用户名: 密码: 验证码:
铌酸盐基无铅压电陶瓷的制备及其掺杂改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电陶瓷广泛应用于压电传感觉器,超声换能器和其它电子器件。但是大部分电子器件使用的都是含铅压电陶瓷,其中铅含量高达60%以上。铅是一种有毒物质,由于铅的易挥发性,在生产、制备、使用及废弃处理中都会对环境造成极大的污染。因此发展无铅压电陶瓷来代替含铅压电陶瓷已经刻不容缓。
     (Na0.5K0.5)NbO3 (KNN)由于其优异的压电性能而成为候选材料。本论文采用传统的制备工艺,在常压烧结的条件下制备了0.94(Na0.5K0.5)NbO3–xLiSbO3–yLiNbO3无铅压电陶瓷,并对其物相结构、压电、介电性能进行了研究。
     采用传统陶瓷制备方法制备了0.94(Na0.5K0.5)NbO3–xLiSbO3–yLiNbO3 (NKNLS)体系无铅陶瓷,研究了不同LiSbO3和LiNbO3的量对NKNLS无铅压电陶瓷材料的密度、相结构、显微结构和电学性能的影响。X射线衍射(XRD)表明过量的LiNbO3或者LiSbO3都不能使样品形成完全纯的钙钛矿相,而且有钨青铜结构的第二相K3Li2Nb5O15生成。只有适量的LiNbO3和LiSbO3才能形成纯的钙钛矿相。
     通过扫描电镜(SEM)分析可知NKNLS无铅压电陶瓷体系的显微结构也由于LiNbO3和LiSbO3含量的不同而表现出很大差异。当x=0.03,y=0.03时,0.94(Na0.5K0.5)NbO3–xLiSbO3–yLiNbO3无铅压电陶瓷表现出优越的压电性能。同时研究了烧结温度对0.94(Na0.5K0.5)NbO3–0.03LiSbO3–0.03LiNbO3(NKNLS–3)的密度、相结构、显微结构和电学性能的影响。XRD分析表明当烧结温度≤1080℃时,NKNLS–3样品都是纯的钙钛矿相结构,当烧结温度>1080℃时,有钨青铜结构的第二相K3Li2Nb5O15出现,从而恶化了其压电性能。通过对样品密度的测量可知最佳烧结温度为1080℃。当烧结温度为1080℃时,得到了综合性能比较好的NKNLS–3无铅压电陶瓷:ρ=4.29g/cm3,εr =826,tanδ=0.049,d33=190pC/N,kp=0.30。为了进一步提高材料的综合电性能,尤其是进一步提高材料的Qm,我们采用CuO和MnO2掺杂剂对NKNLS–3陶瓷进行改性研究。首先系统研究了CuO含量对NKNLS–3陶瓷显微结构和电性能的影响,结果表明:在CuO含量变化范围内,陶瓷相结构均以四方相相结构为主。随着CuO量的增加,εr下降,而Qm和tanδ先升高后降低。当CuO掺杂量为0.3mol%时的陶瓷样品具有较好的综合电性能。
     其次,系统研究了MnO2含量对NKNLS–3陶瓷显微结构和电性能的影响,结果表明:在MnO2含量变化范围内,陶瓷相结构均以四方相为主。随着MnO2含量的增加,εr和d33也均下降,kp变化不大,Qm先增加后降低,tanδ先降低后增加。当MnO2含量为0.15mol%时,陶瓷具有优良的综合电性能。
Piezoelectric ceramics have been widely used for sensors, ultrasonic transducers and other electronic devices. Most of them are lead oxide–based piezoelectric ceramics, which contain more than 60 wt% lead. Lead is a very toxic substance, and the evaporation and contamination of toxic lead during the fabrication and disposal can cause a crucial environmental pollution. Therefore, it is necessary and urgency to develop lead–free piezoelectric ceramics to replace lead–based piezoelectric ceramics. (Na0.5K0.5)NbO3 (NKN) has been considered as a good candidate for lead–free piezoelectric ceramics due to its good piezoelectric properties. In this paper, 0.94(Na0.5K0.5)NbO3–xLiSbO3–yLiNbO3 (KNLNS) were prepared by the conventional mixed oxide route with normal sintering. The phase structure,piezoelectric and dielectric properties were investigated.
