用户名: 密码: 验证码:
厌氧发酵技术处理餐厨垃圾产沼气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球人口的增长,餐厨垃圾的排放量逐渐增大,大量的餐厨垃圾一方面给世界各国带来了严重的环境污染,另一方面导致了大量生物质能的浪费。传统的餐厨垃圾处理方法(如焚烧、填埋等)虽然能将餐厨垃圾处理,但会产生二次污染,不利于环境保护。作为一种绿色环保的处理工艺,厌氧发酵技术不但可以通过微生物将餐厨垃圾降解,还可以回收餐厨垃圾中的生物质能并将其转化为能源气体——甲烷。本文进行了厌氧发酵技术处理餐厨垃圾产沼气的研究,在优化小试发酵的基础上进行了中试水平的实验;采用了餐厨垃圾固液分离双发酵工艺,克服了高浓度盐分和油脂对厌氧发酵的抑制;将餐厨垃圾与牛粪进行混合发酵,使原料中的营养元素更为均衡,提高了厌氧发酵效率。主要工作如下:
     1、由于批式发酵对餐厨垃圾的处理能力较低,本文在批式发酵的基础上,重点考察了序批式厌氧发酵,优化了序批式发酵的操作条件,并建立了序批式发酵过程中一个周期内的甲烷产气模型。批式发酵结果表明,厌氧发酵最佳的总固体(TS)浓度为5.6%,对应的沼气产率可达888mL/g-VS。序批式发酵的最佳进料负荷和保留时间分别为8g-VS/L和2d,对应的甲烷产率和化学需氧量(COD)去除率分别为436mL/g-VS和93.3%。在序批式发酵的一个进料周期内,甲烷的产气规律符合两个模型:有机酸积累时,为零级模型;有机酸无积累时,为一级模型。另外,研究了餐厨垃圾中各主要组分(淀粉、蛋白质和脂肪)单独厌氧发酵时的产气规律,建立了淀粉、蛋白质和脂肪的产气模型。研究结果表明,淀粉单独发酵时,产气规律符合slogistic模型,第1d为水解阶段,为限速步骤,沼气主要在第2d内产生,平均沼气产率为448mL/g-VS。蛋白质和脂肪单独发酵时的产气规律均符合零级模型,蛋白质的代谢速率较快,发酵在1d内完成;而脂肪的代谢速率较慢,发酵需要14d完成。混合发酵时,脂肪对淀粉和蛋白质的降解有抑制作用;在无脂肪存在的条件下,淀粉和蛋白质混合发酵的沼气产率比模型预测值高。
     2、为了避免高浓度盐分和油脂对厌氧发酵的影响,研究了双发酵系统处理餐厨垃圾的工艺,即将餐厨垃圾的固液分离分别发酵,同时将油脂去除。批式发酵实验表明,固液分离后的固相和液相的产气速率和甲烷产率均比原餐厨的产气速率高,固相、液相和原餐厨对应的甲烷产率分别为643、659和581mL/g-VS。序批式发酵实验结果表明,固相、液相和原餐厨的最佳负荷率分别为9、4、7g-VS/L/d,在此条件下,固相、液相和原餐厨的甲烷产率分别为540、390、405mL/g-VS。基于1kg-VS原餐厨计,甲烷在双系统和单系统中的总产量分别为405L和460L,这说明甲烷的总产量在固液分离双系统中提高了13.6%。固相中的最佳C/N比、高浓度的微量元素和低浓度的油脂是双系统中沼气产量提高的原因。
     3、为了平衡餐厨垃圾中的营养元素,进一步提高厌氧发酵效率,选用了牛粪作为餐厨垃圾的混合物,考察了餐厨垃圾与牛粪混合发酵性能。批式实验结果表明,当餐厨垃圾与牛粪的比例(FW/CM)为2:1时,厌氧发酵的甲烷产率最高,此配比下的批式发酵实验中,餐厨垃圾负荷为8g-VS/L时,混合发酵比餐厨垃圾单独发酵时的甲烷产率提高了41.1%,对应的甲烷的产率为388mL/g-VS。牛粪的加入提高了系统的缓冲能力,在没有pH调控的情况下,厌氧发酵能够在48g-VS/L的高负荷下稳定运行。利用响应面技术对甲烷产率进行了优化分析,结果表明,当餐厨垃圾的负荷为10g-VS/L/d时,混合体系的甲烷产率提高了55.2%,对应的甲烷产率为317mL/g-VS。较适宜的C/N、牛粪中丰富的微量元素和更强的油脂去除能力是混合发酵中沼气和甲烷产量提高的主要原因。
     4、为了进一步提高厌氧发酵水平,本文对厌氧发酵罐进行了放大,分别考察了20L、30L和300L发酵罐的厌氧发酵。发酵稳定时,20L发酵罐的沼气和甲烷的产率分别为744mL/g-VS和467mL/g-VS,对应废水的COD值在5-6g/L之间,总氮和总硫的含量分别在400mg/L和10mg/L以下。30L发酵罐序批式发酵时的最佳的搅拌转速为100r/min,在此转速下发酵罐内部的大部分发酵液处于流动状态,平均流速为0.082m/s,既可以形成有效的传质,又可以形成致密性较好的颗粒污泥。300L发酵罐最佳的餐厨垃圾负荷为6g-VS/L/d,对应的平均沼气产率和废水COD分别为680mL/g-VS和4g/L。
The discharge of food waste (FW) is increasing due to the populationgrowth of the world. Large amount of FW, on the one hand, has caused severeenvironmental pollution in many countries. On the other hand, lots ofbio-energy in FW was wasted. The traditional disposal methods (e.g., aniamalfeed, incineration and landfill) could not meet the current demand ofenvironmental