用户名: 密码: 验证码:
嗜热菌污泥减量化及对氮磷营养物质的去除与回收
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法在世界范围内广泛地应用于市政污水和工业废水处理。活性污泥过程是利用微生物将废水中的溶解性和胶体有机物转化为生物固相或者二氧化碳和水。这个过程产生的主要副产物—剩余活性污泥,它的处理对污水处理厂来说是面临的一个严重问题。剩余污泥中含有大量的有毒有害的有机和无机物质,例如病原菌、寄生虫卵和一些重金属。剩余污泥在排放前必须经过处理以避免对生态系统造成危害。
     目前我们国家对剩余污泥的解决方针是将已产生的污泥进行处理与利用。常规方法是剩余污泥经过浓缩、脱水、稳定等预处理后进行填埋、焚烧、土地利用、排海等最终处置方法与综合利用。但是这些处置方法都有其自身的缺陷。并且剩余污泥的处理费用约占整个污水处理厂运行费用的25%~65%。能耗高不仅影响污水处理成本,而已也会影响到能源资源的可持续利用和能源生产过程中所产生的环境污染问题。因此,有必要开发新的污泥处理方法并且尽可能的减少污泥处理的能耗。本研究主要包括以下几个方面的内容:
     (1)嗜热菌污泥减量化研究。从污泥中分离出一株嗜热菌,通过16S rRNA基因序列分析为一株新菌,命名为Bacillus sp. Hnu。嗜热菌Bacillus sp. Hnu能够产蛋白酶,这能够促进污泥水解。对嗜热菌Bacillus sp. Hnu对污泥水解效果进行了研究。结果表明,在高温和高溶解氧条件下对VSS的溶解率有利,同样影响蛋白酶活性。在60°C、pH=6.9,厌氧、微好氧、好氧反应108h时,VSS最大溶解率分别为21.5%、42.5%和54.4%。VSS溶解率和蛋白酶活性受pH值影响不大。动力学研究表明嗜热菌Bacillus sp. Hnu促进污泥水解和空白试验均符合一级动力学模型(60°C除外)。嗜热菌Bacillus sp. Hnu促进污泥水解在40°C条件下,厌氧、微好氧、好氧水解速率常数分别为空白的3倍、4.8倍和7倍;在50°C条件下,厌氧、微好氧、好氧水解速率常数分别为空白的3.5倍、9.8倍和11.8倍;在60°C条件下,厌氧、微好氧、好氧水解速率常数分别为空白的2.7倍、7.2倍和10.3倍。这表明嗜热菌Bacillus sp. Hnu和溶解氧能够促进污泥水解。
     (2)太阳能作为热源污泥减量化。本研究表明,不同季节对太阳能作为热源污泥固体的溶解影响较大,夏季污泥停留时间为10天TS、TVS最大去除率分别为37%和44%;秋季太阳能作为热源TS、TVS最大去除率分别为29.3%和27.5%;而冬季太阳能作为热源TS、TVS最大去除率分别仅为18.5%和24.8%。污泥停留时间不同污泥固体溶解率显著不同,当污泥停留时间从10天延长到20天时,秋季TS从14g/L减少到7.1g/L,TVS从8g/L减少到3.7g/L,TS、TVS去除率分别从29.3%和27.5%增大到49.3%和53.4%。同一季节不同天气情况对反应器内温度影响较大,这直接会影响到污泥固体的溶解速率。夏季晴天反应器内温度较室外平均温度高18°C,雨天反应器内温度较室外平均温度高12.5°C;秋季晴天反应器内温度较室外平均温度高17.4°C,秋季雨天反应器内温度较室外平均温度高6.1°C;冬季晴天反应器内温度较室外平均温度高10°C,冬季雨天反应器内温度较室外平均温度高4°C。
     (3)利用吸附法从污泥消解液中制备优质的磷酸铵镁。改性的甘蔗渣能够有效的去除污泥上清液中的重金属。改性甘蔗渣添加量为1g/L时,Cu、Cd、Zn、Pb最大去除率分别为96%、95%、98%和97%。改性甘蔗渣吸附重金属符合二级动力学方程。pH是同时去除氮磷的最重要参数之一。去除氨根离子的最优pH为9.4,去除磷酸根离子的最优pH为9.6。过量的镁离子相对于磷酸根离子,对氨氮有更好的去除效率,当Mg/N/P摩尔比从1:1:1增加到1.3:1:1时,氨氮离子的去除率从75%增加到90%,同时SCOD去除率从38%增加到48%。制备的磷酸铵镁与纯磷酸铵镁的成分基本一致,换句话说制备的沉淀物的X射线衍射峰跟标准磷酸铵镁的数据库资料相符,波峰的位置和强度一致,制备的磷酸铵镁符合我国肥料所有的生态指标,因此制备的磷酸铵镁可以作为我国一种优质的肥料。
     (4)利用废铁屑从污泥中去除和回收磷。本研究结果表明废铁屑能够有效的去除污泥中的磷。在废铁屑添加量为1g/L,2g/L和3g/L时,对磷的最高去除率分别为39%,93%和99%。废铁屑对污泥中磷的去除机理主要是废铁屑对磷的表面吸附和铁还原细菌和水解酸化菌对废铁屑的水解酸化腐蚀和生物还原废铁屑所产生的铁离子和亚铁离子跟磷酸根离子产生沉淀。废铁屑对污泥中磷的去除最主要是水解酸化细菌对污泥的水解酸化使得污泥pH值降低对废铁屑造成腐蚀,腐蚀产生的铁离子和亚铁离子跟磷酸盐产生沉淀。去除机理排第二位的是废铁屑对磷的吸附,在废铁屑添加量为1g/L,2g/L和3g/L时废铁屑对磷的吸附所占比例分别低于16%,34%和38%。废铁屑这种材料有可能得到广泛的应用,由于它除磷效率高,广泛供应,能耗低。去除的磷利用磁性介质可以实现56%的回收。本方法能有效去除污泥中的磷,操作方便,运行稳定,费用低,能够回收磷资源,因此本方法比其他物理化学方法更有潜力。
The activated sludge process is the most widely used biological treatment formunicipal and industrial wastewater worldwide. This process uses microorganisms totransform dissolved and colloidal organic substance in the wastewater into biomass orcarbon dioxide (CO2) and water. The production of the major byproduct, the wasteactivated sludge (WAS), is a serious disposal problem for treatment plants. The WAScontains a considerable amount of hazardous organic and inorganic materials, such aspathogens, parasite eggs, and a number of heavy metals. The mixture is frequentlysubjected to treatment prior to disposal to avoid posing a significant threat to theecological system.