     0.94(Na0.5K0.5)NbO3–xLiSbO3–yLiNbO3 (NKNLS) ceramics were synthesized by traditional sintering process and effects of the LiSbO3 and LiNbO3 amounts on density, phase structure, microstructure and electric properties of NKNLS were investigated. X–ray diffraction (XRD) results showed that NKNLS can not form pure perovskite phase with excess LiNbO3 or LiSbO3 and the second phase K3Li2Nb5O15 with tetragonal tungsten bronze structure appeared, the pure perovskite phase only formed with proper amount of LiNbO3 and LiSbO3. Scanning electron microscope (SEM) observation indicated that the microstructure of NKNLS lead free ceramics exhibits apparent difference due to different amounts of LiSbO3 and LiNbO3. The 0.94(Na0.5K0.5)NbO3–xLiSbO3–yLiNbO3 lead free ceramics exhibits an excellent piezoelectric properties with x=0.03 and y=0.03. The effects of sintering temperature on the density, structure and electric properties of 0.94(Na0.5K0.5)NbO3–0.03LiSbO3–0.03LiNbO3(NKNLS–3) ceramics were also studied. XRD results showed that the crystal structure of the KNLNS ceramic were pure perovskite phase with tetragonal phase structure sintered at T≤1080℃, however, a K3Li2Nb5O15 phase with tetragonal tungsten bronze structure began to appear when the sintering temperature was higher than 1080℃. The optimum sintering temperature is 1080℃which was determined by measuring the density of the samples. SEM observation indicated that the sintering temperature had a great effect on the microstructure of the samples. The KNLNS–3 ceramics under the optimum sintering temperature showed excellent electric properties which as follows:ρ=4.29g/cm3,εr = 826, tanδ=0.049, d33 = 190pC/N, kp = 0.30.
     To further improve the electric properties of the ceramics, especially for Qm, KNLNS–3 ceramic was investigated by doping CuO and MnO2. The influence of CuO content on the phase structure, microstructure, dielectric and piezoelectric properties of the ceramics was investigated in detail. The XRD analysis results showed that all the ceramics were tetragonal phase. With the increasing of CuO content,εr kept decreasing all the time, Qm and tanδfirstly increased and then decreased. As CuO was 0.3mol%, the ceramics showed better electrical properties. The influence of MnO2 content on the phase structure, microstructure, dielectric and piezoelectric properties of the ceramics was also investigated in detail. The XRD analysis results showed that all the ceramics were tetragonal phase. With increasing the amount of MnO2,εr and d33 also decreased all the time, kp have little change. Qm increased at first and then decreased, whereas, tanδdecreased firstly, then increased. The ceramics with 0.15mol% MnO2 addition showed the optimized electrical properties.
引文
[1] 张福学. 现代压电学[M]. 北京: 科学出版社, 2001
    [2] Jaffe B., Marzullo S., Roth R. S.. Piezoelectric Properties of Lead Zirconate–lead Titanate Solid Solution Ceramics[J]. Journal of Applied Physics, 1954, 25 (6): 809–810
    [3] Cross L.E. Ferroelectric materials for electromechanical transducer applications[J]. Japanese Journal of Applied Physics, 1995, 34: 2525–2532
    [4] 徐家跃. 弛豫铁电晶体PZNT生长的几个关键问题[J]. 硅酸盐学报, 2004, 32 (3): 378–383
    [5] Li Y., Moon K., Wong C. P.. Electronics without Lead[J]. Science. 2005, 308 (6): 1419–1420
    [6] 赁敦敏, 肖定全, 朱建国等. 无铅压电陶瓷研究开发进展[J]. 压电与声光, 2003, 25 (2): 127–132
    [7] Wanda W. W.. European Approach to Development of New Environmentally Sustainable Electroceramic[J]. Ceramics International, 2004, (30): 1079–1083