protection. As a green process, anaerobic digestion (AD) couldnot only dispose large amount of FW effectively, but also transform thebio-energy in organic waste into biogas. Biogas production from AD of FWwas investigated in this present paper. Pilot-scale anaerobic digestion wascarried out based on the operation condition of lab-scale anaerobic digestion.Anaerobic digestion in a dual solid-liquid (ADSL) system was applied toovercome the inhibition from higher concentration of salts and lipids.Moreover, to balance the nutrient elements of FW and enhance AD efficiency,cattle manure (CM) was applied as a co-substrate for AD of food waste. Themain contents are as follows:
     1. To overcome the lower treatment capacity of digester in batch test, research was mainly focused on the semi-continuous AD. The optimumoperation codition and the model for predicting methane production insemi-continuous AD were investigated. Results of batch test indicated that theoptimum TS for AD was5.6%, corresponding to the biogas production of888mL/g-VS. The optimum operation condition for semi-continuous AD was:8g-VS/L organic load and2d retention time. At this condition, the methaneyield and the corresponding COD of effluent were436mL/g-VS and93.3%,respectively. In a cycle of semi-continuous digestion, biogas productionincluded two models: zero-order model with volatile fatty acids (VFA)accumulation, and one-order model with no VFA accumulation. Moreover,biogas production from AD of each component in FW was also investigated.The biogas production of starch, protein and fat was modeled. Results fromAD of starch indicated that the hydrolysis (rate-limiting) step occurred in theinitial one day. Biogas was mainly produced in day2, and the total biogasproduction was448mL/g-VS. Biogas production of starch matched theslogistic model. By contrast, biogas production of both protein and fatmatched zero-order model. Higher biogas production rate was observed in ADof protein while lower rate was obtained in fat. The whole digestion time forprotein and fat were1day and14days, respectively. Results also showed thatinhibition on biogas production could be caused by fat in co-digestion ofstarch, protein and fat. The actual biogas production was higher than thepredicted data in co-digestion of starch and protein.
