用户名: 密码: 验证码:
镧锶钴氧薄膜的脉冲激光沉积法制备及电性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电薄膜集成器件是当代信息科学技术的重要前沿之一,而钙钛矿结构的铁电薄膜与导电薄膜的异质结构是集成铁电器件的核心。为了使铁电薄膜能更好地应用于集成器件,选用合适的方法制备制备合适的电极是非常重要的,电极层的性能直接决定了铁电薄膜材料性能的优劣。本论文的主要任务就是用脉冲激光法在不同的衬底上沉积导电钙钛矿结构氧化物La_(0.5)Sr_(0.5)CoO_3薄膜,并对生长出薄膜的结晶程度、表面形貌及导电性能进行了测试及分析。以实现应用于集成铁电器件,达到电极与铁电薄膜界面的结构匹配,延长铁电集成器件的寿命。
     本文用脉冲激光沉积法在Si衬底、SiO_2/Si衬底、Pt/Ti/SiO_2/Si衬底、LaAlO_3衬底四种衬底上制备了La_(0.5)Sr_(0.5)CoO_3薄膜。结晶程度及表面形貌测试结果显示LaAlO_3衬底上生长的薄膜晶化程度和生长情况最好,其次为Pt/Ti/SiO_2/Si衬底上生长的薄膜,在镀膜温度为600℃,镀膜氧压为50Pa条件下,Si衬底和SiO_2/Si衬底上的薄膜晶化程度也已很好。而Si衬底、SiO_2/Si衬底及Pt/Ti/SiO_2/Si衬底上生长的薄膜都有不同程度的微裂纹产生。经过炉内退火(in-situ)处理的薄膜样品产生微裂纹的程度有所减轻,层层蒸镀,并经过in-situ处理的薄膜样品表面形貌显著改善。而炉外后退火(ex-situ)处理对薄膜没有改善。晶格匹配、热膨胀系数的匹配是获得生长良好薄膜的关键因素。
     La_(0.5)Sr_(0.5)CoO_3薄膜电性能的测试显示电阻率与结晶程度、表面形貌密切相关。但Pt/Ti/SiO_2/Si衬底上生长的薄膜虽然也存在微裂纹,电阻率却最低,其原因可能在于薄膜厚度薄,在进行薄膜表面电阻测量时,电子穿透La_(0.5)Sr_(0.5)CoO_3薄膜从Pt膜上传输走了。
     本文还研究了倾斜衬底上La_(0.5)Sr_(0.5)CoO_3薄膜和另外一种钙钛矿结构氧化物La_(0.67)Ca_(0.33)MnO_3薄膜的电阻各向异性效应,结果显示,倾斜衬底上生长的La_(0.5)Sr_(0.5)CoO_3薄膜和La_(0.67)Ca_(0.33)MnO_3薄膜都有电阻各向异性效应,并且随着衬底的倾斜角度的增大,各向异性越明显,这与倾斜衬底上薄膜的各向异性生长有关。此外,我们还发现了倾斜衬底上La_(0.5)Sr_(0.5)CoO_3薄膜的激光感生电压(LITV)效应,以及La_(0.5)Sr_(0.5)CoO_3薄膜的气敏效应。
The research topic of the integrated devices of ferroelectric thin films has gained much attention in recent years, which is an important branch of modern information science and technology. The core of the integrated ferroelectric devices is the heterostructure of perovskite ferroelectric and conducting thin film. In order to apply ferroelectric thin films in integrated devices, it is very important to prepare suitable electrode using suitable method, as the performance of electrode has determined the performance of ferroelectric thin films. The main topic of this thesis is to deposit the thin film of the conductive perovskite oxides using the pulsed laser deposition (PLD) technique and to study the influence of crystallization surface profile lattice mismatchonthe resistances of the films. The aim of the research is to apply the integrated ferroelectric devices and attain the structural matching of the interface of the electrode and the ferroelectric thin film and prolong lifetime of the integrated ferroel
    ectric devices.
