
    [104]Kim Y H, Jang K, Yoon Y J, et al. A novel relative humidity sensor based on microwave resonators and a customized polymeric film [J]. Sensors and Actuators B:Chemical, 2006,117:315-322.
    [105]Dai C L. A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique [J]. Sensors and Actuators B:Chemical,2007,122:375-380.
    [106]Ueda M, Nakamura K, Tanaka K, et al. Water-resistant humidity sensors based on sulfonated polyimides [J]. Sensors and Actuators B:Chemical,2007,127:463-470.
    [107]Chen C H, Lin C H. A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing [J]. Sensors and Actuators B:Chemical,2008,135:276-282.
    [108]Chen L T, Lee C Y, Cheng W H. MEMS-based humidity sensor with integrated temperature compensation mechanism [J]. Sensors and Actuators A:Physical,2008,147:522-528.
    [109]Lee C Y, Wu G W, Hsieh W J. Fabrication of micro sensors on a flexible substrate [J]. Sensors and Actuators A:Physical,2008,147:173-176.
    [110]Lin C H, Chen C H. Sensitivity enhancement of capacitive-type photoresistor-based humidity sensors using deliquescent salt diffusion method [J]. Sensors and Actuators B:Chemical,2008,129:531-537.
    [111]Kim J S, Lee M J, Kang M S, et al. Fabrication of high-speed polyimide-based humidity sensor using anisotropic and isotropic etching with ICP [J]. Thin Solid Films,2009,517:3879-3882.
    [112]Zampetti E, Pantalei S, Pecora A, et al. Design and optimization of an ultra thin flexible capacitive humidity sensor [J]. Sensors and Actuators B:Chemical,2009, 143:302-307.
    [113]Itagaki Y, Nakashima S, Sadaoka Y. Optical humidity sensor using porphyrin immobilized Nafion composite films [J]. Sensors and Actuators B:Chemical,2009, 142:44-48.
    [114]Yang M R, Chen K S. Humidity sensors using polyvinyl alcohol mixed with electrolytes [J]. Sensors and Actuators B:Chemical,1998,49:240-247.
    [115]Li Y, Ying B, Hong L, et al. Water-soluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing [J]. Synthetic Metals,2010,160: 455-461.
    [116]Yao W, Chen X, Zhang J. A capacitive humidity sensor based on gold-PVA core-shell nanocomposites [J]. Sensors and Actuators B:Chemical,2010,145:327-333.
    [117]Wang H, Feng C D, Sun S L, et al. Comparison of conductometric humidity-sensing polymers [J]. Sensors and Actuators B:Chemical,1997,40:211-216.
    [118]Penza M, Anisimkin V I. Surface acoustic wave humidity sensor using polyvinyl-alcohol film [J]. Sensors and Actuators A:Physical,1999,76:162-166.
    [119]Penza M, Cassano G. Relative humidity sensing by PVA-coated dual resonator SAW oscillator [J]. Sensors and Actuators B:Chemical,2000,68:300-306.
    [120]Fuke M V, Adhyapak P V, Mulik U P, et al. Electrical and humidity characterization of m-NA doped Au/PVA nanocomposites [J]. Talanta,2009,78:590-595.
    [121]Hatamie S, Dhas V, Kale B B, et al. Polymer-embedded stannic oxide nanoparticles as humidity sensors [J]. Materials Science and Engineering:C,2009,29:847-850.
    [122]Baendrecht E. Determination of traces of water in gases by means of a modified Keidel electrolytic hygrometer [J]. Analytica Chimica Acta,1961,25:402-404.
    [123]Keidel F A. Determination of Water by Direct Amperometric Measurement [J]. Analytical Chemistry,1959,31:2043-2048.
    [124]Nakamura K I, Ono K, Kawada K, et al. Electrochemical characteristics of a Pt-P2O5 electrolytic hygrometer [J]. Journal of Electroanalytical Chemistry,1973,47: 175-179.
    [125]Semchevskii A, Gaba A, Nosenko L, et al. Experience of joint development of a coulometric hygrometer [J]. Measurement Techniques,2009,52:424-426.
    [126]Goldsmith P, Cox L C. An improved electrolytic hygrometer [J]. Journal of Scientific Instruments,1967,44:29.