     The main treatment of the excess sludge presently employed in China dependson the landfill operation after coagulation filtration. The conventional method to treatexcess sludge is concentrate, sludge dewatering and stabilization, and then landfill,incineration, land utilization and sewage outfall. However, the disposal of the excesssludge by these operations is not effective and has defects. The costs associated withthe treatment of the excess sludge may cover up to25%-65%of the total plantoperation cost. High energy consumption not only affects the sewage treatment costs,it also has effects on the sustainable utilization of energy resources and theenvironmental pollution associated with the energy production processes. So, it isnecessary to develop a new method to treat excess sludge and reduce the energyconsumption. The investigations are mainly involved in the following respects:
     (1) Thermophilic bacteria substantially enhanced the reduction of excess sludge.A thermophilic strain was isolated from the waste activated sludge and identified as anew species of Bacillus by16S rRNA gene sequence analysis, named Bacillus sp.Hnu. Bcillus sp. Hnu is able to release protease that can help in dissolving sludge.Dissolve experiments indicated that higher temperature and more oxygen supply wasadvantageous to the VSS removal ratio with the same effect to that of protease activity.The maximum VSS removal ratio was achieved at21.5%,42.5%, and55%after108h digestion at pH6.9and60°C under anaerobic, microaerobic and aerobic conditons. VSS removal ratio and protease activity were only slightly affected by the pH. Thekinetic study showed that both the hydrolysis of sludge with Bacillus sp. Hnu and thecontrol test followed the first-order kinetic equation (except at60°C). The hydrolysisrate constants (Kh) for the anaerobic, microaerobic, and aerobic conditions were3,4.8,and7times (40°C) and3.5,9.8, and11.8times (50°C) and2.7,7.2, and10.3times(60°C) higher than that of the control test. The above results prove that the Bacillus sp.Hnu and the oxygen supply help in accelerating the hydrolysis rate.
     (2) Solar energy is used as a hot source to enhance excess sludge reduction. Themagnitude of solar energy is largely related to the season of the year. The maximumremoval efficiency of total solid and total volatile solid was37%and44%as thesludge retention time was10days in summer, respectively. The maximum removalefficiency of total solid and total volatile solid was29.3%and27.5%in autumn andin winter as the sludge retention time was10days and the removal efficiency was18.5and24.8%, respectively. Sludge retention time affects the sludge removalefficiency greatly. As the sludge retention time increased from10days to20days,total solid decreased from14g/L to7.1g/L, and total volatile solid decreased from8g/L to3.7g/L. In the meantime the removal efficiency increased from29.3%and27.5%to49.3%and53.4%, respectively. The meteorological conditions determinethe temperature in the reactor, while the temperature affects the sludge dissolution. Inclear days the temperatures were18°C,17.4°C, and10°C higher, while in rainy daysthe temperatures were12.5°C,6.1°C, and4°C higher inside the reactor than outside insummer, fall, and winter, respectively.
     (3) Magnesium ammonium phosphate is produced from digested sewage sludgeby means of adsorption. Modified bagasse can be used to remove heavy metals fromthe sludge supernatant efficiently. The highest metal ion removal efficiencies were96%,95%,98%, and97%for Cu, Cd, Zn and Pb ions, respectively, under modifiedbagasse dosage0.5g/L. The process follows the pseudo-second model. pH was animportant parameter in the simultaneous removal of NH4+and PO43–. Optimumreactions for NH4+and PO43–removal were observed at pH9.4and9.6, respectively.The effect of excess dosages of Mg ions on NH4+removal was greater than that ofPO43, increasing from75%to90%as the Mg/N/P molar ratio increased from1:1:1to1.3:1:1. SCOD removal rate also increased from38%to48%as the Mg/N/P molar ratio increased from1:1:1to1.3:1:1. The XRD pattern generated from theprecipitated matters matched with the database model for standard MAP standard, i.e.,the position and intensity of the peaks. It can thus be concluded that the precipitatesobtained were MAP crystals. The produced MAP fulfilled all the ecological indicesfor fertilizers used in China, and is recommended for use as a high-quality fertilizer inthe Chinese market.
     (4) Remove and recover phosphorus during anaerobic digestion of excess sludgeby adding waste iron scrap. The results of the current study indicate that WIS couldeffectively remove phosphorus from excess sludge. The highest phosphorus removalefficiency at WIS dosages of1,2and3g/L is39%,93%and99%, respectively. Themechanisms of phosphorus removal by WIS are surface adsorption onto WIS,hydrolysis and bio-reduction of WIS, and precipitation of phosphorus by ferrous ironsresulting from hydrolysis bacteria and iron-reducing bacteria. The first and mostimportant mechanism of phosphorus removal using WIS is hydrolysis bacteria, whichreduce the pH of excess sludge to corrode the WIS, followed by precipitation ofphosphorus using ferrous irons. Phosphorus adsorption to WIS is the secondmechanism, which has less than16%,34%and38%at WIS dosages of1,2and3g/L,respectively. This type of material may have broader applications because of its highphosphorus removal efficiency, abundant supply, and low cost. The removedphosphorus is recovered by56%using a magnet. This method is characterized byhigh removal efficiency, easy and steady operation, low cost, recovery and reuse,making it better than other physical and chemical treatments.
引文
[1] Liu Y, Tay J H. Strategy for minimization of excess sludge production from theactivated sludge process. Biotechnology Advances,2001,19(2):97-107
    [2] Bougrier C, Albasi C, Delgenes J P, et al. Effect of ultrasonic, thermal and ozonepre-treatments on waste activated sludge solubilisation and anaerobicbiodegradability. Chemical Engineering and Processing,2006,45(8):711–718
    [3] Sakai Y, Aoyagi T, Shiota N, et al. Complete decomposition of biological wastesludge by thermophilic aerobic bacteria. Water Science and Technology,2000,42(9):81-88
    [4]张文学.我国磷资源开发利用及趋势.武汉工程大学学报,2011,33(2):1-5
    [5]徐洪滨,马勇光.磷资源合理利用及回收.安全与环境工程,2008,15(3):62-64
    [6]综合信息.全球磷肥产量已达峰值-预警磷资源危机.化工矿物与加工,2011,(5):41.