    La0.5Sr0.5CoO3 thin films have been prepared by pulsed laser deposition (PLD) on Si?SiO2/Si?Pt/Ti/ SiO2/Si and LaAlO3 substrates. The result of the measure of the degree of crystallization and surface profile of the films reveal that the degree of crystallization of film on LaAlO3 substrate is best; it on Pt/Ti/ SiO2/Si substrate is subsequent; and it on Si and SiO2/Si substrates with the condition of 600癈 and 50Pa is well. The films on Si?SiO2/Si and Pt/Ti/ SiO2/Si substrates have microcrazes in different degree. The degree of microcrazes of the films with in-situ is lightened, the surface profile of the film deposited in multiple layers with in-situ is improved signlly. But the films with ex-situ treatment have no apparent improvement.
    The resistance of La0.5Sr0.5CoO3 thin film has affinity with the degree of crystallization and surface profile of the films. The films on Pt/Ti/ SiO2/Si substrates have microcrazes too, but they have the least resistance, the reason perhaps is the electrons penetrate the La0.5Sr0.5CoO3 film and transmit on Pt film when the resistance of La0.5Sr0.5CoO3 thin film is
    
    
    measured, for the thickness of La0.5Sr0.5CoO3 thin film is light.
    In addition, the resistance anisotropy of La0.5Sr0.5CoO3 and La0.67Ca0.33MnO3 thin films on tilted LaAlO3 substrates have studied in this thesis. The result reveal that the La0.5Sr0.5CoO3 and La0.67Ca0.33MnO3 thin films grown on tilted substrates demonstrate resistance anisotropy, and the film on the substrate with the bigger tilting angle has the larger resistance anisotropy, it is agreeable to theoretical explanation. Otherwise, in the experiments we have discovered the laser induced thermoelectric voltage (LITV) of La0.5Sr0.5CoO3 thin films on tilted substrate and the gas sensitivity of La0.5Sr0.5CoO3 thin film, and their application foregrounds are quite extensive.
引文
[1] James F.Scott, Carlos A.Paz de Araujo, Science, 246, 1400 (1989)。
    [2] 汤定元,糜正瑜等,光电器件概论,上海科学技术文献出版社,1999。
    [3] Paul W.Kruse, David D.Skatrud, Semiconductors and Semimetals, 47,Academic Press, San Diego, 1997。
    [4] Norman W.Schubring, J.V.Mantese, Phys.Rev.Lett., 68 (11), 1778 (1992)。
    [5] J.V.Mantese, N.W.Schubring, A.L.Micheli, Appl.Phys.Lett., 71 (14),2047 (1998)。
    [6] N.W.Schubring, J.V.Mantese, A.B.Catalan, A.L.Micheli, Slater Model Applied to Polarization Graded Ferroelectrics, Appl.Phys.Lett., 73 (19),2838 (1998)。
    [7] 曲喜新,杨邦朝,姜节俭,张怀武,电子薄膜材料,科学出版社,1996。
    [8] 王阳元,T.I.卡明斯,多晶硅薄膜及其在集成电路中的应用,科学出版社,1988。
    [9] 日本学术振兴会薄膜第131委员会编,薄膜,社,1964。
