用户名: 密码: 验证码:
超深超大基坑回弹变形计算方法的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程和城市地下空间开发利用,超深超大基坑工程越来越多。随着基坑开挖深度加大,基坑开挖中的回弹变形在沉降中所占的比例亦越高,如何准确预估基坑开挖回弹变形成为亟待解决的问题。目前回弹变形研究主要以工程实测结合室内土工试验成果分析预测基坑开挖回弹变形量与再压缩变形量。本文的研究以室内压缩回弹试验为基础,通过大量试验数据分析了土体卸荷比—回弹模量、卸荷比—回弹比率、卸荷比—回弹率之间的关系及不同土性土样回弹变形的差异;通过室内基坑开挖模型试验,探究新的回弹变形观测方法,对回弹变形在基底处及基底以下土体中的分布规律进行了分析研究,得出回弹变形基本规律;通过原位载荷试验,研究了土体在原位状态下卸荷回弹变形基本规律;在室内模型试验测试方法基础上加以改进后在现场实测中进行应用,一方面验证其在实际工程中的适用性,另一方面对实际工程条件下的回弹变形规律进行研究;结合压缩回弹试验、基坑开挖模型试验、现场实测试验成果,对回弹变形计算方法进行研究,探索新的计算方法。通过大量试验与数值分析,得出一些具有参考价值和实用意义的结论:
     1.通过室内压缩回弹试验,得到土体回弹变形基本规律,土体的回弹变形与固结压力、卸荷比、土性密切相关。
     (1)土样卸荷回弹过程中,当卸荷比R<0.4时,产生的回弹变形不到总回弹变形量的10%;当卸荷比增大至0.8时,已完成的回弹变形约占总回弹变形量的40%;而当卸荷比介于0.8-1.0时,发生的回弹量约占总回弹变形量的60%,这一阶段土体卸荷量较大,产生的回弹变形在总回弹变形中所占比例最高,处于此卸荷比范围内的土体是回弹变形发展最为强烈的区域,这一阶段也是回弹变形发展最快的阶段。
     (2)土样再压缩过程中,当再加荷量为卸荷量的20%时,土样再压缩变形量已接近回弹变形量的40%-60%;之后土样再压缩变形量增长速率降低,当再加荷量为卸荷量40%时,土样再压缩变形量为回弹变形量的70%左右;当再加荷量为卸荷量的60%时,土样产生的再压缩变形量接近回弹变形量的90%。在土样再压缩过程中,再加荷初始阶段再压缩变形增长速率较大,之后增长速率随着加荷量的增加反而逐渐降低。当加荷量为卸荷量的80%时,再压缩变形量与回弹变量大致相等,当再加荷量与卸荷量相等时,再压缩变形量约为回弹变形量的1.2倍。
     (3)在相同固结压力下,不同土性土样的回弹率存在明显差异。在相同固结压力下,淤泥及淤泥质土的最终回弹率最大,粘土和粉质粘土次之,砂土的最终回弹率最小。土体回弹变形具有一定滞后性,其滞后性与固结压力、卸荷比、土性密切相关。在相同固结压力下,随着时间的发展,淤泥及淤泥质土比粘性土、砂土表现出更为明显的回弹滞后性。土性也是影响土体回弹变形的主要因素之一。
     (4)土体回弹变形是随着卸荷量逐渐增加土体回弹模量逐渐减小的过程。
     2.刚性变形深标在模型试验回弹变形观测中取得良好效果,基坑工程空间效应对回弹变形的影响显著。
     (1)基底以下同一深度处土体回弹变形沿基坑宽度的分布形状类似倒扣的“锅底形”,基坑中心点处最大,越靠近基坑边缘其回弹变形量越小。
     (2)在模型试验中,在基底以下约0.57倍开挖深度处土体的回弹变形约占总回弹变形量的35%,在基底以下约一倍开挖深度处土体的回弹变形约为基底处回弹变形量的20%,可见在一倍开挖深度范围内回弹变形沿深度的衰减最快,这也是回弹变形发展最为剧烈的区域。在基底中心点下1.86倍开挖深度处土体的回弹变形约为基底处回弹变形的10%,该深度以下的土体回弹变形已不明显。
     (3)当填土开始阶段,即再加荷荷载较小时,土体已产生明显的再压缩变形,当加荷量为开挖卸荷量的20%时,各点所产生的沉降已超过回弹变形量的40%,当再加荷至卸荷量的80%左右时,回弹变形被完全压缩。
     3.通过工程实测,证明刚性变形深标对测试基底下一定深度处土体回弹变形具有实用性。
     (1)实测结果表明回弹变形影响深度不仅与基坑开挖深度、基坑形状与尺寸有关,还与基底下一定深度范围内土层土性密切相关。在确定回弹变形影响深度时,基底以下土层工程地质状况也是关键因素之一。
     (2)在基底处采用回弹标志进行回弹变形的观测准确性较高,对于基底下一定深度处土体回弹变形的观测,采用刚性变形深标进行观测较为有利,两种方法结合使用对于研究基底处及其以下一定深度处的回弹变形较为合理。
     4.结合试验成果,充分利用土工试验中回弹模量与卸荷比之间的密切关系,针对现有回弹变形计算方法中确定回弹模量的方法加以改进,得到了预估基底开挖回弹变形的简化方法与数值计算方法,简化方法中没有考虑基坑开挖过程中开挖面以下土体剪应力的变化,更适于预估基坑中心点处回弹变形;而数值计算方法是通过调整建模计算过程,将土工试验成果应用于回弹变形计算,最终求得良好的回弹变形分布规律,不仅基坑中心点处,对于回弹变形在基坑内的分布规律也取得良好计算结果。
     数值方法计算回弹变形要点为:
     (1)根据工程地质条件,取样后针对土样埋深做相应固结压力下的压缩回弹试验,得到其卸荷比—回弹模量关系曲线,进而得到其相应表达式;
     (2)根据工程实际状况进行数值计算,得其相应开挖步骤下的卸荷应力场,借助竖向应力的卸荷比这一参数,确定开挖面下各点土体卸荷状态,代入相应的卸荷比—回弹模量表达式取得其相应开挖工况下的回弹模量;
     (3)重新采用与第二步相同工程条件下的数值计算过程,在每步开挖前将由土工试验得到的回弹模量赋予相应的单元体,之后进行开挖计算,求得此步开挖工况下土体回弹变形增量;
     (4)各开挖工况下回弹变形增量累加即得基坑开挖最终回弹变形量。
     结合以上主要结论,本文创新点如下:
