用户名: 密码: 验证码:
循环流人工湿地处理养猪废水及沸石再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对养猪废水中有机污染物和氨氮(NH3-N)浓度高、悬浮物含量高的特点,采用循环流人工湿地(circle-flow constructed wetland, CFCW)工艺对养猪废水进行处理,研究CFCW处理养猪废水的效能,并针对人工湿地天然钙型沸石吸附NH3-N饱和的现象进行了再生研究。主要结果如下:
     1、以天然钙型沸石为研究对象,利用序批式试验探讨了天然钙型沸石对NH3-N的吸附性能,天然钙型沸石对NH3-N的吸附等温线符合Freundlich方程,饱和吸附容量能达到38.18mg/g。
     2、研究填料天然钙型沸石对吸附NH3-N饱和的天然钙型沸石(简称铵沸石)的曝气再生及化学再生进行了初步研究。曝气再生试验研究了曝气强度对铵沸石再生的影响,在设定的四种曝气强度下,与自然再生进行对比得知,铵沸石在曝气量20ml/min条件下再生效果最好,曝气再生41 d后,NH3-N、MO3--N(硝态氮)均有显著上升,NH3-N浓度达到43 mg/L,NO3--N浓度达到68 mg/L。
     3、通过筛选并优化化学再生剂使用条件的试验结果表明:综合对比分析6种常用化学再生剂,NaCl+CaCl2组合再生剂是铵沸石的最佳再生剂;在30℃-55℃温度范围内,温度越高,沸石再生效果越好,且再生4h后NH3-N解析量上升显著;pH值在3-11变化时,铵沸石的再生效果受pH值影响较小;综合考虑再生效率及成本,当组合再生剂用量为0.64 mol/L,或NaCl:CaCl2=7:3时沸石再生效果最佳。
     4、以养猪模拟废水为处理对象,考察了CFCW的去运行情况。在湿地系统运行阶段,进水NH3-N浓度在600-800 mg/L的高浓度,出水NH3-N在150-260 mg/L,系统对NH3-N的去除率为61%-76%,而在一年多前的湿地系统启动阶段,进水NH3-N浓度为558-883 mg/L,而系统出水浓度却小于0.1 mg/L, NH3-N去除率高达99.9%以上;湿地系统对NH3-N去除不但有明显的下降,而且系统出水远高于养猪废水NH3-N最大排放标准为80mg/L的要求,历时一年多高NH3-N负荷的运行已经使人工湿地中的钙型沸石对NH3-N的吸附达到饱和。湿地运行阶段进水CODcr浓度为250-500 mg/L,系统出水CODcr浓度在30~80 mg/L,系统对CODCr的去除率为78%~92%,与人工湿地初期阶段CODCr处理效果相比,系统对CODCr的去除效果较好,CODCr去除率仅仅下降了8%。
     CFCW曝气再生试验表明:曝气后人工湿地系统中出水NH3-N浓度总体趋势增加,最高浓度可达400 mg/L,浓度增加150 mg/L多,沸石再生效果明显。对CFCW进行NaCl+CaCl2再生化学再生试验,出水NH3-N浓度由化学再生前的350 mg/L上升到533mg/L,浓度增加200 mg/L多。增加曝气和添加组合化学剂NaCl+CaCl2,均可实现铵沸石再生,且再生效果良好。
Research on the efficiency of circle-flow constructed wetland (CFCW) process for swine wastewater treatment because of high concentrations of organic contamination, ammonia nitrogen (NH3-N), and suspended solids in swine water. Testing natural Ca-form zeolite's regeneration process to resolve the problem that zeolite adsorbs NH3-N becoming saturation. Main results are as follows:
     1 Through a serious of sequence batch experiments, researching the NH3-N adsorption capacity of natural Ca-form zeolite, The results show that the adsorption isotherm of Ca-zeolite for NH3-N consistents with Freundlich equation, and the maximal adsorption capacity is as high as 38.18 mg/g.
     2 Researching on the efficiency of aeration regeneration and chemistry regeneration to NH4+-zeolite by seting 4 kinds of aeration intensities and studying the effect of aeration intensity on NH4+-zeolite regeneration, and comparing with natural regeneration, NH4+-zeolite aeration regenerate is best when aeration intensity is 20 ml/min. NH3-N and NO3--N have notable go up equally after 41 d, NH3-N reaches 43 mg/L, NO3--N reaches 68 mg/L.