    [10] 李炳宗,硅基薄膜材料和器件技术的新进展,电子瞭望,1993年,第11期。
    [11] 田民波,刘得令,薄膜科学与技术手册,机械工业出版社,1991。
    [12] Tai-Bor Wu, Chin-Lin Liu, and Yu-Wen Liu, J.Mater.Res., 17,1350 (2002)。
    [13] Sucharita Madhukar, S.Aggarwal, A.M.Dhote, et al, J.Appl.Phys.,81, 3543(1997)。
    [14] M.D.Allsworth, R.A.Chakalov, M.S.Colclough, P.Mikheenko, C.M.Muirhrad, Superconductivity in thin-film YBa_2Cu_3O_(7-δ)/La_(0.7)Ca_(0.3)MnO_3 bilayers, Appl.Phys.Lett., 80, 4196(2002)。
    [15] J.Zhang, H.Tanaka, Tomoji Kawai, J.Appl.Phys., 90, 6275(2001)。
    [16] 顾梅梅,张鹏翔,李国桢,超巨磁阻测辐射热仪,物理学报,8,
    
    1567 (2000)。
    [17] C.Pollak, K.Reichmann, H.Hutter, Surface and Coatings Technology, 150, 119(2002)。
    [18] J.Yin, T.Zhu, Z.G.Liu, and T.Yu, Enhanced Fatigue and Retention Properties of Pb(Ta_(0.05)Zr_(0.48)Ti_(0.47))O_3 Films Using La_(0.25)Sr_(0.75)CoO_3 Top and Bottom Electrodes, Appl.Phys.Lett., 75, 3698 (1999)。
    [19] Wang Fan and Leppavuori Seppo, J. Appl.Phys., 82, 1293 (1997)。
    [20] X.J.Meng, Z.X.Ma, J.L.Sun, et al, Thin Solid Films, 372, 271 (2000)。
    [21] J.H.Cho and K.C.Park, Comparison of Epitaxial Growth of PbZr_(0.53)Ti_(0.47)O_3 on SrRuO_3 and La_(0.5)Sr_(0.5)CoO_3, Appl.Phys.Lett., 75, 549 (1999)。
    [22] Wenbin Wu, K.H.Wong, et al, Top-interface-controlled Fatigue of Epitaxial Pb(Zr_(0.52)Ti_(0.48))O_3 Ferroelectric Thin Films on La_(0.7)Sr_(0.3)MnO_3 Electrodes, Appl.Phys.Lett., 77, 3441 (2000)。
    [23] R.Ramesh, .J.Lee, T.Sands, and V.G.Keramidas, 64, 2511 (1994)。
    [24] R.Ramesh, B.Dutta, T.S.Ravi, et al, Scaling of Ferroelectric Properties in La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O Capacitors, Appl.Phys.Lett., 64, 1588 (1994)。
    [25] B.J.Kim, J.Lee, J.B.Yoo, Thin Solid Films, 341, 13 (1999)。
    [26] J.M.Liu, C.K.Ong, The Large Magnetoresistance Property of La_(0.5)Sr_(0.5)CoO_(3-x) Thin Films Prepared by Pulsed Laser Deposition, Appl.Phys.Lett., 73, 1047 (1998)。
    [27] G.P.Luo, Y.S.Wang, S.Y.Chen, A.K.Heilman, C.L.Chen, C.W.Chu, Y.Liou, N.B.Ming, Electrical and Magnetic Properties of La_(0.5)Sr_(0.5)CoO_3 Thin Films, Appl.Phys.Lett., 76, 1908 (2000)。
    [28] G.Briceno, H.Chang, X.Sun, P.G.Schultz, and X.D.Xiang, A Class of Cobalt Oxide Magnetoresistance Materials Discovered with Combinatorial Synthesis, Science, 270, 273 (1995)。
    [29] X.D.Xiang, X.Sun, G.Briceno, Y.Lou, et al, Science, 268, 1738(1995)。
    [30] J.F.M.Cillessen, R.M.Wolf, and A.E.M.De Veirman, Appl.Sur.Sci.,
    
    69, 212 (1993)。
    [31] B.H.Park, L.S.Li, B.J.Gibbons, J.Y.Huang, and Q.X.Jia, Photovoltaic Response and Dielectric Properties of Epitaxial Anatase-TiO_2 Films Grown on Conductive La_(0.5)Sr_(0.5)CoO_3 Electrodes, Appl.Phys.Lett.,79 (17), 2797 (2001)。
