用户名: 密码: 验证码:
UASB处理畜禽养殖废水的启动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国畜禽养殖排放的大量粪尿和养殖场冲洗的大量废水,大多未经妥善回收与处理而直接排放,对环境造成了严重的污染。而UASB处理技术可作为把环境保护与能源回收结合起来的核心技术,具有较好的环境与经济效益。为此,本次试验以四川农业大学畜禽养殖废水为供试材料,运用UASB试验设备对反应器的启动及内部厌氧氨氧化过程进行试验。其结果如下:
     1.利用畜禽养殖废水对UASB反应器进行启动历时122天,效果良好。在启动过程中,主要经历了污泥活性恢复、初步启动、负荷提高和负荷承载运行四个阶段。
     污泥活性恢复阶段,三相分离器集气室液面开始有约50mm厚的浮渣层,浮渣随出水缓慢流出反应器,出水混浊,COD值高于进水。经过一周的适应后,出水COD值低于进水,去除率达到25%,反应器底部开始出现絮状污泥,同时还可观察到反应器中有少量的气泡产生。
     初步启动阶段用时38d。反应器在初步启动前期(1-12d)表现出明显的不适应,出水水质恶化,pH值下降至6.5,反应器酸化严重;中期(第13d-21d)通过投加碱量,反应器运行逐步趋于稳定;初步启动末期,COD去除率上升到78%,厌氧污泥成长很快,并开始出现小颗粒。
     负荷提高期是反应器启动后达到稳定运行的过渡阶段。反应器容积负荷由2.52kgCOD/(m~3.d)逐步提高至15kgCOD/(m~3.d)。由于厌氧菌尤其是产甲烷菌倍增时间较长,本阶段为期较长,共历时64d,出水pH值稳定在7.0左右,不需向进水中补充碱度,反应器整体运行比较稳定。一般情况下提高负荷后的第1天COD去除率相对上次负荷运行末期的COD去除率有一定的下降,但在接下来的2-3d中,COD去除率逐渐上升。随着反应器负荷的提高,污泥活性不断增强,产气量增大。负荷提高中期,絮状污泥流失现象已不存在,厌氧微生物生长迅速,污泥床厚度不断增加;到末期时污泥床体积已占整个反应器有效容积的50%左右,污泥大多呈现颗粒状,COD去除率保持在75%以上。
     承载负荷运行期容积负荷提高到22.5kgCOD/(m~3.d),COD去除率急剧下降至65%,同时出水pH亦下降至6.5,补充大量碱运行10d后,COD去除率最终能够稳定在75%,但出水pH一直低于7.0,且每日需补充适量碱度来维持反应器内部适宜厌氧微生物生长的中性环境。
     2.针对不同温度、COD容积负荷、pH,它们对反应器的运行都存在不同程度的影响。从试验结果可知,反应器运行的最佳温度为35℃左右,最佳pH在7.0左右。当容积负荷为10kgCOD/(m~3.d)时,反应器处理废水的效果比较理想。
     3.厌氧氨氧化试验共进行了112天,根据进水氨氮浓度可将整个运行过程分为三个阶段:适应期、高浓度运行期、低浓度运行期。
     在适应期,进水氨氮浓度平均约为150mg/L,出水氨氮浓度与进水浓度很接近,有时还略高于进水浓度,氨氮在反应器中基本上没有得到去除。COD和NO_2-N的平均去除率分别为46.7%和29.2%。
     高浓度运行期进水氨氮浓度在230-270mg/L之间变化,平均为245mg/L,出水氨氮浓度均低于进水浓度,反应器内开始进行厌氧氨氧化反应。氨氮容积负荷从0.45kg/(m~.d)逐步上升到0.85kg/(m~3.d),平均去除率也从6.5%提高到10.2%。COD和NO_2-N的平均去除率达到73.1%和54.9%。
     在低浓度运行期间,进水氨氮浓度又调整到150mg/L左右,容积负荷维持在1.15kg/(m~3.d)左右,氨氮去除率从10.6%逐渐上升到28.1%。经过这三个阶段的运行后,反应器内厌氧氨氧化反应启动已基本结束。
     在反应器的整个运行期间,厌氧氨氧化反应开始不存在,但在中期所占比例为15.9%左右,中后期所占比例从28%逐渐上升到65%,反应器内厌氧氨氧化细菌已得到了较大程度的富集。
In recent years, the poultry emissions and the massive waste water from the flushing breeding farm were mostly in our country haven't been proper managed and recycled but to let directly, which engendered serious pollution to surroundings. Therefor, there is a key technology called UASB treating technology which can band environmental-protection and energy-recycle together efficiently. The aim of experiment was to deal with the waste water which from Sichuan agricultural university poultry breeding farm, by using the UASB(upflow anaerobic sludge blanket) experimental equipment. Study on its start-up period and anaerobic oxidation of ammonia process. The results were summarized as follows:
     1. It spent 122 days to start-up UASB reactor by using poultry breeding waste water. there were four stages in the starting process: the sludge activity revivification, the preliminary starting, the loading increasing and the loading moving.