    [8] Eric C.. Materials Science Lead–free at last. Nature, 2004, 432: 24–25
    [9] 肖定全. 关于无铅压电陶瓷及其应用的几个问题[J]. 电子元件与材料, 2004, 11(23): 62–65
    [10] 贺连星, 李毅, 李广成等. 无铅压电陶瓷材料研究进展[J]. 电子元件与材料, .2004, 11 (23): 52–55
    [11] 肖定全. 压电、热释电与铁电材料[M]. 天津:天津大学出版社. 2000: 2–3
    [12] Farhi R., Marssi M. E., Simon A.. A.. Raman and Dielectric Study of Ferroelectric Ba(Ti1–xZrx)O3 ceramics[J]. European Physical Journal B, 1999, 9 (4): 599–604
    [13] 马麦霞, 吕忆农, 卢都有等. 无铅压电陶瓷的研究进展[J]. 现代技术陶瓷, 2003, 1: 23–25
    [14] 李月明, 周静, 徐庆等. NBT 基无铅压电陶瓷研究进展[J]. 陶瓷学报, 2003, 24 (4): 235–238
    [15] Smolenskii G. A., Isupov V. A., Afranovskaya A. I., et al.. New Ferroelectrics of Complex Composition [J]. Soviet Physics Solid State, 1961, 2 (11): 2651–2654
    [16] Takenaka T.. Piezoelectric Properties of some Lead–free Ferroelectric Ceramics. Ferroelectrics [J]. Ferroelectrics, 1999, 230: 87–98
    [17] Takenaka T., Nagata H.. Present Status of Non–lead–based Piezoelectric Ceramics. Key Engineering Materials, 1999, 157–158: 57–64
    [18] Takenaka T., Sakata K., Toda K.. Piezoelectric Properties of Na0.5Bi0.5TiO3–based Ceramic[J]. Ferroelectrics, 1990, 106: 375–380
    [19] Takenaka T., Okuda T., Takegahara K.. Lead–free piezoelectric ceramics based on Na0.5Bi0.5TiO3–NaNbO3[J]. Ferroelectrics, 1997, 196: 175–178
    [20] 马晋毅, 吴裕功, 董向红. Na0.5Bi0.5TiO3 陶瓷 A 位二价金属离子取代的研究[J]. 压电与声光, 2000, 22 (4): 253–255
    [21] 吴裕功, 马晋毅, 董向红. Na0.5Bi0.5TiO3–SrTiO3 无铅压电陶瓷的介电压电性能[J]. 压电与声光, 2000, 22 (6): 370–372
    [22] Hosono Y., Harada K., Yamashita Y.. Crystal Growth and Electrical Properties of Lead–free Piezoelectric Material Na0.5Bi0.5TiO3–BaTiO3[J]. Ferroelectrics, 1999, 229: 273–278
    [23] Nagata H., Koizumi N.. Na0.5Bi0.5TiO3– BiFeO3 Ceramics of System[J]. Key Engineering Materials. 1999, 169: 37–40
    [24] 初宝进, 李国荣, 江向平等. Na0.5Bi0.5TiO3–BiFeO3 系陶瓷压电性及弛豫相变研究[J]. 无机材料学报. 2000, 15(5): 815–821
    [25] Yet M. C., Gregory W. F., Andrey N. S.. Lead–free High–strain Single–crystal Piezoelectrics in the Alkaline–bismuth–titanate Perovskite Family[J]. Applied Physics Letters, 1998, 25 (73): 3683–3685
    [26] Umakantham K., Narayana S., Effect of Rare–earth Ions on the Properties of Modified (SrBa)Nb2O6 ceramics[J]. Journal Materials Letters, 1987, 6: 565–567
    [27] Robina I., Prasadara V., Sabasiva R., et al. Effect of Rare Earth Substitution on the Dielectric and Piezoelectric Properties of Ba2AgNb5O15 [J]. Ferroelectrics , 1994, 153 (124): 285–290
    [28] Sambasiva R. K., Satyanarayana C., Piezoelectric and Ferroelectric Properties of Rare–earth Modified Filled Tungsten Bronze Bariumsilver Niobate Ceramics, Ferroelectrics [J], 1994, 154 (124): 195–200
    [29] Megriche A., Lebrun L., Trocca Z. M., et al, Materials of Bi4Ti3O12 Type for High Temperature Acoustic Piezo–sensors[J]. Sensors and Actuatos, 1999, 78: 88–91
    [30] Kazuo S., Mizuka A., Yasuo U., et al. Preparation and Properties of SrBi2Ta2O9 Ceramics[J]. Japanese Journal of Applied Physics, 1998, 37: 5273–5276
    [31] Yan H., Li C., A–Site (MCe) Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics [J]. Japanese Journal of Applied Physics, 2000, 39 (11) : 6339–6342
    [32] Shirane G., Danner H., Pavlovic A., et al. Phase Transition in Ferroelectric KNbO3[J]. Physical Review. 1954, 15: 672–673
    [33] Egerton L., Dillon D. M.. Piezoelectric and Dielectric Properties of Ceramics in the System of Potassium–sodium Niobate[J]. Journal of the American Ceramic Society, 1959, 42 (9): 438–442