    [32] M.R.Ibarra, R.Mahendiran, C.Marquina, B.Garci a-Landa, and J.Blasco, Phys.Rev.B., 57 (6), R3217 (1998)。
    [33] R.Caciuffo, D.Rinaldi, G.Barucca, et al, Phys.Rev.B., 59 (2),1068 (1999)。
    [34] V.G.Prokhorov, Y.P.Lee, K.W.Kim , V.M.Ishchuk, and I.N.Chukanova, Long-aging Effects on the Properties of La_(0.5)Sr_(0.5)CoO_(3-x) Films, Appl.Phys.Lett., 80 (13), 2353 (2002)。
    [35] Hauyee Chang, C.L.Chen, T.Garrett, et al, Dynamics of Crystallization and Phase Transition in La_(0.5)Sr_(0.5)CoO_3 Thin Films, Appl.Phys.Lett., 80 (23), 4333 (2002)。
    [36] T.Saitoh, T.Mizokawa, and A.Fujimori, M.Abbate, Y.Takeda, M.Takano, Phys.Rev.B., 56, 1290 (1997)。
    [37] Yuemei L.Yang, A.J.Jacobson, C.L.Chen, G.P.Luo, K.D.Ross, and C.W.Chu, Oxygen Exchange Kinetics on a Highly Oriented La_(0.5)Sr_(0.5)CoO_(3-x) Thin Film Prepared by Pulsed Laser Deposition, Appl.Phys.Lett., 79 (6), 776 (2001)。
    [38] S.Yamaguchi, Y.Okimoto, and Y.Tokura, Phys.Rev.B., 54, R11022 (1996)。
    [39] J.M.Liu, C.K.Ong, J.Appl.Phys., 84, 5560 (1998)。
    [40] J.Mizusaki, Y.Mima, S.Yamauchi, F.Fueki, and H.Tagawa, J.Solid State Chem., 80, 102 (1989)。
    [41] M.A.Senaris-Rodriguez and J.B.Goodenough, J.Solid State Chem., 118, 3238 (1995)。
    [42] S.Aggarwal, A.M.Dhoto, R.Ramesh, et al, Hysteresis Relaxation in (Pb, La)(Zr, Ti)O_3 Thin Film Capacitors with (La, Sr)CoO_3 Electrodes, Appl.Phys.Lett., 69 (17), 2540 (1996)。
    [43] J.T.Cheung, P.E.D.Morgan, D.H.Lowndes, X.Y.Zheng, and J.Breen,
    
    Structural and Electrical Properties of La_(0.5)Sr_(0.5)CoO_3 Epitaxial Films, Appl.Phys.Lett., 62, 2045 (1993)。
    [44] J.V.Mantese, A.L.Micheli, A.B.Catalan, and N.W.Schubring, Formation of Lanthanum Strontium Cobalt Thin Films by Metalorganic Decomposition, Appl.Phys.Lett., 64, 3509 (1994)。
    [45] 干福熹,信息材料,天津大学出版社,2000。
    [46] R.Ramesh, S.Aggarwal, O.Auciello, Materials Science and Engineering, 32, 191 (2001)。
    [47] Karl H., Stritzker B., Phys Rev Lett, 69, 2939 (1992)。
    [48] Horwitz J.S., Chrisey D.B., et al, Applied Surface Science, 127,503 (1998)。
    [49] Labben D., Barnett S., Suzuki K., et al, J Vac Sci Technol, B3,968 (1985)。
    [50] Tantigate C.,Lee T., Safari A. Appl Phys Lett, 66(13), 1611(1995)。
    [51] 张超,吴卫东,陈正豪,周岳亮,孙卫国,唐永建,程新路,脉冲激光气相沉积技术现状与进展,材料导报,17(12),73,(2003)。
    [52] H.M.Smith, A.F.Turner, Vacuum Deposited Thin Films using a Ruby Laser, Appl.Opt., 4, 147 (1965)。