    [127]Huang X F, Sheng D R, Cen K F, et al. Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating [J]. Sensors and Actuators B: Chemical,2007,127:518-524.
    [128]Dacres H, Narayanaswamy R. Highly sensitive optical humidity probe [J]. Talanta, 2006,69:631-636.
    [129]Shinbo K, Otuki S, Kanbayashi Y, et al. A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance [J]. Thin Solid Films,2009,518: 629-633.
    [130]Venugopalan T, Sun T, Grattan K T V. Long period grating-based humidity sensor for potential structural health monitoring [J]. Sensors and Actuators A:Physical, 2008,148:57-62.
    [131]Buchhold R, Nakladal A, Gerlach G, et al. Design studies on piezoresistive humidity sensors [J]. Sensors and Actuators B:Chemical,1998,53:1-7.
    [132]Sager K, Schroth A, Nakladal A, et al. Humidity-dependent mechanical properties of polyimide films and their use for IC-compatible humidity sensors [J]. Sensors and Actuators A:Physical,1996,53:330-334.
    [133]Gerlach G, Sager K. A piezoresistive humidity sensor [J]. Sensors and Actuators A:Physical,1994,43:181-184.
    [134]Neshkova M, Petrova R, Petrov V. Piezoelectric quartz crystal humidity sensor using chemically modified nitrated polystyrene as water sorbing coating [J]. Analytica Chimica Acta,1996,332:93-103.
    [135]王行乾.厚膜技术(二)-丝网印刷工艺[J].上海微电子技术和应用,1995,(1):55-62.
    [136]王行乾.厚膜技术(三)-烧结工艺[J].上海微电子技术和应用,1995,(2):57-62.
    [137]杨邦朝.薄膜材料与薄膜技术的发展动向[J].电子元件与材料,1994,13(5):1-6.
    [138]http://www.meas-spec.com/humidity-sensors.aspx
    [139]张芸芝,刘崇进,王宏飞.高分子材料湿度传感器长期稳定性的讨论,1998,(2):12-15.
    [140]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1987.
    [141]Gregg S J, Sing K S W著,高敬琮等译.吸附、比表面积与孔隙率[M].北京:化学工业出版社,1989.
    [142]Morimoto T, Nagao M, Tokuda F. Relation between the amounts of chemisorbed and physisorbed water on metal oxides [J]. The Journal of Physical Chemistry,1969,73:243-248.
    [143]熊炳昆等.二氧化锆制备工艺与应用[M].北京:冶金工业出版社,2008.
    [144]徐廷献等.电子陶瓷材料[M].天津:天津大学出版社,1993.
    [145]Yagi H, Ichikawa K. High-temperature humidity sensor using a limiting-current-type plane multi-oxygen sensor for direct firing system [J]. Sensors and Actuators B:Chemical,1995,25:701-704.
    [146]Niranjan R S, Sathaye S D, Mulla I S. Bilayered tin oxide:zirconia thin film as a humidity sensor [J]. Sensors and Actuators B:Chemical,2001,81:64-67.
    [147]Nitta T, Hayakawa S. Ceramic Humidity Sensors [J]. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on,1980,3:237-243.
    [148]Saha D, Giri R, Mistry K K, et al. Magnesium chromate-TiO2 spinel tape cast thick film as humidity sensor [J]. Sensors and Actuators B:Chemical,2005,107:323-331.
    [149]Montesperelli G, Pumo A, Traversa E, et al. Sol-gel processed TiO2-based thin films as innovative humidity sensors [J]. Sensors and Actuators B:Chemical,1995,25: 705-709.
    [150]Qi Q, Feng Y, Zhang T, et al. Influence of crystallographic structure on the humidity sensing properties of KCl-doped TiO2 nanofibers [J]. Sensors and Actuators B:Chemical,2009,139:611-617.
    [151]Zhang H, Li Z, Liu L, et al. Mg2+/Na+-doped rutile TiO2 nanof iber mats for high-speed and anti-fogged humidity sensors [J]. Talanta,2009,79:953-958.
    [152]Tai W P, Kim J G, Oh J H. Humidity sensitive properties of nanostructured Al-doped Zn0:TiO2 thin films [J]. Sensors and Actuators B:Chemical,2003,96:477-481.