     2. To avoid the inhibition from both of waste oil and high concentrations ofcationic elements, AD of food waste in a dual solid-liquid (ADSL) systemwas examined in this section. Results from batch test indicated that both ofthe methane production rate and the methane yield in the ADSL system werehigher than that in raw FW (RFW) system. The methane yield of food solidwaste (FSW), food liquid waste (FLW) and RFW were643,659and581mL/g-VS, respectively. In the semi-continuous AD, the optimum organicloading rates (OLR) for FSW, FLW and RFW were9,4and7g-VS/L/d,respectively. The total methane production of RFW and ADSL systems, basedon1kg-VSRFW, were405and460L, respectively, indicating that themethane production increased by13.6%in the ADSL system. The optimumC/N ratio, redistribution of metal element and lower content of waste oil inFSW explain the higher methane production.
     3. To further enchance the performance of AD, anaerobic co-digestion ofFW and cattle manure (CM) was investigated. Results of both batch andsemi-continuous tests indicated that the total methane production is enhancedin co-digestion, with an optimum FW/CM ratio of2. At this condition, thetotal methane production in batch test was enhanced by41.1%, and thecorresponding methane yield was388mL/g-VS. Moreover, high suffercapacity was observed in co-digestion system, allowing higher organicloading rate (OLR), e.g.,48g-VS/L, without pH control. In thesemi-continuous digestion, the total methane production in co-digestion, at the OLR of10g-VSFW/L/d, increased by55.2%, corresponding to themethane yield of317mL/g-VS. The C/N ratio and the higher biodegradationof lipids might be the main reasons for the biogas production improvement.
     4. To assure AD of FW could be carried out in pilot-scale and even inindustrial-scale, pilot-scale AD was investigated in this section. Experimentswere conducted in20L,30L and300L digesters, respectively. The biogasproduction and methane yield of20L digester were744mL/g-VS and467mL/g-VS, respectively. The corresponding COD of effluent was in the rangeof5g/L-6g/L, and the total nitrogen and sulfide in the effluent were below400mg/L and10mg/L, respectively. Results from30L digester indicated thatthe optimum rotational speed of proper was100r/min. At this condition, themean velocity was0.082m/s. Not only effective mass transfer could beobtained in anaerobic digester but also granular anaerobic sludge could beformed. Analysis showed that the optimum OLR for300L pilot-scale digesterwas6g-VS/L/d. The corresponding biogas production and the COD of theeffluent were680mL/g-VS and4g/L, respectively.
引文
[1]吕凡,等.易腐性有机垃圾的产生与处理技术途径比较[J].环境污染治理技术与设备,2003,4(8):46-50
    [2]金建祥,杨春生,肖雪峰.厌氧消化处理餐饮有机垃圾初探[J].盐城工学院学报(自然科学版),2005,18(1):42-44
    [3]乔玮,曾光明,袁兴中,黄国,李建兵.厌氧消化处理城市垃圾多因素研究[J],环境科学与技术,2004,27(2):3-4
    [4]杨占春,陈晓晔,朱建良.利用餐厨垃圾循环序批式厌氧发酵产氢研究[J],生物加工过程,2005,3(4):62-65
    [5] Zhang R H, El-Mashad H M, Hartman K, Wang F Y, Liu G Q, Choate C, Gamble P.Characterization of food waste as feedstock for anaerobic digestion[J]. Bioresour. Technol.,2007,98:929-935.