    [53] R.H.Honig, J.R.Woolston, Laser-induced Emission of Electrons, Ions and Neutral Atoms from Solid Surface, 2, 138 (1963)。
    [54] T.Venkatesan, X.D.Wu, A.Inam, et al, Observation of Two Distinct Components during Pulsed Laser Deposition of High Tc Superconducting Films, Appl.Phys.Lett., 52, 1193 (1988)。
    [55] 陈正豪,激光分子束外延——一种研制薄膜的先进方法,物理,12,719(1995)。
    [56] Rajiv K.Singh, J.Narayan, Pulsed-laser Evaporation Technique for Deposition of Thin Films: Physicals and Theoretical Model, Phys.Rev.B.,41, 8843 (1990)。
    [57] Anisimov S I, Vaporization of Metal Absorbing Laser Radiation, Soviet Phys, 27, 182 (1988)。
    [58] Nielsen P E, High-intensity Laser-matter Coupling in a Vacuum, J.Appl.Phys., 50, 3938 (1979)。
    
    
    [59] Dacid C, et al, Density and Temperature of a Laser Induced Plasma, IEEE J.of Quantum Elec., QE-2, 493 (1966)。
    [60] Nichols D B, Hall R B, Threshold Conditions for the Formation of Surface Plasmas by HF and DF Laser Radiation, J.Appl.Phys., 49, 5155 (1978)。
    [61] Pirri A N, et al, Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers , AIAA Journal, 5, 1883 (1978)。
    [62] Kuriki K, Kitora Y.Momentum, Transfer to Target from Laser Produced Plasma , Appl.Phys.Lett., 30, 751 (1977)。
    [63] J.A. Woodroffe, J. Hsia, and A. Ballantyne, Thermal and Impulse Coupling to an Aluminum Surface by a Pulsed KrF Laser, Appl.Phys.Lett.,36, 14 (1980)。
    [64] 周炳琨,激光原理,国防工业出版社,1992。
    [65] 王广昌,准分子激光器的新应用,光电子技术与信息,12,38(1999)。
    [66] 刘敬海,泼光器件与技术,北京理工大学出版社,1995。
    [67] Takashi Hase, Hirohiko Laumi, Ohata, Partial Oxygen Pressure Effects on the Morphology of Y-Ba-Cu-O Thin Films in Laser Deposition Process, J.Appl.Phys., 68, 374 (1990)。
    [68] J.Q.Guo, H.Takeda, et al., Deposition Conditions of Magnetoresistance in La_(0.67)Ca_(0.33)MnO_3 Thin Film, J.Appl.Phys., 81, 7445 (1997)。
    [69] X.T.Zeng, H.K.Wong, Epitaxial Growth of Single-crystal LCMO Films, Appl.Phys.Lett., 66, 1832 (1995)。
    [70] G.C.Xiong, Q.Li, H.L.Ju, R.L.Greene, and T.Venkatesan, Influence of Preparation on Resistivity Behavior of Epitaxial Nd_(0.7)Sr_(0.3)MnO_(3-x) and La_(0.67)Ba_(0.33)MnO_(3-x) Thin Films, Appl.Phys.Lett., 66, 1689 (1995)。
    [71] 杨南如,岳文海,无机非金属材料图谱手册,武汉工业大学出版社,2000。
    [72] 周岳亮,脉冲激光淀积高温超导薄膜,物理,3,167(1998)。
    [73] 张克从,张乐惠主编,晶体生长科学与技术,科学出版社,1997。
    [74] K.Iskikawa,K.Yoshikawa,N.Ukada,Phys.Rev.B,37,5852(1988)。
    
    
    [75] 李美亚,王忠烈,熊光成,范守善,赵清太,林揆训,La_(0.5)Sr_(0.5)CoO_3薄膜的外延生长及其机理研究,物理学报,48,0114(1999)。
    [76] Z.L.Wang, A.J.Shapiro, Surf.Sci., 328, 141 (1995)。
    [77] Akihiko Hirata, et.al., Surf.Sci., 319, 267 (1994)。
    [78] LS-DYNA应用于热应力分析,www.chinaemnet.com。