     3 Comprehensively comparing the regeneration effects of select the best chemistry regeneration solvent from six different chemistry solvents, and optimize the working conditions of the best chemical solvent., the regenerate containing CaCl2 and NaCl have the optimal regeneration effect. With the temperature increasing, the regeneration effect of NH4+-zeolite is increased correspondingly, and the release rate of NH3-N increases significantly after 4 hour's regeneration. With pH ranging from3.0 to 11.0, the regeneration effect of NH4+-zeolite is similar. Comprehensively considering the regeneration cost and the efficiency, when the useful content of regenerant is 0.64 mol/L, the ratio of NaCl to CaCl2 is 7 to 3, the natural Ca-form zeolite have optimal regeneration effect.
     4、Taking the simulated swine wastewater as the object to inspect the efficiency of CFCW for swine wastewater treatment. In CFCW operated stage, NH3-N high concentration entering constructed wetland system is between 600 and 800 mg/L, NH3-N concentration leak from constructed wetland system is 150-260mg/L, the elimination rate of system to treat NH3-N reachs 61% to 76%, but in the stage of CFCW start, the NH3-N concentration of entering constructed wetland system is 558~883 mg/L, but the NH3-N concentration leak from constructed wetland system is less than 0.1 mg/L, the elimination rate reaches as high as 99.9%. elimination rate of NH3-N in the CFCW does not drop, but also the NH3-N concentration leak from constructed wetland system higher than the requests that raises pigs the waste water NH3-N biggest emission standard is 80 mg/L. Natural Ca-form zeolite in CFCW has achieved saturated to the NH3-N adsorption after a year. Constructed wetland operation stage, the CODCr concentration entering constructed wetland system is 250~500 mg/L, leak from constructed wetland system is 30~80 mg/L, elimination rate of the constructed system for CODCr is about 78%~92%, but comparing with CFCW start stage, the removal effect of CODCr is good, its removal just drop about 8%
     Aeration regeneration experiments on CFCW indicate that NH3-N concentration in CFCW reach nearly 400 mg/L, NH3-N 150 mg/L, NH4+-zeolite regenerative effect is obvious. Chemistry regeneration on CFCW, the NH3-N concentration increase from 35 mg/L to 533 mg/L, rising more than 200 mg/L. Test results show that the increased aeration and add combinatorial chemistry NaCl+CaC2 regeneration, and NH4+-zeolite regenerative effect is better.
引文
[1]国家发展改革委环境和资源综合利用司.我国集约化养殖污染治理现状、问题及建议[J].中国经贸导刊,2004,6:29—30
    [2]王伟,张存根.论我国养猪业的可持续发展[J].北京农学院学报,2004,19(1):49—52
    [3]彭里,王定勇.猪场废水的生物处理技术及其效果[J].家畜生态,2003,24(2):67—70
    [4]杜鸿章,房廉清,江义,等.难降解高浓度有机废水催化湿式氧化净化技术[J].水处理技术,1994,23(2):16—18
    [5]温书斋.关于现代化畜牧生产中的环境与环境管理[J].畜牧与兽医,2000,32(增刊):1—3
    [6]张克强,高怀友著.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004
    [7]李明丽,杨金.养猪生产中的环境污染及其防制对策[J].云南畜牧兽医,2003, (4):9—11