    [6]伍建军,梁灿钦,林锦权.餐厨垃圾处理技术现状与发展[J].东莞理工学院学报,2012,19(3):68-72
    [7]陈锷,顾向阳.餐厨垃圾处理与资源化技术进展[J].环境研究与监测,2012,3:57-61
    [8]王妮娜,郑立柱.餐厨垃圾资源化处理技术[J].广州环境科学,2011,26(3):20-22
    [9]李荣平,等.餐厨垃圾特性及其厌氧消化性能研究[J].可再生能源,2010,28(1):76-80
    [10]李湘洲.发达国家餐厨垃圾回收利用经验及借鉴[J].环球视角,2012,5(8):40-44
    [11]张丹,张玲.餐厨垃圾现状及处理技术研究[J].科技向导,2012,12:234
    [12]胡新军,等.中国餐厨垃圾处理的现状、问题和对策[J].生态学报,2012,32(14):4575-4584
    [13] J Zennaki B Z, Zaid A, Bentaya K. Anaerobic digestion of cattle with the aquatic used Pistiastratiotes[J]. Cataiers. Agric.,1998,7(4):319-321
    [14] Sharma D K. Studies on availability and utilization of onion storage waste in a ruralhabitat[D]. Delhi India:Centre for Rural Development and Technology, Indian Institute ofTechnology,2002,110-116
    [15]何品晶,等.污水厂污泥低温热化学转化过程机理研究[J].中国环境科学,1998,18(4):39-42
    [16]傅大放,等.污水厂污泥微波处理试验研究[J].中国给水排水,1999,15(1):12-16
    [17]汪洪生.国外污水处理技术进展[J].污染防治技术.1998,11(3):15-19
    [18]王星,等.国内外餐厨垃圾的生物处理及资源化技术进展[J].环境卫生工程,2005,13(2):25-29
    [19]尹军,韩卫泽.日本的污泥处理现状及展望[J].污染防治技术,1995,11(3):9-13
    [20]张庆芳,杨林海,周丹丹.餐厨垃圾废弃物处理技术概述[J].中国沼气,2012,30(1):22-26,37
    [21]徐长勇,等.餐厨垃圾饲料化技术的同源性污染研究[J].环境卫生工程,2011,19(1):9-15
    [22]沈剑山,颜晓英,蒋宏华.餐厨垃圾厌氧消化及综合利用技术[J].云南师范大学学报,2011,31:220-224
    [23]苏州市餐厨垃圾管理办法[J].苏州市人民政府公报,2010,1:10-12
    [24]高志全.个体工商户随意堆放餐厨垃圾最高罚5万[N].东莞日报.2012.9.13(A04)
    [25]华云,等.我国餐厨垃圾处理现状及主要处理技术应用情况[J].城市管理技术,2009,2:60-63
    [26]刘国良,邱旭光.省内首个污泥沼气发电机组并网发电[N].大众网.2008.6.18
    [27]潘文智.大型养殖场沼气工程——以北京德青源沼气工程为例[J].中国工程科学,2011,13(2):40-43
    [28]晓蒙.变废为宝——德青源鸡粪沼气发电项目成功并网[J].中国牧业通讯,2009,9:9
    [29]李澄.江苏省餐厨垃圾资源化处理研究[C].多元与包容——2012中国城市规划年会论文集(07.城市工程规划),2012,1-8
    [30]符征鸽.铁法预处理糖蜜酒精废液沼气发酵工艺的研究[J].中国沼气,1995,13(3):10-13
    [31]顾蕴漩,等.高硫酸盐废水厌氧消化中硫酸盐抑制解除方法的研究[J].中国沼气,1996,14(4):11-16
    [32]闵航.厌氧微生物学[M].杭州:浙江大学出版杜.1993
    [33] Appels L, Baeyens J, Degreve J, Dewil R. Principles and potential of the anaerobic digestionof waste-activated sludge[J]. Prog. Energ. Combust.,2008,34,755-781
    [34] Ramos C, Buitro′n G, Moreno-Andrade I, Chamy R. Effect of the initial total solidsconcentration and initial pH on the bio-hydrogen production from cafeteria food waste [J].Int. J. Hydrogen Energ.,2012,37:13288-13295
    [35] Vavilin V A, Rytova S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobicdegradation of particulate organic matter[J]. Bioresour. Technol.,1996,56:229-237
    [36]祖波,祖建,周富春,汪林.产甲烷菌的生理生化特性[J].环境科学与技术,2008,31(3):5-51
    [37] Liu G Q, Zhang R H, El-Mashad H M, Dong R J. Effect of feed to inoculum ratios on biogasyields of food and green wastes[J]. Bioresour. Technol.,2009,100:5103-5108