    [34] 杜红亮, 李智敏, 周万城等. (Na0.5K0.5)NbO3 基无铅压电陶瓷的研究进展[J]. 无机材料学报. 2006, 6 (21): 1284–1285
    [35] Ken–ichi K., Izumi M., Hitoshi O. Lead–free KNbO3 Piezoceramics Synthesized by Pressure–less Sintering[J]. Journal of the European Ceramic Society, 2005, 25 (12): 2701–2706
    [36] Matsubara M., Yamaguchi T., Sakamoto W., et al. Processing and Piezoelectric Properties of Lead–Free (K,Na)(Nb,Ta)O3 Ceramics[J]. Journal of the American Ceramic Society, 2005, 88: 1190–1196
    [37] Ahn Z. S., Schulze W. A., Conventionally Sintered (K0.5Na0.5)NbO3 with Barium Additions[J]. Journal of the American Ceramic Society, 1987, 70: 18–21
    [38] Kosec M., Kolar D.. On Activated Sintering and Electrical Properties of (Na,K)NbO3[J]. Materials Research Bulletin, 1975, 10: 335–340
    [39] Guo Y. P., Kakimoto K., Ohsato H.. Dielectric and Piezoelectric Properties of Lead–free (K0.5Na0.5)NbO3–SrTiO3 ceramics[J]. Solid State Communications, 2004, 129: 279–284
    [40] Dawson W. J.. Hydrothermal Synthesis of Advanced Ceramic Powders[J]. Ceramic Bulletin, 1988, 67 (10): 1673–1678
    [41] 李传山, 沈建兴, 张雷等. PZT压电厚膜的研究现状与进展[J]. 硅酸盐通报, 2006, 25(5): 103–107
    [42] 沈建兴, 李传山, 张雷等. 烧结工艺对 PMS–PNN–PZT 压电厚膜材料性能的影响[J]. 压电与声光, 2008 30 (2): 193–195
    [43] Anderson K. R., Groza J. R., Fendorf M., et al. Surface Oxide Debonding in Field Assisted Powder Sintering[J]. Materials Science and Engineering: A, 1999, 270 (2): 278–282
    [44] Mamoru O.. Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS) [J]. Materials Science and Engineering A, 2000, 287 (2): 183–188
    [45] 张良莹,姚熹. 电介质物理[M]. 北京:高等教育出版社, 1990: 355–360
    [46] Saito Y., Takao H., Tani T., et al. Lead–free piezoceramics [J]. Nature, 2004, 432: 84–87
    [47] Guo Y. P., Kakimoto K., Ohsato H., Structure and Electrical Properties of Lead–free (Na0.5K0.5)NbO3–BaTiO3 Ceramics[J]. Japanese Journal of AppliedPhysics, 2004, (43): 6662–6666
    [48] Chang R.C., Chu S.Y., Lin Y.F., et al. The Effects of Sintering Temperature on the Properties of (Na0.5K0.5)NbO3–CaTiO3 Based Lead–free Ceramics[J]. Sensors and Actuators A, 2007, 138: 355–360
    [49] Du H. L., Tang F.S., Liu D. J., et al. The Microstructure and Ferroelectric Properties of (K0.5Na0.5)NbO3–LiNbO3 Lead–free Piezoelectric Ceramics[J]. Materials Science and Engineering: B, 2007,136: 165–169
    [50] Guo Y. P., Kakimoto K., Ohsato H., (Na0.5K0.5)NbO3–LiTaO3 Lead–free Piezoelectric Ceramics[J]. Materials Letters, 2005, 59: 241–244
    [51] Yang Z.P., Chang Y.F., Liu B., et al. Effects of Composition on Phase Structure, Microstructure and Electrical Properties of (K0.5Na0.5)NbO3–LiSbO3 Ceramics[J]. Materials Science and Engineering: A , 2006, 432: 292–298
    [52] Guo Y. P., Kakimoto K., Ohsato H.. Phase Transitional Behavior and Piezoelectric Properties of Na0.5K0.5NbO3–LiNbO3 ceramics[J]. Applied Physics Letters, 2004, 85: 4121–4123
    [53] 赵鸣. PMS–PZN–PZT 基压电陶瓷结构及性能研究[D]. 西安: 西北工业大学, 2004
    [54] Jaeger R. E., Egerton L.. Hot Pressing of Potassium–Sodium Niobates[J]. Journal of the American Ceramic Society, 1962, 45 (5): 209–213
    [55] Zhang B. P., Zhang L. M., Li J. F., et al. SPS sintering of NaNbO3–KNbO3 piezoelectric ceramics[J]. Materials Science Forum, 2004, 475–479: 1165–1166
    [56] 张利民, 张波萍, 李敬锋等. (Na0.5K0.5)NbO3 压电陶瓷放电等离子烧结的制备工艺[J]. 稀有金属材料与工程, 2005, 34 (1): 994–997