     1.提出回弹比率的概念,依据卸荷比—回弹比率与卸荷比—回弹模量变化关系,将土体卸荷回弹变形分为三个阶段:当卸荷比R<0.4时,卸荷量较小,此时土体回弹变形少于总回弹变形量的10%;随着土体卸荷量增大,当卸荷比增大至0.8时,土体回弹变形约占总回弹变形量的40%;当卸荷比介于0.8-1.0时为第三阶段,土体产生的回弹变形约占总回弹变形量的60%。
     2.粉质粘土、粘土、砂土、淤泥及淤泥质土等在相同固结压力下,各种土的最终回弹率,淤泥及淤泥质土最大,粘土和粉质粘土次之,砂土最小。
     3.土体回弹变形具有一定滞后性,且与土体土性有关。在相同固结压力下,淤泥及淤泥质土比粘性土、砂土表现出更为明显的回弹变形滞后性。
     4.模型试验得出在基底以下约一倍开挖深度处土体的回弹变形约为基底处回弹变形量的20%,可见在一倍开挖深度范围内回弹变形沿深度的衰减最快;在基底中心点下1.86倍开挖深度处土体的回弹变形约为基底处回弹变形量的10%,该深度以下的土体回弹变形已不明显。
     5.提出回弹变形工程实测的方法。基底处土体回弹变形采用埋设回弹标志,开挖后测量其回弹量;基底以下某一深度处土体的回弹变形观测采用设置刚性变形深标的方法更为合理。两种方法结合使用对于研究基底处及其以下一定深度处的回弹变形较为合理。
     6.提出结合室内土工试验成果的回弹变形数值计算方法。
With the development of urbanization and underground space utilization, the scale of foundation pit become deeper and larger, in such case, rebound deformation of foundation pit excavation take a large proportion in the settlement, so sound rebound deformation becomes a urgent problem need to be solved. Recently, the researching methods on rebound deformation are mainly depended on field measurement, combined with the results from soil tests to forecast the rebound and recompression deformation. In this paper, compression and rebound test is performed, the relation between i) unloading ratio with resilience modulus; ii) unloading ratio with rebound proportion; iii) unloading ratio with rebound ratio; iv) the difference of rebound deformation for different soils are analyzed and discussed. Laboratory foundation pit excavation model experiment is carried out, new measuring method is introduced to analyze the distribution law of rebound deformation on the foundation base or below it, the basic rules of rebound deformation are received; Through in situ bearing test, the rebound deformation law of soil under in situ stress is analyzed. Based on measurement used in the laboratory model test, an improving measuring method is applied in field measurement to verify its applicability in practice, at the same time, the law of rebound deformation in engineering is investigated; Combination the achievements from compression and rebound test, foundation pit excavation modeling test and field measurement test, a new calculating method of rebound deformation is derived. Through the tests and numerical analysis, some primary conclusions can be drawn:
     1. Through the compression and rebound test, the basic law of rebound deformation is derived; the rebound deformation of soil is closely related to the consolidation pressure; unloading ratio and the characteristic of soil.