     In the sludge revivification stage, there was a layer of scum which about 50mm at the assembling air-chamber of three-phase separator. The scum had flowed along with effluent out of the reactor slowly, which leaded the COD value higher than influent water. A week later, the COD value in effluent was lower than in enter liquid with the ratio of removal was 25 percent; the flocculent sludge appeared at the base of reactor, meanwhile a few air bubbles were observed.
     It was consumed 38 days to Preliminary start-up. It's didn't adapt to the waste water obviously in initial stage of preliminary starting(1-12d), in which the quality of effluent was worsen with the acidification seriously by pH value droped to 6.5. In intermediate period(13-21d), gradually, the running was tended to stable by throwing alkali into the reactor. In the last stage of preliminary start-up, the ratio of removal rose to 78 percent, anaerobic sludge multiplies more fast and exiguous particles appeared.
     The period of enhancing load was a transitional stage before the reactor running stably. The cubage loading rose from 2.52kg COD/m~3.d to 15 kg COD/m~3.d gradually. Because the anaerobic bacterium multiplied very slowly, 64 days was consumed at this stage; The reactor ran stable with the pH value of effluent stabled around 7.0, so it's no need to throw alkali any more; there was a common phenomenon that the ratio of COD's removal in first day had a little lower than the last time of loading running, but it would had risen in successive three days. With enhancement of loading in reactor, the activity of sludge was strengthen unceasingly, and it produced more air by sludge. In the intermediate stage of enhancing loading, the phenomenon of losing flocculent sludge had disappeared; anaerobic bacterium multiplies rapidly, and the thickness of sludge bed had increased unceasingly. The volume of sludge bed was about 50 percent of all reactor when the last stage of enhancing loading coming; the sludge was mostly granulated. The ratio of COD removal maintained above 75 percent.
     In the bearing load stage, the cubage load had been enhanced to 22.5kgCOD/m~3.d. The ratio of COD removal droped to 65 percent, at the same time, pH value of effluent droped to 6.5. After had been running 10 days by supplying more alkali, the ratio of COD removal could stabilize at 75 percent finally. But pH value of effluent was under 7.0 and it needed to supply appropriate alkali every day to keep the environment which adapted to multiply anaerobic bacterium in the reactor.
     2. There were so many factors could be affect the running of reactor such as different temperature, different cubage loading of COD and different pH value. Known by the experiment results: in the UASB reactor, 35℃was the most appropriate temperature, 7.0 was the best pH value. When the cubage loading was 10kgCOD/m~3·d, the reactor had been in a ideal condition to treat the waste water.
     3. The experiment of ammonia oxidation in anaerobic condition consumed 112 days; According to the ammoniac-nitrogen concentration of influent, the process of running composed of divided three stages: period of adaptation、running stage with high concentration、running stage with low concentration.