    [57] Li J. F., Wang K., Zhang B. P., et al. Ferroelectric and Piezoelectric Properties of fine–grained (Na0.5K0.5)NbO3 lead–free piezoelectric ceramics prepared by spark plasma sintering [J]. Journal of the American Ceramic Society, 2006, 89(2): 706–709
    [58] Egerton L., Dillon D., Piezoelectric and Dielectric Properties of Ceramics in the system Potassium–Sodium Niobate [J]. Journal of the American Ceramic Society, 1959, 42 (9): 438–442
    [59] Narayana S.. Piezoelectric (NaK)NbO3 ceramics for ultrasonic delay line applications[J]. Ferroelectrics, 1994, 154: 171–176
    [60] Birol H., Damjanovic D., Setter N.. Preparation and Characterization of (K0.5Na0.5)NbO3 ceramics[J]. Journal of the European Ceramic Society, 2006, 26: 861–866
    [61] Senda T., Bradt R.C., Grain Growth in Sintered ZnO and ZnO–Bi2O3 ceramics[J]. Journal of the American Ceramic Society, 1990, 73: 106–114
    [62] Cho K., Park H., Ahn C.. Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 Ceramics[J]. Journal of the American Ceramic Society, 2007, 90: 1946–1949
    [63] 高濂, 宫本大树. 放电等离子烧结技术[J]. 无机材料学报, 1997, 12 (2): 129–133
    [64] Jeager. R. E., Egerton L.. Hot pressing of potassium–sodium niobate[J]. Journal of the American Ceramic Society, 1962, 45 (5): 208–213
    [65] Wang R. P., Xie R. J., Sekiya T., et al. Piezoelectric properties of spark–plasma–sintered (Na0.5K0.5)NbO3–PbTiO3 ceramics[J]. Japanese Journal of Applied Physics, 2002, 41: 7119–7122
    [66] Ichiki M., Zhang L. et al. Electrical properties of piezoelectric sodium–potassium niobate[J]. Journal of the European Ceramic Society, 2004, 24:1693–1697
    [67] Saito Y., Alkali Metal–Containing Niobate–Based Piezoelectric Material Composition and a Method for Producing the Same. United States Patent, Patent No: US638725B1, 2000.5.14
    [68] 胡晓萍, 刘晓东, 曾敏等. 铜掺杂对(Na0.5K0.5)NbO3 无铅压电陶瓷性能的影响[J]. 陶瓷学报, 2005, 26 (4): 235–239
    [69] Yang C., Wu L. Wu T.. Effect of CuO on the sintering and dielectric characteristics of (Ba1–xSrx)(Ti0.9Zr0.1)O3 ceramics. Journal of materials science[J]. 1992, 27 (24): 6573–6578
    [70] 刘智恩. 材料科学基础[M]. 西安:西北工业大学出版社, 2000
    [71] Li E. Z., Hirofumi K., Satoshi W., et al. Influence of CuO on the Structure and Piezoelectric Properties of the Alkaline Niobate–Based Lead–Free Ceramics[J]. Journal of the American Ceramic Society, 2007,90 (6): 1787–1791
    [72] Yang C F, Wu L, Wu T S. Effect of CuO on the sintering and dielectric characteristics of (Ba1–xSrx)(Ti0.9Zr0.1)O3 ceramics. Journal of Materials Science, 1992, 27: 6573–6578
    [73] Kim D W, Park B, Chung J H et al. Mixture behavior and microwave dielectric properties in the low–fired TiO2–CuO system. Japanese Journal of Applied Physics, 2000, 39: 2696–2700
    [74] 许煜寰. 铁电与压电材料[M]. 北京:科学出版社, 1978.
    [75] Fan H. Q., Kim H. E.. Effect of Lead Content on the Structure and Electrical Properties of Pb(Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5O3 Ceramics[J]. Journal of theAmerican Ceramic Society, 2001, 84 (3): 636–638
    [76] 李标荣, 王筱珍, 张绪礼. 无机电介质[M]. 武汉: 华中理工大学出版社, 1995:114–138
    [77] Masafumi K, Yoshio T, Atsushi M, et al. Effects of MnO2 addition on piezoelectric and ferroelectric properties of PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 ceramics [J]. Journal of the Ceramic Society of Japan, 2000, 108 (7): 633–637
    [78] 候育东. 高性能压电变压器用多元系陶瓷的制备和性能研究[D]. 西安: 西北工业大学, 2002.
    [79] 张凤鸣. 陶瓷添加剂 MnO2, Fe2O3, Li2CO3的热分析. 压电与声光, 1998, 20 (5): 358–360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700