     (1) In the process of unloading:i) as the unloading ratio is less than 0.4, the rebound deformation are less than 10% of the total rebound deformation; ii) as the unloading ratio increase to 0.8, the rebound deformation is about 40% of the total ones; iii) as the unloading ratio is between 0.8 and 1.0, the rebound deformation is about 60% of the total ones; In this phase, the unloading capacity is much higher and the rebound deformation take a large proportion in the total deformation. The evolution of soil rebound deformation is much more severe within the unloading ratio between 0.8 and 1.0, in which the fastest development of rebound deformation can be found as well.
     (2) In the process of recompression:i) as the reloading is 20% of unloading capacity, the recompression deformation is about 40% or 60% of rebound ones; and then the increase rate of recompression deformation reduced; ii) as the reloading is 40% of unloading capacity, the recompression deformation is about 70% of rebound ones; iii) as the reloading capacity is 60% of unloading capacity, the recompression deformation is 90% of rebound ones. In the beginning of reloading, the rate of recompression deformation increased, and then the increase rate of recompression formation reduced as the reloading capacity increase; iv) as the reloading capacity reached 80% of unloading capacity, the recompression is roughly equal to the rebound deformation; v) as the reloading capacity is equal with the unloading capacity, the recompression is 1.2 times to the rebound deformation.
     (3) Under the same consolidation pressure, the rebound ratio of different soils is obviously different. The mucky soil is of maximum final rebound ratio, the clay and silty clay is lower, and the minimum rebound ratio can be found in sandy soil. The rebound deformation has the character of hysteresis, which is closely related to the consolidation pressure, unloading ratio and soil properties. Under the same consolidation pressure, the hysteresis of mucky soil is more obvious than clay and sandy soil with the time. The property of soil is the main factor influenced the rebound deformation as well.
     (4) The rebound deformation of soil is the process of that the modulus of resilience become smaller as the unloading increased.
     2. Deep deformation gauge is applied in laboratory model test to measure rebound deformation, the reasonable results are shown. The space effect of foundation pit has obvious influence on rebound deformation.