    [8]张彩英.日本畜产环境污染的现状及其对策[J].国外农业环境保护,1992,2
    [9]李贤辉.农村畜禽养殖污染及治理措施[J].中国畜牧杂志,2003,39(5):58--59
    [10]邓学法,朱立良,常杰.畜禽养殖生产中环境污染问题及治理措施[J].河南畜牧兽医,1999,2(9):4—7
    [11]李茂松等.中国畜禽废弃物的产出量、污染现状及危害[J].全国农业面源污染与综合防治学术研讨会论文集,2004
    [12]邓喜红.规模化养猪场粪污治理概述[J]. Agro-environ. and Develop,1999,16 (2):42-47
    [13]邓良伟.规模化畜禽养殖废水处理技术现状探析[J].中国生态农业学报,2006,14(2):23—26
    [14]Choudhary M, Bailey L D, Grant C A. Review of the use of swine manure in crop production:effects on
    yield and composition and on soil and water quality[J]. Waste Management & Research,1996,14:581-595
    [15]汪敏,郑师章,姚春云,等.五里塘生态农场有机废弃物的资源化生态工艺[J].城市环境与城市生态,1993,6(3):21—24
    [16]潘学峰,付泽田,Burton C H.发达国家畜禽废物处理技术与立法[J].农业工程学报,1995,11(3):108--113
    [17]Shahzad A, Ilyas T. Environmental consequences of cattle feedlot manure on saline soils. The International Journal of Environmental Studies,2000,57(6):95-112
    [18]蔡阿兴,蒋其鳌,常运诚,等.沼气肥改良碱土及其增产效果研究[J].土壤通报,1999,30(1):4—6
    [19]廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113—117
    [20]叶勇,谭凤仪,卢昌义,等.红树林系统处理畜牧废水营养盐的研究[J].环境科学学报,2001,21(2):224—228
    [21]廖新俤,骆世明.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究[J].应用生态学报,2002,13(6):719—722
    [22]Robert L Knight, Victor W E, Payne Jr B, et al. Constructed wetlands for livestock wastewater
    management. Ecological Engineering,2000,15:41-55
    [23]张建,邵长飞,黄霞,等.污水土地处理工艺中的土壤堵塞问题[J].中国给水排水,2003,19(3):17—20
    [24]于金莲,阎宁.畜禽养殖废水处理方法探讨[J].给水排水,2000,26(9):44—47
    [25]Kazuyoshi Suzuki, Yasuo Tanaka, Takashi Osada, et al. Removal of phosphate, magnesium and calcium from swine waste wastewater through crystallization enhanced by aeration[J]. Water Research, 2002,36:2991-2998
    [26]成文.养猪场废水的化学混凝后处理[J].华南师范大学学报(自然科学版),2000(1):82—86
    [27]杨虹,李道堂,朱章玉,等.集约化养猪场冲栏水的达标处理[J].上海交通大学学报,2000,34(4):550—560
    [28]方仁声.大型猪场废水处理技术的研究与应用[J].中国沼气,1998,16(4):39—41
    [29]孙峰.MBBR处理畜禽养殖场废水的实验研究[J].科学技术与工程,2009,2:482—485
    [30]邓良伟,陈铬铭.IC工艺处理猪场废水实验研究[J].中国沼气,2001,19(2):12-15
    [31]杨朝辉.固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J].湖南大学学报(自然科学版),2002,29(6):95—99
    [32]Tilche A, Malaspina F. Biological nutrient removal in a full-scale SBR treating piggery wastewater Result sand modeling[J]. Water Science and Technology,2001,43(3):363-371
    [33]赵恒斗.规模化养猪的污水产生、治理与综合利用[J].中国沼气,1996,14(3):24—26
    [34]Kee K C A. Wastewater treatment system for an industrialized pig farm[J]. Water science and Technology, 1993,28(7):217-222
    [35]刘丽娜,赵建刚.人工湿地技术及其应用概述[J].生物学教学,2006,31(6):9—11
    [36]漆璐,周仲魁,孙占学.人工湿地生态系统污水净化研究新进展[J].四川环境,2007,26(2)
    [37]李羚.人工湿地处理污水技术及其在我国的应用现状和对策[J].现代城市研究,2004,12:33—39
    [38]陆健健.湿地生态系统管理的研究[J].科学中国人
    [39]于少鹏,孙广友,窦素珍.人工湿地污水处理技术及其在东平湖水质净化中的运用[J].湿地科学,2004,2(3):241—244
    [40]Tetmesse Valley Authority. Destruction of Constructed Wetlands for Treatmeat of Municipal Wastewater, Monitory Report for the Period[J]. River Basin Operations Warer Resources. March 1988 to October 1989,1990:5