    [38] Nagao N, Tajima N, Kawai M, Niwa C, Kurosawa N, Matsuyama T, Yusoff F M, Toda T.Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste[J].Bioresour. Technol.,2012,118:210-218
    [39] Chang J I, Hsu T E. Effects of compositions on food waste composting[J]. Bioresour.Technol.,2008,99(17):8068–8074
    [40] Karthikeyan Z O P, Visvanathan C. Effect of C/N ratio and ammonia-N accumulation in apilot-scale thermophilic dry anaerobic digester[J]. Bioresour.Technol.,2012,113:294–302
    [41] Kumar M, Ou Y L, Lin J G. Co-composting of green waste and food waste at low C/Nratio[J]. Waste Manage.,2010,30:602-609
    [42] Zhu N. Effect of low initial C/N ratio on aerobic composting of swine manure with ricestraw[J]. Bioresour. Technol.,2007,98:9-13
    [43]林代炎,林新坚,杨菁,叶美锋.产甲烷菌在厌氧消化中的应用研究进展[J].福建农业学报,2008,23(1):106-110
    [44] Speece R E. Anaerobic digestion of biomass[M]. USA: Elsevier Applied Science Pub,1987
    [45] Li C L, Fang H H P. Inhibition of heavy metals on fermentative hydrogen production bygranular sludge[J]. Chemosphere,2007,67:668–673
    [46] YU Y. Toxicity assessment of some nitro compounds to acetate enriched methanogens[D].M. S. Thesis Vanderbilt University,1991
    [47] Sung S, Liu T. Ammonia inhibition on thermophilic anaerobic digestion[M]. Chemosphere,2003,53:43–52
    [48]何仕均,王建龙,赵璇.氨氮对厌氧颗粒污泥产甲烷活性的影响[J].清华大学学报(自然科学版),2005,45(9):1294-1296
    [49] Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowastecomponents[J]. Bioresour. Technol.,1999,69:249-254
    [50] Zhang C, Xiao G, Peng L, Su H, Tan T. The anaerobic co-digestion of food waste and cattlemanure[J]. Bioresour. Technol.,2013,129:170-176
    [51] Kim S G. System for separation of oil and sludge from food waste leachate[P]. Korea Patent,10-2010-0053719
    [52] Angelidaki I, Ahring B K. Effects of free long-chain fatty acids on thermophilic anaerobicdigestion[J]. Appl. Microbiol. Biot.1992,37:808-12
    [53] Wan C X, Zhou Q C, Fu G M, Li Y B. Semi-continuous anaerobic co-digestion of thickenedwaste activated sludge and fat, oil and grease[J]. Waste Manage.,2011,31,1752-1758
    [54] Angelidaki, I, Petersen, S P, Ahring, B K. Effects of lipids on thermophilicanaerobic-digestion and reduction of lipid inhibition upon addition of bentonite[J]. Appl.Microbiol. Biotech.,1990,33(4):469-472
    [55] Angelidaki I, Ahring B K. Co-digestion of olive oil mill wastewaters with manure, householdwaste or sewage sludge [J]. Biodegradation,1997,8:221–226
    [56]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005
    [57] Hwang M H, Jang N J, Hyum S H, Kim I S. Anaerobic bio-hydrogen production fromethanol fementation: the role of pH[J]. J. Biotechnol.2004,111:297–309
    [58]张无敌,等.沼气发酵与综合利用[M].昆明:云南科技出版社,2004:96-103.