    [7]综合信息.磷资源危机值得关注.化工矿物与加工,2004,(7):41
    [8] Wei Y S, Houten R T V, Borger A R, et al. Minimization of excess sludgeproduction for biological wastewater treatment. Water Research,2003,37(18):4453-4467
    [9] Liu Y. Chemically reduced excess sludge production in the activated sludgeprocess. Chemosphere,2003,50(1):1-7
    [10] Zhao Q L, Kugel G. Thermophilic/mesophilic digestion of sewage sludge andorganic waste. Journal of Environmental Science and Health,1997, A31(9):2211-2231
    [11] Müller J, Lehne G, Schwedes J, et al. Disintegration of sewage sludges andinfluence on anaerobic digestion. Water Science and Technology,1998,38(8-9):425-433
    [12] Zhang G M, Zhang P Y, Yang J M, et al. Ultrasonic reduction of excess sludgefrom the activated sludge system. Journal of Hazardous Materials,2007,145(3):515-519
    [13] Zhang G M, He J G, Zhang P Y, et al. Ultrasonic reduction of excess sludge fromactivated sludge system II: Urban sewage treatment. Journal of HazardousMaterials,2009,164(2-3):1105-1109
    [14] Campos J L, Otero L, Franco A, et al. Ozonation strategies to reduce sludgeproduction of a seafood industry WWTP. Bioresource Technology,2009,100(3):1069-1073
    [15] Yan S T, Zheng H, Li A, et al. Systematic analysis of biochemical performanceand the microbial community of an activated sludge process using ozone-treatedsludge for sludge reduction. Bioresource Technology,2009,100(21):5002-5009
    [16] Thomas L, Jungschaffer G, Sprossler B. Improved sludge dewatering byenzymatic treatment. Water Science and Technology,1993,28(1):189-192
    [17]史彦伟,李小明,赵维娜,等.微曝气条件下S-TE剩余污泥溶解性研究.环境科学,2008,29(1):139-144
    [18]史彦伟,李小明,杨麒,等. S-TE污泥溶解过程中主要固形物质的变化及动力学分析.环境科学学报,2008,28(2):319-325
    [19] Yang Q, Luo K, Li X M, et al. Enhanced efficiency of biological excess sludgehydrolysis under anaerobic digestion by additional enzymes. BioresourceTechnology,2010,101(9):2924-2930
    [20]彭永臻,高永青,张晶宇,等. H-A-O工艺强化脱氮及系统内污泥减量的研究.中南大学学报,2011,42(6):1813-1818
    [21] Smith K E C, Green M, Thomas G O, et al. Behavior of sewage sludge-derivedPAHs on pasture. Environmental Science and Technology,2001,35(11):2141-2150
    [22]诸晖,魏源送,王亚炜,等.寡毛类蠕虫污泥减量工艺及其生长规律的研究进展.过程工程学报,2008,8(5):1030-1040
    [23]王建龙,彭永臻,高永青,等.强化内源反硝化脱氮及污泥减量化研究.环境科学,2008,29(1):134-138
    [24]赵维纳,李小明,杨麒,等.嗜热酶溶解法促进剩余污泥减量行为研究.中国给水排水,2007,23(23):29-33
    [25]尹军,张立国,刘蕾,等.市政污水污泥减排技术分析.长春工业大学学报,2007,28(B07):124-127
    [26]诸晖,魏源送,刘俊新.颤蚓在活性污泥中的生长研究.环境科学,2008,29(5):1342-1347
    [27]余岳峰.下水污泥焚化灰渣烧成轻质骨材特性之研究:[国立中央大学硕士论文].台湾:国立中央大学环境工程研究所,2000,5-15
    [28]朱开金,马忠亮.污泥处理技术及资源化利用.北京:化学工业出版社,2006,1-2
    [29]王星,赵天涛,赵由才.污泥生物处理技术.北京:冶金工业出版社,2010,3-4
    [30] Ronteltap M, Maurer M, Gujer W. The behaviour of pharmaceuticals and heavymetals during struvite precipitation in urine. Water Research,2007,41(9):1859-1868
    [31] Güney K, Weidelener A, Krampe J. Phosphorus recovery from digested sewagesludge as MAP by the help of metal ion separation. Water Research,2008,42(18):4692-4698
    [32] Uysal A, Yilmazel Y D, Demirer G N. The determination of fertilizer quality ofthe formed struvite from effluent of a sewage sludge anaerobic digester. Journalof Hazardous Materials,2010,181(1-3):248-254
    [33] Metcalf&Eddy, Inc. Wastewater Engineering: Treatment and Reuse (FourthEdition). America McGraw-Hill Companies, Inc,2003,1454-1455
    [34]高永青,彭永臻,王建龙,等.剩余污泥水解酸化过程中胞外聚合物的影响因素研究.中国环境科学,2010,30(1):58-63
    [35]段亮,夏四清,宋永会,等.活性污泥胞外聚合物提取方法优化.环境工程学报,2010,4(1):63-66
    [36]林志福,伍健东周兴求,等.厌氧颗粒污泥胞外聚合物的影响因素研究.环境工程学报,2009,3(7):1311-1315
    [37]张云霞,季民,李超,等.好氧颗粒污泥胞外聚合物(EPS)的生化性研究.环境科学,2008,29(11):3124-3127
    [38]龙向宇,龙腾锐,唐然,等.污泥龄对胞外聚合物组分与表面性质的影响.中国给水排水,2008,24(15):1-6
    [39]倪丙杰,徐得潜,刘绍根.污泥性质的重要影响物质—胞外聚合物(EPS).环境科学与技术,2006,29(3):108-110
    [40]周健,龙腾锐,苗利利.胞外聚合物EPS对活性污泥沉降性能的影响研究.环境科学学报,2004,24(4):613-618
    [41] Keiding K, Nielsen P H. Desorption of organic macromolecules from activatedsludge: effecting of ionic composition. Water Research,1997,31(7):77-82
    [42] Mikkelsen L H, Keiding K. Physico-chemical characteristics of full cale sewagesludges with implications to dewatering. Water Research,2002,36(10):2451-2462
    [43] Chen Y G, Yang H, Gu G W. Effect of acid and surfactant treatment on activatedsludge dewatering and settling. Water Research,2001,35(11):2615-2620
    [44] Poxon T L, Darby J L. Extracellular polyanions in digested sludge: measurementand relationship to sludge dewaterability. Water Research,1997,31(4):749-758
    [45] Yin X, Han P F, Lu X P, et al. A review on the dewaterability of bio-sludge andultrasound pretreatment. Ultrasonics Sonochemistry,2004,11(6):337-348
    [46] Hao X D, Wang Q L, Cao Y L. Measuring the activities of higher organisms inactivated sludge by means of mechanical shearing pretreatment and oxygenuptake rate. Water Research,2010,44(13):3993-4001
    [47] Barjenbruch M, Kopplow O. Enzymatic, mechanical and thermal pre-treatmentof surplus sludge. Advances in Environmental Research,2003,7(3):715-720
    [48] Raynaud M, Heritier P, Baudez J C, et al. Experimental characterisation ofactivated sludge behaviour during mechanical expression. Process Safety andEnvironmental Protection,2010,88(3):200-206
    [49] Kopp J, Müller J, Dichtl N, et al. Anaerobic digestion and dewateringcharacteristics of mechanical disintegrated excess sludge. Water Science andTechnology,1997,36(11):129-136
    [50] Saha M, Eskicioglu C, Marin J. Microwave, ultrasonic and chemo-mechanicalpretreatments for enhancing methane potential of pulp mill wastewater treatmentsludge. Bioresource Technology,2011,102(17):7815-7826
    [51] He J G, Wan T, Zhang G M, et al. Ultrasonic reduction of excess sludge fromactivated sludge system: Energy efficiency improvement via operationoptimization. Ultrasonics Sonochemistry,2011,18(1):99-103