    [41]孙桂琴,董瑞斌,潘乐英,等.人工湿地污水处理技术及其在我国的应用[J].环境科学与技术,2006,29(增刊):144-150
    [42]成水平.人工湿地植物研究[J].湖泊科学,2002,14(2):179—184
    [43]粱继东.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49—55
    [44]粱威,吴振斌,周巧红,等.复合垂直流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学,2002,21(1):5—8
    [45]陈明利,吴晓芙,胡日利.人工湿地去污机理研究进展[J].中南林学院学报,2006,26(3):123—127
    [46]李荣林.人工湿地污水处理技术[J].山西化工,2007,27(1):67—69
    [47]Neralla S, Weaver R W, Lesikar B J, et al. Improvement of domestic wastewater quality by subsurface flow constructed wetlands[J]. Bioresource Technology,2000,75(1):19-25
    [48]项学敏,周集体,宋晨,等.人工湿地水处理技术研究进展存在问题与改进[J].环境科学与技术,2006,29(10):101—103
    [49]Reddy K R. Fate of nitrogen and Phosphorus in a wastewater retention reservoir containing aquatic macrophytes[J]. Jounal of Environmental Quality,1983,12(1):137-141
    [50]Huertas E, Folch M, Salgot M, et al. Constructed wetlands effluent for streamfow augmentation in the Beso's River(Spain)[J]. Desalination,2006,188(1-3):141-147
    [51]Kadlec R H, Tanne C C, Hally V M, et al. Nitrogen spiraling in subsurface-flow constructed wetlands. Implications for treatment response[J]. Ecological Engineering,2005,25(4):365-381
    [52]Badkoubi A, Ganjidoust H, Ghaderi A, et al. Performance of a subsurface constructed wetland in Iran[J]. Water Science and Technology,1998,38(1):345-350
    [53]尹炜,李培军,尹澄清,等.潜流人工湿地的局限性与运行问题田[J].中国给水排水,2004,20(11):36—38
    [54]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991
    [55]US EPA. Constructed wetlands and aquatic plant systems for municipal wastewater treatment manual. Washington[J].1988:20-52
    [56]Andrew Wood. Constructed wetlands and aquatic pollution control:fundamentals to their understanding[J]. Water Science and Technology,1995,32(3):21-29
    [57]Moshiri G A, Brix H. Wastewater treatment in contructed wetlands:system design, removal processes, and treatment performance, Constructed Wetlands for Water Quality Improvement[M]. BocaRat on, FL:CRC Press,18-22
    [58]Magmedov V G, Zakharchenko M A, Yakovleva L I, et al. The use of constructed wetlands for the treatment of run-off and Drainage Waters:the UK and UKraine experience[J]. Water Science and Technology,1996,33(4):315-323
    [59]Reed S C, Brown D. Subsurface flow wetlands—a performance evaluation[J]. Water Environment Research,1995,67(2):244-248
    [60]Lantzke I R, Heritage A D, Pistillo G, et al. Phosphorus removal rates in bucket size planted wetlands with a vertical hydraulic flow[J]. Water Research,1998,32(6):1888-1990
    [61]Cooper P. Constructed wetlands for wastewater treatment[M]. USA:Michigan Lewis Publisers,1989: 153-172
    [62]刘玲.人工湿地污水处理技术[J].襄樊职业技术学院学报,2004,3(5):21—23
    [63]吴晓磊.人工湿地废水处理机理[J].环境科学,1994,16(3):83—86
    [64]籍国东,孙铁晰.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,3(2):224—228
    [65]何玉海.人工湿地的除污机理及提高氮磷去除率的方法[J].新疆钢铁,2004,2:42—45
    [66]诸惠昌,胡纪萃.新型废水处理工艺-人工湿地的设计方法[J].环境科学,1993,14(2):39—43
    [67]沈耀良,王宝贞.废水生物处理新技术时[M].北京:中国环境科学出版社,2000