    [59] J Geete G S, Jagadeesh K S, Reddy T K R.Nickel as an accelerator of biogas production inwater hyacinth[J]. Biomass,1990,21:157-161
    [60] Palmowski L M, Miller J A.Influence of the size reduction of organic waste on theiranaerobic digestion [J]. Water Sci.Tech.,2000,41(3):155-162
    [61]魏荣荣,等.不同温度猪粪厌氧发酵甲烷产量和产能实验[J].农机化研究,2010,4:170-174
    [62] Mathiesen N L. Ca and/or Mg soap solution in biogas production[P]. WO Patent:1989
    [63] Chen T, Jin Y, Liu F, Meng X, Li H, Nie Y. Effect of hydrothermal treatment on the levels ofsele cted indigenous microbes in food waste[J]. J. Environ. Manag.,2012,106:17-21
    [64] Liu X, Gao X, Wang W, Zheng L, Zhou Y, Sun Y. Pilot-scale anaerobic co-digestion ofmunicipal biomass waste: Focusing on biogas production and GHG reduction[J]. Renew.Energ.,2012,4(4):463-468
    [65] Marcos A, Al-Kassir A, López F, Cuadros F, Brito P. Environmental treatment ofslaughterhouse wastes in a continuously stirred anaerobic reactor: Effect of flow ratevariation on biogas production[J]. Fuel Process.Technol.,2012,103:178-182
    [66] Forster-Carneiro T, Pérez M, Romero L I. Anaerobic digestion of municipal solid wastes: drythermophilic performance[J]. Bioresour. Technol.,2008,99:8180–8184
    [67] Climenhaga M A, Banks C J. Uncoupling of liquid and solid retention times in anaerobicdigestion of catering wastes[J]. Water Sci. Technol.,2008,58:1581–1587
    [68] Li D, Yuan Z, Sun Y. Semi-dry mesophilic anaerobic digestion of water sorted organicfraction of municipal solid waste (WS-OFMSW)[J]. Bioresour. Technol.,2010,101:2722–2728
    [69] Linke B. Kinetic study of thermophilic anaerobic digestion of solid wastes from potatoprocessing[J]. Biomass Bioenerg.,2006,30:892–896
    [70] Heo N H, Park S C, Kang H. Effects of mixture ratio and hydraulic retention time onsingle-stage anaerobic co-digestion of food waste and waste activated sludge[J]. J. Environ.Sci. Health,2004, Part A39:1739–1756
    [71] Forster-Carneiro T, Perez M, Romero L I. Infuence of total solid and inoculum contents onperformance of anaerobic reactors treating food waste[J]. Bioresour. Technol.,2008,99:6994–7002
    [72] Lin J, Zuo J N, Gan L L, Li P, Liu F L, Wang K J, Chen L, Gan H N. Effects of mixture ratioon anaerobic co-digestion with fruit and vegetable waste and food waste of China[J]. J.Environ. Sci.,2011,23(8):1403–1408
    [73] Tawfk A, Salemb A, El-Qelish M. Two stage anaerobic baffed reactors for bio-hydrogenproduction from municipal food waste[J]. Bioresour. Technol.,2011,102:8723–8726
    [74] Park M J, Jo J H, Park D, Lee D S, Park J M. Comprehensive study on a two-stage anaerobicdigestion process for the sequential production of hydrogen and methane from cost-effectivemolasses[J]. Int. J. hydrogen energ.,2010,35:6194-6202
    [75] Shin S G, Han G, Lim J T, Lee C, Hwang S K. A comprehensive microbial insight intotwo-stage anaerobic digestion of food waste-recycling wastewater[J]. Water Res.2010,44:4838-4849
    [76] Chu C F, Ebie Y, Xu K Q, Li Y Y, Inamori Y. Characterization of microbial community in thetwo-stage process for hydrogen and methane production from food waste[J]. Int. J. HydrogenEnerg.,2010,35:8253–8261
    [77] Kim D H, Cha J, Lee M K, Kim H W, Kim M S. Prediction of bio-methane potential andtwo-stage anaerobic digestion of starfish[J]. Bioresour. Technol.,2013, doi:http://dx.doi.org/10.1016/j. biortech.2013.02.065
    [78] Song W L, Cheng J, Zhou J H, Xie B F, Su H B, Cen K F. Cogeneration of hydrogen andmethane from protein-mixed food waste by two-phase anaerobic process[J]. Int. J. HydrogenEnerg.,2010,35:3141–3146