     (1) In the same depth, the distribution shape of rebound deformation along the width of foundation base is like the bottom of the pot upturned, the closer to the edge of the foundation pit, the smaller rebound deformation was found, the maximum rebound deformation is found in center points.
     (2) In the model test, the rebound deformation, in the one time of excavation depth, is about 20% of that in foundation base, it indicates the rebound deformation decrease fastest in this field. The rebound deformation, in the depth about 1.86 time of excavation depth, is about 10% of that in foundation base; however, the rebound deformation is not obvious below this level of depth.
     (3) In the beginning of filling, although the reloading is lower, recompression deformation is obvious; i) as the reloading capacity is about 20% of unloading capacity in excavation, the settlement of each points is more than 40% of rebound deformation; ii) as the reloading capacity is about 80% of unloading capacity in excavation, the rebound deformation has been compressed completely, some settlement occurred.
     3. Through field test, the deep deformation gauge has the advantages in the measurement of rebound deformation for deep soils under the foundation base.
     (1) The results certify that the rebound deformation is closely related to the excavation depth; the shape and scale of foundation pit; the properties of soil in a certain depth below foundation base. The geology status of soil under the foundation base is also the important factor when definition the influence depth of rebound deformation.
     (2) In the foundation base, measuring the rebound deformation by pre-buried rebound equipment before excavation is accurate; however, measuring the deformation of the soil in certain depth under foundation base, rigid deep deformation gauge is more favorable, so the combination of the methods is reasonable to measuring the rebound deformation of soil in any depth.
     4. Combination with results of tests, full use of the close relation between unloading ratio and modulus of resilience, the method used to define modulus of resilience in existing calculating method is improved; the calculating approach for prediction rebound deformation in foundation excavation is derived. In this simple calculating method, the shear stress of soil under the excavation base during the excavation is ignored, so this method is more suitable for calculating the rebound deformation in centre points of foundation pit. However, in the numerical calculating method, the results of soil test are applied in the calculating method by adjusting the process of modeling and calculating, reasonable distribution of rebound deformation was found, which is not only for the points in the center of foundation pit, but also for other points within the pit.
     The key points of numerical calculation for rebound deformation are:
     (1) According to geological conditions, compression and rebound test under different consolidation pressure are performed, the curve of unloading ratio versus modulus of resilience can be drawn, and the corresponding formula is derived.
     (2) According to engineering practice, numerical computation is carried out, the stress field of unloading in different excavation procedure is described, unloading state of each points under the excavation surface is described by using the parameter of vertical stress unloading ratio, and then substituted into the formula of unloading ratio-modulus of resilience, the modulus of resilience in the corresponding excavation status can be determined.
     (3) The procedure of numerical computation is the same with second step, the modulus of resilience derived from the soil test is given to the corresponding unit before each step excavation, then computation performed, the increment of rebound deformation in each excavation step is obtained.
     (4) Cumulation the rebound deformation of each excavation step, the final rebound deformation is obtained.
     According to the above conclusions, the innovation of this paper as follows:
     1. The concept of rebound proportion proposed, according to the relation of unloading ratio-rebound proportion and unloading ratio-modulus of resilience, the development of rebound deformation can be divided into three phases:i) as the unloading ratio is less than 0.4, the rebound deformation is about 10% of the total rebound deformation; ii) as the unloading ratio increased to 0.8, the rebound deformation is about 40% of the total rebound deformation; iii) as the unloading ratio is between 0.8 and 1.0, the rebound deformation is about 60% of the total rebound deformation.
     2. Under the same consolidation pressure, the mucky soil is of maximum final rebound ratio, the clay and silty clay is lower, and the minimum rebound ratio can be found in sandy soil.
     3. The rebound deformation has the character of hysteresis, it is closely related to the soil properties. Under the same consolidation pressure, the hysteresis of mucky soil is much more obvious than clay and sandy soil.