    [68]杨敦.潜流式人工湿地在暴雨径流污染控制中的应用[J].农业环境保护,2002,21(14):334—336
    [69]House C H, Broome S W, Hoover M T. Treatment of Nitrogen and Phosphorus by a constructed Upland-wetland Wastewater Treatment Syestem[J]. Wat Sci Tech,1994,29(4):177-184
    [70]张建,黄霞,魏杰,等.地下渗滤污水处理系统的氮磷去除机理[J].中国环境科学,2002,22(5):438—441
    [71]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88—92
    [72]刘冰,杨小南.人工湿地技术在辽宁省城市污水处理中应用的研究[D].中国环境保护优秀论文,2005
    [73]L Scholes. The treatment of metals in urban runoff by constructed wetland[J]. The Science of the Total Environment,1998,214:211-219
    [74]Walker D J. The reduction of heavy metals in a storm water wetland[J]. Ecological Engineering,2002, 18(4):407414
    [75]Reddy K R, O Connor G A, Gale P M. Phosphorus Sorption Capacities of Wetland Soils andStream Sediments Impacted by Dairy Effluent[J]. Journal of Environmental Quality,1998,27:438-447
    [76]Michael C Kemp, Dennis B George. Subsurface flow constructed wetlands treating municipal wastewater fornitrogen transformation and removal[J]. Water Environment Research,1997,69(2):54-62
    [77]Hill D T, Payne V W E, Rogers J W, et al. Ammonia effects on the biomass production of five constructed wetland plant species[J]. Bioresource Technology,1997,62:109-113
    [78]Rober L Knight. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering, 2000,15:41-55
    [79]Criets R W. Design criteria and Practice for constructed wetland[J]. Wat. Sci. Tech.,1994,29(4):1-6
    [80]Gersberg R M, Elkins B V. Role of aquatic plants in wastewater treatment by artificial wetlands[J]. Water Research,1986,20(3):363-368
    [81]James J, Sartoris. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland[J]. Ecological Engineering,2000,14(5):49-65
    [82]Drizo A. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow. using shale as a substrate[J]. Wat. Sci. Tech.,1997,35(5):19-25
    [83]刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究,1997,10(4):15-19
    [84]贺锋,吴振斌.水生植物在污水处理和水质改善中的应用[J].植物学通报,2003,20(6):641-647
    [85]阳承胜,蓝崇钰,张干.N、P、K在宽叶香蒲人工湿地系统中的分布与积累[J].深圳大学学报,2005,22(3):265—267
    [86]蒋跃平,葛滢,岳春雷,等.轻度富营养化人工湿地处理系统中植物的特性[J].浙江大学学报,2005,32(3):309—313
    [87]刘士哲,林东教.猪场污水漂浮栽培植物修复系统的组成及净化效果研究[J].华南农业大学学报,2005,4(1):24—26
    [88]张政,付融冰,杨海真.水量衡算条件下人工湿地对有机物的去除[J].长江流域资源与环境,2007,16(3):363—367
    [89]耿琦鹏,洪剑明.垂直流芦苇人工湿地对化粪池出水净化效果的研究[J].污染防治技术,2007,20(1):28—30
    [90]于少鹏,王海霞,万忠娟,等.人工湿地污水处理技术及其在我国发展的现状与前景[J].地理科学进展,2004,23(1):23—29
    [91]王庆安,任勇,钱骏,等.成都活水公园人工湿地塘床系统的生物群落[J].重庆环境科学,2001,23(2):52—55
    [92]严华,刘宁京.北京稻香湖风景旅游区及翠湖国家城市湿地公园规划简介[J].城市规划通讯2006,13:14—16
    [93]邓辅唐,吴广,李强,等.人工湿地净化滇池入湖河道污水的示范工程研究[J].环境工程,2005,23(3):29—32
    [94]王庆安,任勇,钱骏,等.成都活水公园人工湿地塘床系统的生物群落[J].重庆环境科学,2001,23(2):52—55
    [95]Drioz A, Frost C A, Grace J. Physico-chemical screening of phosphate removing substrates for use in constructed wetlands systems [J]. Wat. Res,1999,33(7):3595-3602
    [96]周庆红,诸荣芳,谈建忠.人工湿地系统处理鸡粪污水的技术经济可行性[J].上海环境科学,1993,12(8):21—24