    [52]张光明,吴敏生,张维昊,等.城市污泥超声波处理技术.城市环境与城市生态.2003,16(6):258-259
    [53] Gonze E, Gonthier Y, Boldo P, et al. Study on pentachlorophenol oxidation underdifferent geometric parameters of high-frequency sonoreactors. The CanadianJournal of Chemical Engineering,1997,75(1):245-255
    [54] Lehne G, Müller A, Schwedes J. Mechanical disintegration of sewage sludge.Water Science and Technology,2001,43(1):19-26
    [55] Kim J, Park C, Kim T H, et al. Effects of various pretreatments for enhancedanaerobic digestion with waste activated sludge. Journal of Bioscience andBioengineering,2003,95(3):271-275
    [56] Kim Y K, Kwak M S, Lee W H, et al. Ultrasonic pretreatment for thermophilicaerobic digestion in industrial waste activated sludge treatment. Biotechnologyand Bioprocess Engineering,2000,5(6):469-474
    [57] Bougrier C, Carrère H, Delgenès J P. Solubilisation of waste-activated sludge byultrasonic treatment. Chemical Engineering Journal,2005,106(2):163-169
    [58] Yin X, Lu X P, Han P F, et al. Ultrasonic treatment on activated sewage sludgefrom petro-plant for reduction. Ultrasonics,2006,44(2): e397-e399
    [59] Zhang G M, Zhang P Y, Gao J, et al. Using acoustic cavitation to improve thebio-activity of activated sludge. Bioresource Technology,2008,99(5):1497-1502
    [60]杨金美,张光明,王伟.超声波强化给水污泥沉降和脱水性能的研究.环境污染治理技术与设备,2006,7(11):58-61
    [61]龙腾锐,蒋洪波,丁文川.不同工况的低强度超声波处理对活性污泥活性的影响.环境科学,2007,28(2):392-396
    [62]丁文川,曾晓岚,龙腾锐,等.低强度超声波辐射对污泥生物活性的影响机制.环境科学学报,2008,28(4):726-730
    [63]蒋建国,张妍,张群芳,等.超声波对污泥破解及改善其厌氧消化效果的研究.环境科学,2008,29(10):2815-2819
    [64] Müller J. Pretreatment processes for the recycling and reuse of sewage sludge.Water Science and Technology,2000,42(9):167-174
    [65]王治军,王伟.活泥热水解过程中固体有机物的变化规律.中国给水排水,2004,20(7):1-5
    [66]王治军,王伟,李芬芳.污泥热水解技术的发展及应用.中国给水排水,2003,19(10):25-27
    [67] Kepp U, Machenbach I, Weisz N, et al. Enhanced stabilization of sewage sludgethrough thermal hydrolysis-3years of experience with full-scale plant. WaterScience and Technology,2000,42(9):89-96
    [68] Brooks R B. Heat treatment of sewage sludge. Water Pollution Control,1970,69(2):221-231
    [69] Fisher R A, Swanwick S J. High temperature treatment of sewage sludges. WaterPollution Control,1971,71(3):255-370
    [70] Donoso-Bravo A, Pérez-Elvira S, Aymerich E, et al. Assessment of the influenceof thermal pre-treatment time on the macromolecular composition and anaerobicbiodegradability of sewage sludge. Bioresource Technology,2011,102(2):660-666
    [71] Bougrier C, Delgenès J P, Carrère H. Combination of thermal treatments andanaerobic digestion to reduce sewage sludge quantity and improve biogas yield.Process Safety and Environmental Protection,2006,84(B4):280-284
    [72] Bougrier C, Delgenès J P, Carrère H. Impacts of thermal pre-treatments on thesemi-continuous anaerobic digestion of waste activated sludge. BiochemicalEngineering Journal,2007,34(1):20-27
    [73] Bougrier C, Delgenès J P, Carrère H. Effects of thermal treatments on fivedifferent waste activated sludge samples solubilisation, physical properties andanaerobic digestion. Chemical Engineering Journal,2008,139(2):236-244
    [74] Guo L,Li X M,Bo X,et a1. Impacts of sterilization, microwave andultrasonication pretreatment on hydrogen producing using waste sludge.Bioresource Techno1ogy,2008,99(9):3651-3658
    [75] Wang C C, Chang C W, Chu C P, et al. Hydrogen production from wastewatersludge using a Clostridium strain. Journal of Environmental Science andHealth, Part A,2003,38(9):1867-1875
    [76] Xiao B, Liu J X. Efects of thermally pretreated temperature on bio-hydrogenproduction from sewage sludge. Journal of Environmental Sciences,2006,l8(1):6-12
    [77]肖本益,刘俊新.污水处理厂剩余污泥热处理发酵产氢的影响因素.过程工程学报,2009,9(1):47-52
    [78] Li Y Y, Noike T. Upgrading of anaerobic digestion of waste activated sludge bythermal pre-treatment. Water Science and Technology,1992,26(3-4):857-866
    [79] Haug R T, Stuckey D C, Gossett J M, et al. Effect of thermal pretreatment ondigestibility and dewaterability of organic sludges. Journal of the WaterPollution Control Federation,1978,50(1):73-85
    [80] Sawayama S, Inoue S, Yagishita T, et al. Thermochemical liquidization andanaerobic treatment of dewatered sewage sludge. Journal of Fermentation andBioengineering,1995,79(3):300-302
    [81] Kepp U, Machenbach I, Weisz N, et al. Enhanced stabilization of sewagesludge through thermo hydrolysis-three years of experience with full scaleplant. Water Science and Technology,2000,42(9):89-96
    [82] Elbing G, Dünnebil A. Thermal cell decomposition with subsequent digestion. I.Laboratory tests. Korrespondenz Abwasser,1999,46(4):538-547(in German)
    [83] Sheerwood R, Philips J. Heat treatment process improves economics of sludgehandling and disposal. Water Wastes Engineering, Nov.1970,23-26
    [84] Hirst G, Mulhall K G, Hemming M L. The sludge heat treatment and pressingplant at Pudsey: design and initial operating experiences. Water PollutionControl,1994,24(2):455-474
    [85] Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduceexcess sludge in activated sludge process. Water Research,2002,36(8):656-666
    [86]王琳,王宝贞,张相忠.利用臭氧氧化实现污泥减量.中国给水排水,2003,19(5):38-40
    [87] He S B, Xue G, Wang B Z. Activated sludge ozonation to reduce sludgeproduction in membrane bioreactor (MBR). Journal of Hazardous Materials,2006, B135(1-3):406-411
    [88] Dytczak M A, Londry K L, Siegrist H, et al. Ozonation reduces sludgeproduction and improves denitrification. Water Research,2007,41(3):543-550
    [89]王嵘,万金保,吴声东.利用同步臭氧氧化实现SBR污泥减量的研究.中国给水排水,2008,24(7):1-3
    [90] Yasui H, Shibata M. An innovative approach to reduce excess sludgeproduction in the activated sludge process. Water Science and Technology,1994,30(9):11-20