     4. In the model test, the rebound deformation, in the depth about one time of excavation depth, is about 20% of the rebound deformation in foundation base, it indicates that the decrease of rebound deformation is fastest in the depth about one time of excavation depth under foundation base; the rebound deformation, in the depth about 1.86 time of excavation depth under foundation base, is about 10% of the rebound deformation in foundation base; the rebound deformation is not obvious below this level of depth.
     5. The method of measuring rebound deformation proposed, in the foundation base, measuring the rebound deformation after excavation by pre-buried rebound equipment before excavation is accurate; in certain depth under foundation base, the deep deformation gauge used to measure the rebound deformation is seriously reasonable; so the combination of the methods is reasonable to measuring the rebound deformation of soil in any depth.
     6. Combination the achievements of compression and rebound test, numerical computation method for calculating rebound deformation introduced.
引文
[1]程玉梅.基坑坑底土体侧向应力状态变化的研究[J].低温建筑技术,1999,Vol.4,39-41
    [2]程玉梅.卸荷粘性土体的静止土压力系数[J].中国港湾建设,2000,Vol.4:32-35
    [3]程玉梅,周明芳,刘广博.卸荷土体的静止土压力系数[J].佳木斯大学学报,2006,Vol.24(2):312-314
    [4]程玉梅,韩炜洁,周明芳,刘广博.土体加、卸载土工参数的区别[J].佳木斯大学学报,2006,Vol.24(3):449-450
    [5]孙秀竹.卸荷土体性质的试验研究和工程应用[J].中国港湾建设,2004,Vol.5:41-43
    [6]程玉梅,史葆永,史红雁.54卸荷工程计算指标应用的探讨[J].勘查科学技术,2001,Vol.2:21-24
    [7]周健、王浩、蔡宏英,卸载对软土伸长强度的影响分析[J].岩土工程学报,2002,Vol.30(11):1285-1289
    [8]师旭超,汪稔,韩阳.卸荷作用下淤泥变形规律的试验研究[J].岩土力学,2004,Vol25.(8):1259-1262
    [9]刘明,黄茂松,马金荣.卸荷对高应力下粘土力学性质的影响[J].工业建筑,2005,Vol.35(8):71-74
    [10]何世秀,朱志政,杨雪强.基坑土体侧向卸荷真三轴试验研究.岩土力学,2005,Vol.26(6):869-872
    [11]张云军,宰金珉,王旭东,戚科俊.基坑开挖过程中土体受力特性问题的分析与研究[J].建筑技术,2005,Vol.36(12):888-890
    [12]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报,1996,18(6):18-23
    [13]何世秀,韩高升,庄心善,吴香国.基坑开挖卸荷土体变形的试验研究[J].岩土力学,2003,Vol.24(1),17-20
    [14]周敦云.基坑开挖卸载土体变形的试验研究[J].山东建筑工程学院学报,2003,Vol.18(3):15-18
    [15]Duncan.J.M.Chang.C.Y(1970)Nonlinear analysis of stress and strain in soils.J.Soil Mechanics of Foundation,637-659,ASCE