    [79] Fezzani B, Cheikh R B. Two-phase anaerobic co-digestion of olive mill wastes insemi-continuous digesters at mesophilic temperature[J]. Bioresour. Technol.,2010,101:1628–1634
    [80] Sievers D M, Brune D E, Carbon–nitrogen ratio and anaerobic digestion of swine waste[J].Trans. ASAE,1978,21:537-549
    [81] Li X, Li L, Zheng M, Fu G, Lar G S. Anaerobic co-digestion of cattle manure with cornstover pretreated by sodium hydroxide for efficient biogas production[J]. Energ. Fuel.,2009,23:4635–4639
    [82] Wu X, Yao W Y, Zhu J, Miller C. Biogas and CH4productivity by co-digesting swine manurewith three crop residues as an external carbon source[J]. Bioresour. Technol.,2010,101:4042-4047
    [83] Li R P, Chen S L, Li X J, Lar J S, He Y F, Zhu B N, Anaerobic co-digestion of kitchen wastewith cattle manure for biogas production[J]. Energ. Fuel.,2009,23:2225-2228
    [84] Gelegenis J, Georgakakis D, Angelidaki I, Mavris V. Optimization of biogas production byco-digesting whey with diluted poultry manure[J]. Renew. Energ.,2007,32:2147–2160
    [85] Zhang L, Lee Y W, Jahng D. Anaerobic co-digestion of food waste and piggery wastewater:Focusing on the role of trace elements[J]. Bioresour. Technol.,2011,102:5048–5059
    [86] Nayono S E, Gallert C, Winter J. Co-digestion of press water and food waste in a biowastedigester for improvement of biogas production[J]. Bioresour. Technol.,2010,101:6987-6993
    [87] Zhang C, et al. Batch and semi-continuous anaerobic digestion of food waste in a dualsolid–liquid system. Bioresour. Technol.,2013, http://dx.doi.org/10.1016/j.biortech.2013.03.030
    [88] Bernstad A, Malmquist L, Truedsson C, Cour Jansen J. la. Need for improvements inphysical pretreatment of source-separated household food waste[J]. Waste Manage.,2013,33(3):746-754
    [89] Kumar P, Barrett D M, Delwiche M J, Stroeve P,2009. Methods for pretreatment oflignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res.48(8):3713–3729
    [90] Ma J, Duong T H, Smits M, Verstraete W, Carballa M. Enhanced biomethanation of kitchenwaste by different pre-treatments[J]. Bioresour. Technol.,2011,102:592–599
    [91] Taherzadeh M J, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosicmaterials: a review. Bioresour. Technol.,2007,2(3):472–499
    [92] Stabnikova O, et al. Digestion of frozen/thawed food waste in the hybrid anaerobicsolid–liquid system[J]. Waste Manage.,2008,28:1654-1659
    [93] Ferrer I, PonsáS, Vázquez F, Font X. Increasing biogas production by thermal (70℃) sludgepre-treatment prior to thermophilic anaerobic digestion. Biochemical Engineering Journal42,186-192
    [94] Zhong W Z, Zhang Z Z, Qiao W, Fu P C, Liu M. Comparison of chemical and biologicalpretreatment of corn straw for biogas production by anaerobic digestion[J]. Renew. Energ.,2011,36:1875-1879
    [95] Apul O G, Sanin F D. Ultrasonic pretreatment and subsequent anaerobic digestion underdifferent operational conditions[J]. Bioresourc. Technol.,2010,101:8984-8992
    [96] Nielsen H B, et al. Comparison of two-stage thermophilic (68°C/55°C) anaerobic digestionwith one-stage thermophilic (55°C) digestion of cattle manure[J], Biotechnol. Bioeng.,2004,86:291-300
    [97] Lu J, Gavala H N, Skiadas I V, Mladenovska Z, Ahring B K. Improving anaerobic sewagesludge digestion by implementation of a hyper-thermophilic prehydrolysis step[J]. J.Environ. Manage.,2008,88(4):881-889
    [98] Wang X X, et al. Characteristics of organic, nitrogen and phosphorus species released fromultrasonic treatment of waste activated sludge[J]. J. Hazard. Mate.,2010,176:35-40