    [153]Su P G, Huang L N. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films [J]. Sensors and Actuators B:Chemical,2007,123:501-507.
    [154]Su P G, Wang C P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials [J]. Sensors and Actuators B:Chemical,2008,129: 538-543.
    [155]Su P G, Sun Y L, Lin C C. Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance [J]. Talanta,2006,69:946-951.
    [156]Yang S, Wu J. ZrO2-TiO2 ceramic humidity sensors [J]. Journal of Materials Science, 1991,26:631-636.
    [157]Jain M. K, Bhatnagar M. C, Sharma G. L. Effect of Li doping on ZrO2-TiO2 humidity sensor [J]. Sensors and Actuators B:Chemical,1999,55:180-185.
    [158]Biju K P, Jain M K. Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application [J]. Sensors and Actuators B:Chemical,2008,128:407-413.
    [159]王希萌,TiO2系湿敏材料的国内外研究进展[J],传感器技术,1995,5:7-10.
    [160]Wang Z, Ulf H, Per-Olov K. Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature[J], Thin solid films,2002, 405:50-54.
    [161]Lee J, Lee S. Impedance characteristics of carbon nitride films for humidity sensors [J], Sensors and Actuators B:Chemical,2006,117:437-441.
    [162]Wang J, Lin Q, Zhou R, et al. Humidity sensors based on composite material of nano-BaTiO3 and Polymer RMX [J], Sensors and Actuators B:Chemical,2002,81: 248-253.
    [163]袁锋,徐洪等,SF6气体密度在线微机测量系统[J],微纳电子技术,2007,8:417-419.
    [164]杨世忠,邢丽娟,微传感器压力测量系统[J],仪表技术与传感器,2007,8:64-65.
    [165]Pan C, Chou J, Sun T, et al. Development of the real-time PH sensing system for array sensors [J], Sensors and Actuators B:Chemical,2005,108:870-876.
    [166]Feng Y, Wang S, Feng B, et al. Development of an auto test system for humidity sensors [J]. Sensors and Actuators A:Physical,2009,152:104-109.
    [167]邱虹,熊兆贤,吉国力,陈永明.LCR全自动测试系统,实验室研究与探索[J],2008,27(2):46-48.
    [168]童茂松.基于LabVIEW的ZL5智能LCR测量仪驱动程序设计.石油仪器[J].2007,21(3):80-82.
    [169]王亚丽,王瑛,张锐.基于LabVIEW的LCR自动测试系统.电测与仪表[J].2004,41(467):56-58
    [170]易洪,李占元等.饱和盐溶液标准相对湿度表(国际会议)介绍.第七届全国湿度与水分学术交流会,南京,1998.
    [171]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2001.
    [172]Wolf C R. Sol-gel formation of zirconia:prepararion, structure and rheologh of sols [J]. Journal of Materials Science,1992,27:3749-3755.
    [173]Wan Q H L, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Applied Physics Letters,2004,84:3654-3656.
    [174]Comini E, Faglia G, Sberveglieri G, et al. Tin oxide nanobelts electrical and sensing properties [J]. Sensors and Actuators B:Chemical,2005,111-112:2-6.
    [175]Kwon 0 S, Park E, Kweon 0 Y, et al. Novel flexible chemical gas sensor based on poly(3,4-ethylenedioxythiophene) nanotube membrane [J]. Talanta,2010,82: 1338-1343.
    [176]Li P, Li Y, Ying B, et al. Electrospun nanofibers of polymer composite as a promising humidity sensitive material [J]. Sensors and Actuators B:Chemical,2009, 141:390-395.
    [177]Zhang H, Li Z, Wang W, et al. Na--doped zinc oxide nanofiber membrane for high speed humidity sensor [J]. Journal of the American Ceramic Society,2010,93: 142-146.
    [178]Li Z, Zhang H, Zheng W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. Journal of the American Chemical Society,2008,130:5036-5037.
    [179]He Y, Zhang T, Zheng W, et al. Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning [J]. Sensors and Actuators B:Chemical,2010,146: 98-102.
    [180]Song X, Qi Q, Zhang T, et al. A humidity sensor based on KC]-doped SnO2 nanofibers [J]. Sensors and Actuators B:Chemical,2009,138:368-373.