     In the period of adaptation, the ammoniac-nitrogen average concentration of influent was approximately 150mg/L; the concentration of effluent was very close to the influent's, sometimes the concentration of effluent was slightly higher than influent's, and the ammoniac-nitrogen hadn't been removed in the reactor. The average ratio of removal about COD and NO_2~--N was 46.7 percent and 29.2 percent respectively.
     The concentration of ammoniac-nitrogen changed from 230mg/L to 270mg/L in the high concentration stage. The average of it was 245mg/L, the concentration of ammoniac-nitrogen in effluent was lower than in influent's. There was the period of ammonia-oxidation in anaerobic condition. The cubage loading of ammoniac-nitrogen had raised to 0.85kg/m~3 d from 0.45kg/m~3 d gradually, and the average ratio of removal had risen to 10.2 percent from 6.5 percent also; The average ratio of removal about COD and NO~2~--N reached 73.1 percent and 54.9 percent.
     In the low concentration stage, the concentration of ammoniac-nitrogen in influent was adjusted to 150mg/L again, and the cubage loading of it maintained around 1.15kg/m~3·d. The ratio of removal had risen to 28.1 percent from 10.6 percent. After the three stages, the starting of response about ammoniac-oxidation in anaerobic condition had been finished basically.
     During the running period, the response of ammonia-oxidation in anaerobic condition wasn't exist at the beginning time, but it reached about 15.9 percent in the middle stage, and it rose gradually to 65 percent from 28 percent in the middle-last stage. Bacterium of ammonia-oxidation in anaerobic condition had been enriched in great degree in the reactor.
引文
[1]李宝林,王凯军.大型集约化猪场粪水处理现状及建议[J].中国沼气,1998,16(2):31-33.
    [2] 宋乾武,胡国光.畜禽养殖废水处理方法探讨[J].给水排水,2000.1(26):9.
    [3] 王兆军.规模化畜禽养殖污染有效防治途径探讨[J],中国人口资源与环境,2001,11:72-74.
    [4] 潘安君.畜禽养殖业废弃物利用和治理模式初探[J].北京水利,1996,(5):53-55.
    [5] 郭养浩,孟春.高浓度有机废水二相厌氧消化过程特性研究[J].中国环境科学,1997,17(5),469-473.
    [6] 贺延龄.废水的厌氧生物处理[M]北京:中国轻工业出版社,1998.
    [7] 任南琪,王爱杰.厌氧生物技术原理与应用[M]北京:化学工业出版社,2004.
    [8] 王凯军,左剑恶,甘海南,等.UASB工艺德理论与工程实践[J].北京:中国环境科学出版社,200,9:16-20.
    [9]stronach. Anaerobic digestion process[J].Industrial wastewater Treatment. 1986(6):23-35.
    [10] Leslie Grady C P,Glen Digger T,Henry lim C,et al.废水生物处理(第二版)[M].北京:化学工业出版社,2002.张锡辉,刘勇弟(译).
    [11]刘立凡.UASB+AF处理高浓度涤纶废水的生产性试验研究[J].广东工业大学学报,2002,19(2):56.
    [12]杨岳平,徐新华.废水处理工程及实例分析[M]北京:化学工业出版社,2003.
    [13] 赵立军.废水厌氧生物处理技术综述与研究进展[J].环境污染治理技术与设备,2001,10:58-66.
    [14] 方治华,柯益华,杨平,等.厌氧流化床反应器微生物固定化载体筛选的研究[J].环境科学学报,1995,15(4):399-406.
    [15] 钱易.现代废水处理新技术[M]北京:中国科学技术出版社,1993.
    [16] 申立贤.高浓度有机废水厌氧处理技术[M]北京:中国环境科学出版社,1991.
    [17] 许丹东,肖红.发泡多孔性藻朊酸钙胶体在UASB反应器生物造粒中的作用研究[J].环境科学,1994,16(1):39-41.
    [18] 周律,王宝全,于泮池.投加活性炭加快UASB反应器内颗粒化进程研究[J].中国给水排水,1996,12(5):16-18.
    [19] 吴允,王育红,王林山.UASB反应器中加入膨润土和聚丙烯酰胺培养颗粒污泥[J].环境保护科学,1997,23(6):13-15.