    [99] Jin Y Y, et al. Combined alkaline and ultrasonic pretreatment of sludge before aerobicdigestion[J]. J. Environ. Sci.,2009,21:279-284
    [100] Elbeshbishy E, Nakhla G. Comparative study of the effect of ultrasonication on the anaerobicbiodegradability of food waste in single and two-stage systems[J]. Bioresourc. Technol.,2011,102:6449-6457
    [101] Terashima M, Goel R, Komatsu K, et al. CFD simulation of mixing in anaerobic digesters[J].Bioresour. Technol.,2009,100:2228–2233
    [102] Bello-Mendoza R, Sharratt P N. Compartment mixing model for anaerobic digesters withcentral draft-tubes[J]. Inst. Chem. Eng. Symp. Ser.,1999,146:383–394
    [103] Fleming J G. Novel simulation of anaerobic digestion using computational fluid dynamics.PhD Dissertation[D]. North Carolina State University, Raleigh, NC,2002
    [104] Wu B. Advances in the use of CFD to characterize, design and optimize bioenergysystems[J]. Comput. Electron. Agric.,2012, http://dx.doi.org/10.1016/j.compag.2012.05.008
    [105] Luo H P, Al-Dahhan M H. Verification and validation of CFD simulations for local flowdynamics in a draft tube airlift bioreactor[J]. Chem. Eng. Sci.,2011,66:907–923
    [106] Wu B. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobicdigesters[J]. Water Res.,2010,44:3861-3874
    [107] HJ/T399-2007.水质化学需要量的测定-快速消解分光光度法[S].2007
    [108]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)(增补版)[M].北京:中国环境科学出版社,2002
    [109] GB/T5009.9-2003.食品中淀粉的测定[S].2003
    [110] GB/T5009.6-2003.食品中脂肪的测定[S].2003
    [111]欧阳斌.脱碳液中总硫的测定[J].1999,6:61-62
    [112]马树艳.工业循环冷却水中总磷测定方法的研究[J].化学工程师,2008,158(11):30-31
    [113] Batstone D J, et al. Modelling anaerobic degradation of complex wastewater. I: modeldevelopment[J]. Bioresour. Technol.,2000,75:67–74
    [114] Siegert I, Banks C. The effect of volatile fatty acid additions on the anaerobic digestion ofcellulose and glucose in batch reactors[J]. Process. Biochem.,2005,40:3412–3418
    [115] Kastner V, Somitsch W, Schnitzhofer W. The anaerobic fermentation of food waste: acomparison of two bioreactor systems[J]. J. Clean. Prod.,2012,34:82–90
    [116] Elbeshbishy E, Nakhla G. Batch anaerobic co-digestion of proteins and carbohydrates[J].Bioresour. Technol.2012,116:170–178
    [117]刘研萍,陈雪,朱保宁,等.餐厨垃圾厌氧消化中硬脂酸钙的形成及作用[J].环境工程学报,2011,5(12):2844-22848
    [118] Li Z, Deng L, Lu J K, Guo X L, Yang Z X, Tan T W. Enzymatic Synthesis of Fatty AcidMethyl Esters from Crude Rice Bran Oil with Immobilized Candida sp.99-125[J]. Chinese J.Chem. Eng.,2010,18(5):870–875
    [119] Heo H S, Kim S G, Jeong K E, Jeon J K, Park S H, Kim J M, Kim S S, Park Y k. Catalyticupgrading of oil fractions separated from food waste leachate[J]. Bioresour. Technol.,2011,102:3952–3957
    [120] Mara ón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García M M.Co-digestion of cattle manure with food waste and sludge to increase biogas production[J].Waste Manage.,2012,32:1821–1825
    [121] Huang G F, Wong J W C, Wu Q T, Nagar B B. Effect of C/N on composting of pig manurewith saw dust[J]. Waste Manage.,2004,24:805-813
    [122] McCarthy P L, McKinney R E. Salt toxicity in anaerobic digestion[J]. J. Water Pollut.Control Fed.,1961,33:399-408
    [123] Lay J J, Li Y Y, Noike T. The influence of pH and ammonia concentration on the methaneproduction in high-solids digestion processes[J]. Water Environ. Res.,1998,70(5):1075-1082
    [124] Hatamoto, M., Imachi, H., Yashiro, Y., Ohashi, A., Harada, H. Diversity of anaerobicmicroorganisms involved in LCFA degradation in methanogenic sludges revealed byRNA-based stable isotope probing. Appl. Environ. Microbiol.,2007,73(13):4119–4127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700