    [91] Sakai Y, Fukase T, Yasui H, et al. An activated sludge process without excesssludge production. Water Science and Technology,1997,36(11):163-170
    [92] Kamiya T, Hirotsuji J. New combined system of biological process andintermittent ozonation for advanced wastewater treatment. Water Science andTechnology,1998,38(8-9):145-153
    [93] Egemen E, Corpening J, Padilla J, et al. Evaluation of ozonation and crypticgrowth for biosolids management in wastewater treatment. Water Science andTechnology,1999,39(10-11):155-158
    [94] Deleris S, Paul E, Audic J M, et al. Effect of ozonation on activated sludgesolubilization and mineralization. Ozone Science and Engineering,2000,22(5):473-486
    [95] Dignac M F, Derenne S, Ginestet P, et al. Determination of structure and originof refractory organic matter in bio-epurated wastewater via spectroscopicmethods. Environmental Science and Technology,2000,34(16):3389-3394
    [96]储兰,朱世云,陆婷婷,等.臭氧氧化法在活性污泥减量化中的应用初步研究.环境科学与技术,2009,32(12):157-159
    [97] Yasui H, Nakamura K, Sakuma S, et al. A full-scale operation of a novelactivated sludge process without excess sludge production. Water Science andTechnology,1996,34(3-4):395-404
    [98]傅金祥,裴丽花,许海良,等.二氧化氯氧化污泥减量试验研究.工业安全与环保,2008,34(4):11-13
    [99] Park Y G. Impact of ozonation on biodegradation of trihalomethanes inbiological filtration system. Journal of Industrial and Engineering Chemistry,2001,7(6):349-375
    [100] Gallard H, von Gunten U. Chlorination of natural organic matter: kinetics ofchlorination and of THM formation. Water Research,2002,36(1):65-74
    [101] Low E W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reducebiomass production in activated sludge process. Water Research,2000,34(12):3204-3212
    [102]叶芬霞,潘利波.活性污泥工艺中剩余污泥的减量化技术.中国给水排水,2003,19(1):25-28
    [103] Mason C A, Hamer G, Bryers J D. The death and lysis of microorganism inenvironmental process. FEMS Microbiology Review,1986,39(4):373-401
    [104] McWhirter J R. The use of high-purity oxygen in the activated sludge process.CRC press, Boca Raton,1978,25-62
    [105] Boon A G, Burgess D R. Treatment of crude sewage in two high-rate activatedsludge plants operated in series. Water Pollution Control,1974,74(4):382-392
    [106] Abbassi B, Dullstein S, Rabiger N. Minimization of excess sludge productionby increase of oxygen concentration in activated sludge flocs: experimentaland theoretical approach. Water Research,2000,34(1):139-146
    [107]松崎晴美,高桥灿吉,朱宏丽,等.在高溶解氧中的污泥处理特性.环境保护科学,1984,(3):70-79
    [108]胡学斌,柴宏祥,韩万玉,等.低溶解氧控制状态下污泥减量系统除磷脱氮特性.土木建筑与环境工程,2009,31(5):112-116
    [109]白璐,王淑莹,彭永臻,等.低溶解氧条件下活性污泥沉降性的研究.工业水处理,2006,26(5):54-56
    [110]王中玮,彭永臻,王淑莹,等.不同运行方式下低溶解氧污泥微膨胀的可行性研究.环境科学,2011,32(8):2347-2352
    [111]鞠宇平,张林生,余静.有机负荷和溶解氧的变化对SBR污泥膨胀的影响及控制方法.环境污染治理技术与设备,2002,3(12):21-24
    [112]王建芳,赵庆良,林佶侃,等.低溶解氧和磷缺乏引发的非丝状菌污泥膨胀及控制.环境科学,2007,28(3):545-550
    [113]彭赵旭,彭永臻,桂丽娟,等.低溶解氧丝状菌污泥微膨胀在SBR中的可行性.化工学报,2010,61(6):1534-1539
    [114]王建芳,赵庆良,刘志刚,等.好氧-沉淀-厌氧工艺剩余污泥减量化的影响因素.中国环境科学,2008,28(5):427-432
    [115]李瑾,柴立元,向仁军,等.厌氧好氧活性污泥法(A/O)一体化装置处理生活污水的中试研究.中南大学学报,2011,42(10):2935-2940
    [116]杨波,陈季华,奚旦立,等.厌氧水解酸化-好氧氧化A1/A2/O工艺剩余污泥减量.环境科学,2006,27(3):478-482
    [117]杨波,陈季华,奚旦立,等.厌氧水解酸化-好氧氧化A1/A2/O工艺剩余污泥减量影响因素.2006,27(4):675-680
    [118]杨波,陈季华,奚旦立,等.厌氧水解酸化-好氧氧化A1/A2/O工艺剩余污泥减量对系统运行效果的影响.2007,28(6):1280-1284
    [119]金文标,王建芳,赵庆良,等.好氧-沉淀-厌氧工艺剩余污泥减量性能和机理研究.环境科学,2008,29(3):726-732
    [120] Chudoba P, Morel A, Capdeville B. The case of both energetic uncouplingand metabolic selection of microorganisms in the OSA activated sludgesystem. Environmental Technology,1992,13(8):761-770
    [121] Chudoba P, Chudoba J, Capdeville B. The aspect of energetic uncoupling ofmicrobial growth in the activated sludge process: OSA system. Water Scienceand Technology,1992,26(9-11):2477-2480
    [122] Saby S, Djafer M, Chen G H. Effect of low ORP in anoxic sludge zone onexcess sludge production in oxic-settling-anoxic activated sludge process.Water Research,2003,37(1):11-20
    [123]刘振鸿,陈季华,李茵.剩余污泥处理新工艺.上海环境科学,1996,15(2):16-17
    [124]朱振超,周路.剩余有机污泥“零排放”工程性试验.上海环境科学,1996,15(8):40-41
    [125]林山杉,管运涛.好氧/厌氧交替与循环工艺用于污泥减量化研究.工业水处理,2005,25(2):34-37
    [126] Horan N J. Biological wastewater treatment systems. Chichester, Wiler,1990
    [127] Low E W, Chase H A. Reducing production of excess biomass duringwastewater treatment. Water Research,1999,33(5):1119-1132
    [128] Chaize S, Huyard A. Membrane bioreactor on domestic wastewater treatmentsludge production and modeling approach. Water Science and Technology,1991,23(7-9):1591-1600
    [129]魏源送,樊耀波.污泥减量化技术的研究及其应用.中国给水排水,2001,17(7):23-26
    [130]唐悦恒.基于SBR的好氧-沉淀-厌氧(OSA)工艺污泥减量化性能与机理研究:[中山大学硕士学位论文].广州:中山大学环境科学与工程学院,2009,93-94
    [131]高春娣,袁金萍,殷波,等.基于强化微型动物捕食作用的污泥减量技术研究.安全与环境工程,2008,15(3):53-55
    [132]梁少博,邵春利,谢冰,等.利用微型动物进行污泥减量的研究进展.给水排水,2007,33(4):57-60
    [133]周可新许木启曹宏,等.利用微型动物削减剩余污泥量的研究.环境污染治理技术与设备,2003,4(1):1-5
    [134] Lee N M, Welander T. Influence of predator in nitrification in aerobic biofilm.Water Science and Technology,1994,29(7):355-363
    [135] Lee N M, Welander T. Reducing sludge production in aerobic wastewatertreatment through manipulation of the ecosystem. Water Research,1996,30(8):1781-1790
    [136] Rensink J H, Rulkens W H. Using metazoan to reduce sludge production.Water Science and Technology,1997,36(11):171-179
    [137] Ratsak C H. Effects of Nais elinguis on the performance of an activatedsludge plant. Hydrobiologia,2001,463(1-3):217-222
    [138] Lapinski J, Tunnacliffe A. Reduction of suspended biomass in municipalwastewater using bdelloid rotifers. Water Research,2003,37(9):2027-2034