    [97]汪植三,李其谦,廖新悌,等.畜禽舍粪便污水及废气净化的研究[J].农业工程学报,1995,11(4):90—95
    [98]廖新俤,汪植三.人工湿地在猪场污水净化中的应用[J].农业工程报,1995,11(2):96—100
    [99]刘开容,樊尔维,余志雄.人工湿地法处理猪场粪水的试验研究[J].西南农业大学学报(社会科学版),1997,11(2):42—45
    [100]余远松,邓润坤.凤眼莲水生生物系统处理大型养猪场废水的应用研究[J].农业环境保护,2000,19(5):301—303
    [101]何连生,朱迎波.循环强化垂直流人工湿地处理猪场污水[J].中国给水排水,2004,20(12):5—8
    [102]邓仕槐,李远伟.姜花在人工湿地中脱氮除磷研究[J].农业环境科学学报,2007,26:249—251
    [103]林东教,唐淑军.漂浮栽培雍菜和水葫芦净化猪场污水的研究[J].华南农业大学学报,2004,25(3):14—17
    [104]岳春雷,常杰.复合垂直流人工湿地对低浓度养殖废水循环净化功能研究[J].科学通报,2004,20(1):15-17
    [105]潘涌璋,唐纪进,张临苏.高级综合稳定塘处理养猪场废水[J].环境工程,2004,22(5):12—13
    [106]彭英霞,林聪,殷志永,等.生物滤池处理养殖废水的工程实践研究[J].环境控制,2005,11:60—61
    [107]张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报,2000,13(增刊):105-112
    [108]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,6:44—46
    [109]张冲,黄志心,陈家钊,等.红泥塑料厌氧工艺处理猪场养殖污水[J].农业环境科学学报,2006,25(增刊):176—178
    [110]王云燕,陈清松,等.竹炭-壳聚糖复合吸附剂的制备及其性能[J].福建林学院学报,2006,26(4):363—367
    [1]Lahav O, Green M. Ammonium removal using ion exchange and biological regeneration[J]. Water Research,1998:2019-2028
    [2]张曦,吴为中,温东辉,等.氨氮在天然沸石上的吸附及解吸[J].环境化学,2003,22(2):166-171
    [3]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002,254—284
    [1]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社,1986,1—78
    [2]袁俊生,郎宇琪,张林栋,等.沸石法工业污水氨氮治理技术研究[J].环境污染治理技术与设备,2002,3(12):60—63
    [3]李晔,肖文浚,彭长琪,等.沸石改性及其对氨氮废水处理效果的研究[J].非金属矿,2003,26(2):53—55
    [4]Piirtola L, Hultman B, Lowen M. Effects of detergent zeolite in a nitrogen removal activated sludge process[J]. Water Science and Technology,1998:41-48
    [6]Zorpas A, Constantinides T, Vlyssides A G, et al. Heavy Metal Uptake by Natural Zeolite and Metals Partitioning in Sewage Sludge Compost[J]. Bioresource Technology,2000:113-119
    [7]陈娟,丁为民,张迎颖.人工湿地中不同因素处理氮磷效果的试验研究[J].江苏农业科学,2008,5:290—293
    [8]李冬,李云.沸石在水处理中的应用[J].给水排水,1998,24(7):60—63
    [9]李德生,黄晓东,王占生.生物沸石反应器在微污染水源水处理中的应用[J].环境科学,2000,21(5):71—73
    [10]秦怡,李勇,金龙.人工湿地中常用填料和植物对污染物去除效果的比较[J].江苏环境科技,2006,19(5):46—48
    [11]付融冰,杨海真,顾国维.人工湿地中沸石对铵吸附能力的生物再生研究[J].生态环境,2006,15(1):6—10
    [12]Bemal M P, Lopez-Real J M. Natural zeolites and septiolites as ammonium and ammonia adsorbent materials[J]. Bioresource Technology,1993,43:27-33
    [13]许保玖,龙滕锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000,126—136
    [14]胡美禄,袁宗选,肖少兰,等编.物理化学[M].高等教育出版社,1986
    [15]Bolan C, Mowatt B S. New horizon for a hew century-australia and new Zealand second joint soils conference[C], New Zealand, Lincoln University,3-8 December,2000,2:27
    [1]王曙光.沸石.碳纳米管的改性及应用研究[D].中国科学院生态环境研究中心.博士学位论文,2002,6
    [2]付婉霞,尹婷.沸石除氨氮再生剂选择及应用条件的确定[J].北京建筑工程学院学报,2007,23(2):01—03
    [3]付融冰,杨海真,顾国维.潜流水平沸石湿地系统的脱氮调节再生功能[J].同济大学学报(自然科学版),2006,34(4):523—527
    [4]刘玉亮,罗固源,阙添进,等.斜发沸石对氨氮吸附性能的试验分析[J].重庆大学学报,2004,27(1):62—65
    [5]赵雅萍,金伟,曹达文,等.钙型沸石对生活污水中氨氮去除的研究[J].离子交换与吸附,2004,20(5):458—463
    [6]张兵,崔福义,张学洪.污水脱氮过程中斜发沸石吸附再生性能的试验研究[J].中国给水排水,2006,22:321—326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700