    [181]Lori'a-Bastarrachea M I, Herrera-Kao, W, Cauich-Rodriguez, J, et al. A TG/FTIR study on the thermal degradation of poly (vinyl pyrrol idone) [J]. Journal of Thermal Analysis and Calorimetry,2011,104:737-742.
    [182]近藤精一等.吸附科学[M].北京:化学工业出版社,2005.
    [183]Chen W, Zhao Z, Liu X, et al. A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs) [J]. Sensors,2009,9:7431-7444.
    [184]Yoshida F, Ramaswami D, Hougen 0 A. Temperatures and partial pressures at the surfaces of catalyst particles [J]. AIChE Journal,1962,8:5-11.
    [185]Rouquerol F, Rouquerol J, Sing K.S.W. Adsorption by powders and porous solids: principles [M], Methodology and Applications, Academic Press, San Diego (1999).
    [186]Nowotny J, Bak T, Sorrell C C. Charge transfer at oxygen/zirconia interface at elevated temperatures Part 4:work funciotn v. defect chemistry [J]. Advances in Applied Ceramics,2005,104:174-180.
    [187]Schaub R, Thostrup P, Lopez N, et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110) [J]. Physical Review Letters,2001,87:266104.
    [188]Guo X. Low temperature degradation mechanism of tetragonal zirconia ceramics in water:role of oxygen vacancies [J]. Solid State Ionics,1998,112:113-116.
    [189]张良莹,姚熹.电介质物理[M].西安:西安交通大学出版社,1991.
    [190]Wang R, He Y, Zhang T, et al. DC and ac analysis of humidity sensitive properties based on K+ doped nanocrystalline LaCo0.3Fe0.7O3 [J]. Sens Actuators B:Chemical, 2009,136:536-540.
    [l91]Zhang T, He Y, Wang R, et al. Analysis of dc and ac properties of humidity sensor based on polypyrrole materials [J]. Sens Actuators B:Chemical,2008,131: 687-691.
    [192]Sears W M. The effect of dc polarization on the humidity sensing characteristics of bismuth iron molybdate [J]. Sens Actuators B:Chemical,2005,107:623-631.
    [193]Wang L, He Y, Hu J, et al. DC humidity sensing properties of BaTiO3 nanofiber sensors with different electrode materials [J]. Sens Actuators B:Chemical,2011,153: 460-464.
    [194]张彤,徐宝琨,徐娓等.用直、交流方法分析高分子电阻型湿敏元件的敏感机理[J].传感技术学报,2001,(02):129-133.
    [195]Faia P M, Ferreira a J, Furtado C S. Establishing and interpreting an electrical circuit representing a TiO2-WO3 series of humidity thick film sensors [J]. Sensors and Actuators B:Chemical,2009,140:128-133.
    [196]Baldwin M G, Morrow J C. Dielectric behavior of water adsorbed on alumina. The Journal of Chemical Physics 1962,36:1591-3.
    [197]http://www.corrtest.com.cn/Content.asp?c=10&a=29&todo=show
    [198]ZView help
    [199]Yuk J, Troczynski T. Sol-gel BaTiO3 thin film for humidity sensors [J]. Sensors and Actuators B:Chemical,2003,94:290-293.
    [200]Young D M, Crowell A D. Physical adsorption of gases [M]. London:Butterworth, 1962, pp.354-364.
    [201]Raz S, Sasaki K, Maier J, et al. Characterization of adsorbed water layers on Y2O3-doped ZrO2 [J]. Solid State Ionics,2001,143:181-204.
    [202]Kreuer K D. Proton conductivity:materials and applications [J]. Chemistry of Materials,1996,8:610-641.
    [203]Guo X. Low temperature degradation mechanism of tetragonal zirconia ceramics in water:role of oxygen vacancies [J]. Solid State Ionics,1998,112:113-116.
    [204]Wang J, Song G. Mechanism analysis of BaTiO3 and polymer QAR composite humidity sensor [J]. Thin Solid Films,2007,515:8776-8779.
    [205]Yeh Y, Tseng T. Analysis of the d. c. and a. c. properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor [J]. Journal of Materials Science,1989,24: 2739-2745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700