    [139] Wei Y S, Van Houten R T, Borger A R, et al. Comparision performances ofmembrane bioreactor (MBR) and conventional activated sludge (CAS)processes on sludge reduction induced by Oligochaete. EnvironmentalScience and Technology,2003,37(14):3171-3180
    [140]王勇,孙寓姣,黄霞.膜-生物反应器中微型动物变化与活性污泥状态相关性研究.环境科学研究,2004,17(5):48-51
    [141]张连凯,于德爽,孔范龙,等.利用微型动物减少污泥产量的工艺探讨.环境工程,2005,23(6):71-73
    [142] Ratsak C H, Maarsen K A, Kooijman S A L. Effects of protozoa on carbonmineralization in activated sludge. Water Research,1996,30(1):1-12
    [143] Ratsak C H, Kooi B W, Van Verseveld H W. Biomass reduction andmineralization increase due to the ciliate Tetrahymena Pyriformis grazing onthe bacterium Pseudomonas Fluorescens. Water Sciennce and Technology,1994,29(7):119-128
    [144] Ghyoot W, Verstraete W. Reduced sludge production in a two-stagemembrane-assisted bioreactor. Water Research,2000,34(1):205-215
    [145] Lee N M, welander T. Use of protozoa and metazoa for decreasing sludgeproduction in aerobic wastewater treatment. Biotechnology Letters,1996,18(4):429-434
    [146]白润英.两种微型动物污泥减量的初步研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学环境与市政工程学院,2004,29-34
    [147]魏源送,樊耀波.蠕虫污泥减量效果及其影响因素分析.环境科学,2005,26(1):76-83
    [148]魏源送,刘俊新.利用寡毛类姗虫反应器处理剩余污泥的研究.环境科学学报,2005,25(6):803-808
    [149]诸晖,魏源送,杨亚炜,等.颤蚓对活性污泥沉降性能的影响.环境科学学报,2008,28(5):910-915
    [150]诸晖,魏源送,杨宇,等.颤蚓污泥减容效果及其影响因素分析.环境科学学报,2008,28(6):1141-1148
    [151]曾小丽.污水污泥热消化工艺的研究进展.广东化工,2011,38(7):78-79
    [152] Roberts R, Davies W J, Forster C F. Two-stage, thermophilic-mesophilicanaerobic digestion of sewage sludge. Process Safety and EnvironmentalProtection,1999,77(2):93-97
    [153] Ahn J H, Forster C F. A comparison of mesophilic and thermophilic anaerobicuplow filter. Bioresource Technology,2000,73(3):201-205
    [154] de la Rubia M A, Perez M, Romero L I, et al. Anaerobic mesophilic andthermophilic municipal sludge digestion. Chemical and BiochemicalEngineering Quarterly,2002,16(3):119-124
    [155]周俊,郑伟,李小明,等.金属离子对剩余污泥水解嗜热菌酶促效果影响研究.环境科学学报,2011,31(8):1691-1698
    [156] Hasegawa S, Shiota N, Katsura K, et al. Solubilization of organic sludge bythermophilic aerobic bacteria as a pretreatment for anaerobic digestion. WaterScience and Technology,2000,41(3):163-169
    [157]史彦伟,李小明,杨麒,等. S-TE污泥溶解过程中主要固形物质的变化及动力学分析.环境科学学报,2008,28(2):319-325
    [158]史彦伟,李小明,赵维纳,等.微曝气条件下S-TE剩余污泥溶解性研究.环境科学,2008,29(1):139-144
    [159] Johansen J E, Bakke R. Enhancing hydroysis with microaeration. Water Scienceand Technology,2006,53(8):43-50
    [160] Zhu M, Lü F, Hao L P, et al. Regulating the hydrolysis of organic wastes bymicro-aeration and effluent recirculation. Waste Management,2009,29(7):2042-2050
    [161] Kim Y K, Eom Y S, Oh B k, et al. Application of a thermophilic aerobicdigestion process to industrial waste activated sludge treatment. Journal ofMicrobiology and Biotechnology,2001,11(4):570-576
    [162] Kim Y K, Bae J H, Oh B K, et al. Enhancement of proteolytic enzyme activityexcreted from Bacillus Stearothermophilus for a thermophilic aerobic digestionprocess. Bioresource Technology,2002,82(2):157-164
    [163] Tang Y, Yang Y L, Li X M, et al. The isolation, identification of sludge-lysinngthermophilic bacteria and its utilization in solubilization for excess sludge.Environmental Technology,2011,32(1):1-6
    [164] Kim Y K, Kwak M S, Lee S B, et al. Effects of pretreatments on thermophilicaerobic digestion. Journal of Environmental Engineering,2002,128(8):755-763
    [165]王志玉,金宜英,王兴润,等.城市污水污泥中有机质的资源化技术综述.给水排水,2007,33(S1):41-44
    [166] Aravinthan V, Mino T, Takizawa S, et al. Sludge hydrolysate as a carbon sourcefor denitrification. Water Science and Technology,2001,43(1):191-199
    [167] Thomas M, Wright P, Blackall L, et al. Optimisation of Noosa BNR plant toimprove performance and reduce operating costs. Water Science andTechnology,2003,47(12):141-148
    [168] Elefsiniotis P, Wareham D G, Smith M O. Use of volatile fatty acids from anacid-phase digester for denitrification. Journal of Biotechnology,2004,114(3):289-297
    [169] Jiang S, Chen Y G, Zhou Q, et al. Biological short-chain fatty acids (SCFAs)production from waste-activated sludge affected by surfactant. Water Research,2007,41(14):3112-3120
    [170] Jiang S, Chen Y G, Zhou Q. Effect of sodium dodecyl sulfate on waste activatedsludge hydrolysis and acidification. Chemical Engineering Journal,2007,132(1-3):311-317
    [171] Feng L Y, Wang H, Chen Y G, et al. Effect of solids retention time andtemperature on waste activated sludge hydrolysis and short-chain fatty acidsaccumulation under alkaline conditions in continuous-flow reactors.Bioresource Technology,2009,100(1):44-49
    [172] Dionisi D, Carucci G, Petrangeli M, et al. Olive oil mill effluents as a feedstockfor production of biodegradable polymers. Water Research,2005,39(10):2076-2084
    [173] Bengtsson S, Werker A, Christensson M, et al. Production ofpolyhydroxyalkanoates by activated sludge treating a paper mill wastewater.Bioresource Technology,2008,99(3):509-516
    [174] Khardenavis A A, Kumar M S, Mudliar S N, et al. Biotechnological conversionof agro-industrial wastewaters into biodegradable plastic, polyhydroxybutyrate.Bioresource Technology,2007,98(18):3579-3584
    [175] Jiang Y M, Chen Y G, Zheng X. Efficient polyhydroxyalkanoates productionfrom a waste-activated sludge alkaline fermentation liquid by activated sludgesubmitted to the aerobic feeding and discharge process. Environmental Scienceand Technology,2009,43(20):7734-7741
    [176]刘志华.剩余污泥为燃料的微生物燃料电池产电特性与污泥减量化研究:
    [湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2011,148-151
    [177] Guo L, Li X M, Zeng G M, et al. Effective hydrogen production using wastesludge and its filtrate. Energy,2010,35(9):3557-3562