    [79] Cbme.mc.ntu.edu.tw/Courses/医用微感测器/Handout/Lect2/surface.htm。
    [80] 王义贤,半导体用环氧树脂封装胶粉,www.chinaemnet.com。
    [81] 赵钰,厚膜技术与LTCC材料在光电子封装中的应用,www.chinaecnet.com。
    [82] www.ti-rm.com/gongsi2.htm。
    [83] www.fivetec.com.tw/big/products/ch-pcb.htm。
    [84] 储刚,翟秀静,毕诗文,符岩,La_(0.7)Sr_(0.3)MnO_3晶格热膨胀系数的测定,化学通报,67,022(2004)。
    [85] 王华馥,吴自勤,固体物理实验方法,高等教育出版社,1997。
    [86] 李名傅,半导体物理,科学出版社,1991。
    [87] A.Frenkel, M.A.Safi, T.Venkatesan, P.England, X.D.Wu, A.Inam., Optical response of nongranular high-Tc Y_1Ba_2Cu_3O_(7-x) superconducting thin films, J.Appl.Phys., 67, 3054 (1990)。
    [88] P.X.Zhang, G.Z.Li, Y.Zhang, X.M.Wen, H.U.Habermeier., Room Temperature Light-thermo-detector Made of High-Tc Superconductor, Acta Phys.Sin.(Overseas Edition), 7, 810 (1998)。
    [89] P.X.Zhang, J.B.Wang, H.U.Habermeier., Laser Induced Voltage in CMR Thin Films and It's Device Application, Phys C, 364, 656 (2001)。
    [90] X.H.Li, H.U.Habermeier, P.X.Zhang et al., Laser Induced Voltage in La_(0.67)Ca_(0.33)MnO_3 Thin Films on Tilted Substrates, Solid State Communications, 473, 110 (1999)。
    [91] G.L.Carr, M.Quijada, D.B.Tanner, C.J.Hirschmugl, G.P.Williams, S.Etemad, B.Dutta, F.De Rosa, A.Inam, T.Venkatesan, X.Xi., Fast Bolometric Response by High Tc Detectors Measured with Subnanosecond Synchrotron Radiation, Appl.Phys.Lett., 57, 2725 (1990)。
    [92] H.S.Kwok, J.P.Zheng, Q.Y.Ying, R.Rao., Nonthermal Optical
    
    Response of Y-Ba-Cu-O Thin Films, Appl.Phys.Lett., 54, 2473 (1989)。
    [93] C.L.Chang , A.Kleinhammes , W.G.Moulton , L.R.Testardi, Symmetry-forbidden thermoelectric Voltage in YBa_2Cu_3O_(7-δ) ,Phys.Rev.B, 40, 11564 (1990)。
    [94] H.-U.Habermeier, X.H.Li, P.X.Zhang, B.Leibold, Anisotropy of Thermoelectric Properies in La_(2/3)Ca_(1/3)MnO_3 Thin Films Studied by Laser-Induced Transient Voltage, Solid State Commun., 110, 473 (1999)。
    [95] X.H.Li, H.-U.Habermeier, P.X.Zhang, Laser-induced off-diagonal thermoelectric voltage in La_(1-x)Ca_xMnO_3 Thin Films, J.Magn.Mater., 211,232 (2000)。
    [96] P. X. Zhang, C. Wang, et al, LaCaMnO_3 Thin Film Laser Energy/Power Meter, Optics&Laser Technology , To Be Publish。
    [97] G.Y. Zhang, Time Dependence of Laser-Induced thermoelectric Voltages in LCMO and YBCO Thin Films, Master thiese, 2001。
    [98] 常雷,蒋毅坚,王茺,朱绍将,张国勇,张鹏翔,超巨磁电阻薄膜在光探测上的新应用,物理,待发表。
    [99] K.Tetsuichi, Catalysis Today, 8, 263 (1990)。
    [100] J.A.M.Van Roosmalen, E.H.P.Cordfunke, J.Solid State Chem., 93,212 (1991)。
    [101] 卢旭晨,天津大学博士学位研究生学位论文,1998。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700