    [20]常志州.禽畜粪便生物干燥技术研究[J].农业环境保护,2000,19(4):213-215.
    [21]邓良伟,姚爱莉.规模化猪场粪污处理工艺研究[J].西南农业学报,2000,13(增刊):113-117.
    [22]张克强,高怀友.畜禽养殖业污染物处理与处置[M]北京:化学工业出版社:2004,
    [23] 严格,王伟岩.集约化养猪场的污染物资源化利用[J].中国科技信息,2005,16.89.
    [24] 于金莲.畜禽养殖废水处理方法探讨[J].中国给排水,2000,26(9):44-47.
    [25] 李震钟.畜牧场生产工艺与畜舍设计[M].中国农业出版社,2000.
    [26] 邓良伟,陈铬铭.IC工艺处理猪场废水试验研究[J].中国沼气.2001,19(2):12-15.
    [27] 田宁宁.畜禽养殖场粪污的治理技术[J].中国给排水,2002,18(2):71-73.
    [28] 张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报.2000,13(增刊):105-112.
    [29]邵芳.矿化垃圾生物反应床处理畜禽废水的试验研究[J].环境污染治理技术与装备,2002,3(2):32-36.
    [30]袁莉.UASB处理啤酒废水颗粒污泥培养研究[J].酿酒,2005,32(4):58-59
    [31]陈蕊,高怀友,傅学起,等.畜禽养殖废水处理技术的研究与应用[J].农业环境科学学报,2006,25(增刊):375-377
    [32]廖新悌,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113—117.
    [33]邓良伟.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报,2000,18(3):92-94.
    [34]廖新悌,汪植三,崔理华,等.规模化猪场用水与废水处理技术[M].北京:中国农业出版社,1999.
    [35]邓良伟.水解-SBR工艺处理规模化猪场粪污研究[J].中国给水排水,2001,17(3):8-11.
    [36]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,(6):44-46.
    [37]高越晗,等.西子生态农场的综合开发利用研究[J].环境污染与防治,1998,20(4):26-29.
    [38]韩力平,王建龙,施汉昌.生物强化技术在难降解有机物处理中的应用[J].环境科学,1999,20(6):100-102
    [39] 邓喜红.规模化养殖场粪污治理概述[J].农业环境与发展,1999,18(2):42-46.
    [40] 李秀金.ASBR-SBR组合反应器用于高浓度有机污水处理[J].中国农业大学学报,2002,7(2):110-116.
    [41]范建伟,张杰.活性污泥膜分离技术在畜禽废水处理中的应用[J].工业用水与废水,2002,33(3):27-29
    [42]邓仕槐,吴晓斌.环境监测与评价实验指导.四川农业大学,2005.
    [43]邓仕槐,伍钧.土壤农化分析实验指导.四川农业大学,2003.
    [44]国家环保局.水和水质监测分析方法(第三版)[M]北京:中国环境科学出版社,1987.
    [45] 石宪奎,倪文.升流式厌氧污泥床反应器工程启动研究[J].环境污染与防止,2004,26(5),363-365.
    [46] 周雪飞,任南琪.高浓度甲醇废水厌氧处理中颗粒污泥和产甲烷细菌的耐酸性[J].环境科学学报,2004,24(4),633-636.
    [47] 杨秀山.固定化甲烷八叠球菌研究[J].中国环境科学,1998同,18(4):356—359.
    [48]Strida A. Vande Graaf AA, Mulder A, Debrun P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology,1995, 61(4): 1245-1251.
    [49]Van de Graaf AA, Kuenen J G. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol..1995,61:1246—1251.
    [50]Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Sys. Appl. Microbiol.,2000, 23 (1): 93 - 106.
    [51] Mulder A, Van de Graaf AA, Robertson LA, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiology Ecology, 1995,16 (3):177-184.
    [52] Van de Graaf AA, de Bruijn P, Robertson LA, et al. Autotrophic growth of anaerobic ammonium- oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8):2187-2196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700