    [178]周群英,高廷耀.环境工程微生物学.北京:高等教育出版社,2002,207-219
    [179]黄懂宁.城市污泥处置概述.环境科学动态,1999,(4):17-29
    [180]朱辉,邱钢.剩余污泥的水解与氮磷回收.环境科学与管理,2008,33(8):118-120
    [181] Li X S, Ma H Z, Wang Q H, et al. Isolation, identification of sludge-lysingstrain and its utilization in thermophilic aerobic digestion for waste activatedsludge. Bioresource Technology,2009,100(9):2475-2481
    [182] Chu L B, Wang J L, Wang B, et al. Changes in biomass activity andcharacteristics of activated sludge exposed to low ozone dose. Chemosphere,2009,77(2):269-272
    [183] Burt P, Morgan S F, Dancer B N, et al. Microbial populations and sludgecharacteristics in thermophilic aerobic sewage sludge digestion. AppliedMicrobiology Biotechnology,1990,33(6):725-730
    [184] Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes toimprove dewaterability. Journal of Hazardous Materials,2003, B98(1-3):51-67
    [185] Forster-Carneiro T, Pérez M, Romero L I, et al. Dry-thermophilic anaerobicdigestion of organic fraction of the municipal solid waste: focusing on theinoculum sources. Bioresource Technology,2007,98(17):3195-3203
    [186] Turovskiy I S, Mathai P K. Wastewater sludge processing. John Wiley&Sons,Inc., Hoboken, New Jersey,2006,1-10
    [187] Feng L Y, Yan Y Y, Chen Y G. Kinetic analysis of waste activated sludgehydrolysis and short-chain fatty acids production at pH10. Journal ofEnvironmental Sciences-China,2009,21(5):589-594
    [188] Egemen E, Corpening J, Nirmalakhandan N. Evaluation of an ozonation systemfor reduced waste sludge generation. Water Science and Technology,2001,44(2-3):445-452
    [189]罗运俊,何梓年,王长贵.太阳能利用技术.北京:化学工业出版社,2005,13-14
    [190]李代广.太阳能揭秘.北京:化学工业出版社,2009,14-15
    [191] Haralambopoulos D A, Biskos G, Halvadakis C, et al. Dewatering of wastewatersludge through a solar still. Renewable Energy,2002,26(2):247-256
    [192] Marti N, Bouzas A, Seco A, et al. Struvite precipitation assessment in anaerobicdigestion processes. Chemical Engineering Journal,2008,141(1-3):67-74
    [193] Bhuiyan M I H, Mavinic D S, Koch F A. Thermal decomposition of struvite andits phase transition. Chemosphere,2008,70(8):1347-1356
    [194] Doyle J D, Parsons S A. Struvite formation, control and recovery. WaterResearch,2002,36(16):3925-3940
    [195] Neyens E, Baeyens J, Weemaes M, et al. Hot acid hydrolysis as a potentialtreatment of thickened sewage sludge. Journal of Hazardous Materials,2003,B98(1-3):275-293
    [196] Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics insource-separated urine. Water Research,2007,41(5):977-984
    [197] Johnston A E, Richards I R. Effectiveness of the waterinsoluble component oftriple superphosphate for yield and phosphorus uptake by plants. Journal ofAgricultural Science,2003,140(3):267-274
    [198] Chen M, Li X M, Yang Q, et al. Total concentrations and speciation of heavymetals in municipal sludge from Changsha, Zhuzhou and Xiangtan inmiddle-south region of China. Journal of Hazardous Materials,2008,160(2-3):324-329
    [199] Ghosh G K, Mohan K S, Sarkar A K. Characterization of soil-fertilizer Preaction products and their evaluation as sources of P for gram (Cicer arietinumL.). Nutrient Cycling in Agroecosystems,1996,46(1):71-79
    [200] Prakash P, Hoskins D, SenGupta A K. Application of homogenous andheterogenous cation-exchange membranes in coagulant recovery from watertreatment plant residuals using Donnan membrane process. Journal ofMembrane Science,2004,237(1-2):131-144
    [201] Weidelener A, Brechtel K, Maier W, et al. Recovery of phosphorus from sewagesludge as MAP. IWA-/WISA-Conference on the Management of ResiduesEmanating from Water and Wastewater Treatment; Johannesburg, South Africa,August,2005,9-12
    [202] Ricordel S, Taha S, Cisse I, et al. Heavy metals removal by adsorption ontopeanut husks carbon: characterization, kinetic study and modeling. Separationand Purification Technology,2001,24(3):389-401
    [203] Zheng W, Li X M, Wang F, et al. Adsorption removal of cadmium and copperfrom aqueous solution by areca–A food waste. Journal of Hazardous Materials,2008,157(2-3):490-495
    [204] Li X M, Zheng W, Wang D B, et al. Removal of Pb (II) from aqueous solutionsby adsorption onto modified areca waste: Kinetic and thermodynamic studies.Desalination,2010,258(1-3):148-153
    [205] Argun M E, Dursun S, Karatas M. Removal of Cd(II), Pb(II), Cu(II) and Ni(II)from water using modified pine bark. Desalination,2009,249(2):519-527
    [206] Gupta V K, Jain C K, Ali I, et al. Removal of cadmium and nickel fromwastewater using bagasse fly ash–a sugar industry waste. Water Research,2003,37(16):4038-4044
    [207] Ho Y S. Citation review of Lagergren kinetic rate equation on adsorptionreactions. Scientometrics,2004,59(1):171-177
    [208] McKay G, Ho Y S. Pseudo-second order model for sorption processes. ProcessBiochemistry,1999,34(5):451-465
    [209] Booker N A, Priestley A J, Fraser I H. Struvite formation in wastewatertreatment plants: opportunities for nutrient recovery. Environmental Technology,1999,20(7):777-782
    [210] Tünay O, Kabdashi I, Orhon D, et al. Ammonia removal by magnesiumammonium phosphate precipitation in industrial wastewaters. Water Scienceand Technology,1997,36(2-3):225-228
    [211] Doyle J D, Parsons S A. Struvite formation, control and recovery. WaterResearch,2002,36(16):3925-3940
    [212] Bouropoulos N C, Koutsoukos P G. Spontaneous precipitation of struvite fromaqueous solutions. Journal of Crystal Growth,2000,213(3-4):381-388
    [213] Ohlinger K N, Young T M, Schroeder E D. Predicting struvite formation indigestion. Water Research,1998,32(12):3607-3614