    [16]S.K.Bose,N.N.som,parametric Study of a braced Cut by Finite Element method.computer and geotechnics.Vol.22.No.2,pp.91-107,1998
    [17]Whittle.A.J.HashashY.M,Whitman.R.V.(1993)Analysis of Deep Excavation in BostonJournal of Geotechnical Engineering.1991.69-90. ASCE
    [18]Finno.R.J.Harahap,I.S,Finite Elements Analysis of HDR-4excavation.Journal of Geotechnical Engineering 1991:1590-1609,ASCE
    [19]Chiou.D.C.Ou.C.Y,Three-dimensional finite element analysis of deep excavations.Journal of Geotechnical Engineering 1996:337-345
    [20]K.M.LEE.R.K.ROWE,An analysis for three-dimensional ground movements:the Thunder Bay tunnel,Canada Geotech,1991.J.28:25-41
    [21]R.K.ROWE,K.M.LEE,Anevaluation of simplified techniques for estimating three Dimensional undrained ground movements due to tunnedling in soft soils. Canada Geotech.J.29. 39-52 (1992)
    [22]徐方京,侯学渊.基坑回弹性状分析与预估[M].首届全国岩土工程博士学术讨论会论文集,1990
    [23]夏明耀.多支撑地下连续墙入土深度的模拟试验研究[J].大坝观测与土工测试,1984
    [24]宰金珉.开挖回弹量预测的简化方法[J].南京建筑工程学院学报,1997:23-27
    [25]潘林有,胡中雄.深基坑卸荷回弹问题的研究[J].岩土工程学报.2002,24(1):101-104
    [26]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移的预测方法[J].同济大学学报,2001,29(5)
    [27]刘国彬,黄院雄,侯学渊.基坑回弹的实用计算方法[J].土木工程学报,2000,33(4):61-67
    [28]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报,1996,18(6):18-23
    [29]刘国彬,侯学渊.软土基坑隆起变形的残余应力法[J].地下工程与隧道,1996(2)
    [30]张国霞,张乃瑞.病房楼工程基坑回弹和地基沉降的观测分析[J].土木工程学报,1980(1)
    [31]张乃瑞,张凤林.北京部分高层建筑基坑回弹与整体变形分析[J].高层建筑地下结构及基坑支护,1994(8):248-254
    [32]沈滨,张莉.对大面积深基坑开挖回弹的分析与预估[J].高层建筑地下结构及基坑支护,1994(8):255-262
    [33]连镇营,韩国城,姚仰平.基于SMP准则的改进剑桥模型及其在基坑工程中的应用[J].大连理工大学学报,2002,42(1):93-97
    [34]陈永福.深基坑开挖回弹计算的探讨[M].首届全国岩土工程博士学术讨论会论文集,1990
    [35]汪中卫,刘国彬.基于卸荷及变形的主动土压力计算[J].地下空间,2003(3):22-27
    [36]李玉岐,魏婕,谢康和.负孔压消散对坑底的回弹影响研究[J].长江科学院院报,2005,22(4)
    [37]李玉岐,周健,谢康和.非稳定渗流引起的基坑坑底回弹变形计算[J].岩石力学与工程学报,2007,Vol.26:2953-2958
    [38]韩玉明.北京平原地区饱和粘性土回弹及再压缩模量的试验研究[J].工程勘察,1996,Vol.2:10-14
    [39]郝玉龙,古力.超载预压地基卸载后吸水固结及回弹变形的研究[J].岩石力学与工程学报,2005,Vol.24(5):883-888
    [40]庞贵磊,刘庆华,刘国彬,汤永净.分条开挖时土条宽度影响基坑隆起的研究[J].建筑技术,2004.Vol.35(12):931-933
    [41]胡其志,何世秀,杨雪强.基坑开挖基底隆起的估算[J].土工基础,2001,Vol.15(2):29-30
    [42]郑列威,胡蒙达.长条形深基坑开挖引起基坑底土体的回弹解析理论计算[J].建筑施工,2004,Vol.26(3):196-199