    [214] Jaffer Y, Clark T A, Pearce P, et al. Potential phosphorus recovery by struviteformation. Water Research,2002,36(7):1834-1842
    [215] Lee S I, Weon S Y, Lee C W, et al. Removal of nitrogen and phosphate fromwastewater by addition of bittern. Chemosphere,2003,51(4):265-271
    [216] Nelson N O, Mikkelsen R L, Hesterberg D L. Struvite precipitation in anaerobicswine lagoon liquid: effect of pH and Mg:P ratio and determination of rateconstant. Bioresource Technology,2003,89(3):229-236
    [217] Stratful I, Scrimshaw M D, Lester J N. Conditions influencing the precipitationof magnesium ammonium phosphate. Water Research,2001,35(17):4191-4199
    [218] Donnert D, Salecker M. Elimination of phosphorus from waste water bycrystallization. Environmental Technology,1999,20(7):735-742
    [219] de-Bashan L E, Bashan Y. Recent advances in removing phosphorus fromwastewater and its future use as fertilizer (1997-2003). Water Research,2004,38(19):4222-4246
    [220] Wang Y Q, Han T W, Xu Z, et al. Optimization of phosphorus removal fromsecondary effluent using simplex method in Tianjin, China. Journal ofHazardous Material,2005, B121(1-3):183-186
    [221] Babatunde A O, Zhao Y Q. Forms, patterns and extractability of phosphorusretained in alum sludge used as substrate in laboratory-scale constructedwetland systems. Chemical Engineering Journal,2009,152(1):8-13
    [222] Li C J, Ma J, Shen J M, et al. Removal of phosphate from secondary effluentwith Fe2+enhanced by H2O2at nature pH/neutral pH. Journal of HazardousMaterials,2009,166(2):891-896
    [223] Zhang T, Ding L L, Ren H Q, et al. Thermodynamic modeling of ferricphosphate precipitation for phosphorus removal and recovery from wastewater.Journal of Hazardous Materials,2010,176(1-3):444-450
    [224] Stratful I, Brett S, Scrimshaw M B, et al. Biological phosphorus removal, itsrole in phosphorus recycling. Environmental Technology,1999,20(7):681-695
    [225] Pastor L, Marti N, Bouzas A, et al. Sewage sludge management for phosphorusrecovery as struvite in EBPR wastewater treatment plants. BioresourceTechnology,2008,99(11):4817-4824
    [226] Zhou Y N, Xing X H, Liu Z H, et al. Enhanced coagulation of ferric chlorideaided by tannic acid for phosphorus removal from wastewater. Chemosphere,2008,72(2):290-298
    [227]徐丰国,罗建中,凌定勋.废水化学除磷的现状与进展.工业水处理,2003,23(5):18-20
    [228] Morse G K, Brett S W, Guy J A, et al. Revier: Phosphorus removal and recoverytechnologies. Science of the Total Environment,1998,212(5):69-81
    [229] Fu Y, Yu S L. Characterization and phosphorus removal of poly-silicic-ferriccoagulant. Desalination,2009,247(1-3):442-455
    [230] Kaikake K, Sekito T, Dote Y. Phosphate recovery from phosphorus-rich solutionobtained from chicken manure incineration ash. Waste Management,2009,29(3):1084-1088
    [231] Karapinar N. Application of natural zeolite for phosphorus and ammoniumremoval from aqueous solutions. Journal of Hazardous Materials,2009,170(2-3):1186-1191
    [232] Rentz J A, Turner I P, Ullman J L. Removal of phosphorus from solution usingbiogenic iron oxides. Water Research,2009,43(7):2029-2035
    [233] Liu Y, Chen Y G, Zhou Q. Effect of initial pH control on enhanced biologicalphosphorus removal from wastewater containing acetic and propionic acids.Chemosphere,2007,66(1):123-129
    [234] Wang D B, Li X M, Yang Q, et al. Biological phosphorus removal in sequencingbatch reactor with single-stage oxic process. Bioresource Technology,2008,99(13):5466-5473
    [235] Li H J, Chen Y G, Gu G W. The effect of propionic to acetic acid ratio onanaerobic–aerobic (low dissolved oxygen) biological phosphorus and nitrogenremoval. Bioresource Technology,2008,99(10):4400-4407
    [236] Wang D B, Li X M, Yang Q, et al. Effect and mechanism of carbon sources onphosphorus uptake by microorganisms in sequencing batch reactors with thesingle-stage oxic process. Science in China, Series B: Chemistry,2009,52(12):2358-2365
    [237] Wang D B, Li X M, Yang Q, et al. The probable metabolic relation betweenphosphate uptake and energy storages formations under single-stage oxiccondition. Bioresource Technology,2009,100(17):4005-4011
    [238] Zhang C, Chen Y G. Simultaneous nitrogen and phosphorus recovery fromsludge-fermentation liquid mixture and application of the fermentation liquid toenhance municipal wastewater biological nutrient removal. EnvironmentalScience&Technology,2009,43(16):6164-6170
    [239] Takacs I, Murthy S, Smith S, et al. Chemical phosphorus removal to extremelylow levels: experience of two plants in the Washington, DC area. Water Scienceand Technology,2006,53(12):21-28
    [240] Karapinar N. Application of natural zeolite for phosphorus and ammoniumremoval from aqueous solutions. Journal of Hazardous Materials,2009,170(2-3):1186-1191
    [241] Guo C H, Stabnikov V, Ivanov V. The removal of nitrogen and phosphorus fromreject water of municipal wastewater treatment plant using ferric and nitratebioreductions. Bioresource Technology,2010,101(11):3992-3999
    [242] Nielsen J L, Juretschko S, Wagner M, et al. Abundance and phylogeneticaffiliation of iron reducers in activated sludge as assessed by fluorescence insitu hybridization and microautoradiography. Applied and EnvironmentalMicrobiology,2002,68(9):4629-4636
    [243] Drizo A, Forget C, Chapuis R P, et al. Phosphorus removal by EAF steel slag–Aparameter for the estimation of the longevity of constructed wetland systems.Environmental Science&Technology,2002,36(21):4642-4648
    [244] Mattenberger H, Fraissler G, Brunner T, et al. Sewage sludge ash to phosphorusfertiliser: Variables influencing heavy metal removal during thermochemicaltreatment. Waste Management,2008,28(12):2709-2722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700