    [43]钱力航.高层建筑箱形基础与筏形基础的设计计算[M].北京:中国建筑工业出版社,2003
    [44]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997
    [45]俞剑霖,龚晓南.基坑工程变形性状研究[J].土木工程学报,2002,35(8):86-90
    [46]赵锡宏,陈志明,胡中雄.高层建筑深基坑围护工程实践与分析[M].上海:同济大学出版社,1996
    [47]潘林有,程玉梅,胡中雄.卸荷状态下粘性土强度条特性试验研究[J].岩土力学,2001,Vol.22(4):490-493
    [48]潘林有,胡中雄.深基坑卸荷回弹问题的研究[J].岩土工程学报.2002,24(1):101-104
    [49]秦爱芳.软土卸荷时土体强度变化试验研究[J].建筑结构,2002,Vol.32(7):29-31
    [50]秦爱芳,刘绍峰,胡中雄.基坑软土强度变化特征及坑底施工安全控制[J].地下空间,2003,Vol.23(1):40-44
    [51]孙秀竹.应力场的变化与卸荷影响深度的关系[J].勘察科学技术,2004(4):12-15
    [52]刘广博,程玉梅.应力水平和土体卸载影响深度的关系[J].西部探矿工程,2006(6):1-3
    [53]秦爱芳,胡中雄,彭世娟.上海软土地区受卸荷影响的基坑工程被动区土体加固深度研究[J].岩土工程学报,2008,Vol.30(6):935-940
    [54]邓指军,贾坚.地铁车站深基坑卸荷回弹影响深度的试验[J].城市轨道交通研究,2008(3):52-55
    [56]张耀东,龚晓南.软土基坑抗隆起稳定计算的改进[J].岩土工程学报,2006,Vol.28:1378-1382
    [57]俞建林,龚晓南.基坑工程变形性状研究[J].土木工程学报,2002,Vol.35(4):86-90
    [58]师晓权,杨其新.软土地区深基坑回弹量影响因素分析[J].探讨与分析,2006,Vol.10(6):40-42
    [59]陆培毅,余建星,肖健.深基坑回弹的空间性状研究[J].天津大学学报,2006,Vol.39(3):301-305
    [60]肖健.考虑工程桩存在的深基坑回弹空间效应有限元分析.硕士学位论文,天津:天津大学,2004
    [61]刘国彬,贾付波.基坑回弹时间效应的试验研究[J].岩石力学与工程学报,2007,Vol26:3040-3044
    [62]刘畅,郑刚,张书鸳.逆做法施工坑底回弹对支护结构的影响[J].天津大学学报,2007,Vol.40 (8):995-1001
    [63]李辉,曾月进,胡兴福,朱万林,曾明顺.土体卸荷回弹变形的试验研究[J].四川建筑科学研究,2008,Vol.34(3):111-114
    [64]刘国彬,黄院雄,侯学渊.基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践[J].岩石力学与工程学报,2001,Vol.20(2):202-207
    [65]梅国雄,周峰,黄广龙,宰金珉.补偿基坑沉降机理分析[J].岩土工程学报,2006,Vol.28:1398-1400
    [66]李伟强,罗文林.大面积深基坑开挖对在建公寓楼的影响分析[J].岩土工程学报,2006,Vol.28:1861-1864
    [67]李广信.高等土力学[M].北京:清华大学出版社,2004
    [68]朱红波.L形高层建筑下大底盘框架厚筏基础反力及变形特征研究[D].中国建筑科学研究院,2007
    [69]周圣斌.圆形和方形荷载作用下大底盘框架厚筏基础反力及变形特征研究[D].中国建筑科学研究院,2008
    [70]建筑变形测量规程JGJ/T8-97[S].北京:中国建筑工业出版社,1998
    [71]滕延京.建筑地基基础设计规范理解与应用[M].北京:中国建筑工业出版社,2004
    [72]建筑地基基础设计规范GB50007-2002[S].北京:中国建筑工业出版社,2002
    [73]高层建筑箱形与筏形基础设计规范JGJ6-99[S].北京:中国建筑工业出版社,1999
    [74]蔡伟铭.水泥土挡土墙结构的水平位移计算[M].软土地基的理论与实践.北京:中国建筑工业出版社,1992
    [75]林鹏.软土基坑开挖中考虑被动区加固的工程实践[J].建筑技术开发,2002,29(3):17-23
    [76]陈兴年,刘国彬,王忠选.关于软土地基加固的一点看法[J].地下空间,2003,23(1):79-82
    [77]秦爱芳,李永圃,陈有亮.上海地区基坑工程中的注浆加固研究[J].土木工程学报,2000,33(1):69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700