用户名: 密码: 验证码:
固定化铜绿微囊藻及其对畜禽废水的净化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择了我国水华的优势藻种铜绿微囊藻(Microcystis aeruginosa)作为实验材料,分别采用海藻酸钠(SA)和聚乙烯醇(PVA)为固定化载体对铜绿微囊藻进行固定化实验,采用正交试验的方法确定两种包埋剂包埋固定化铜绿微囊藻的最佳条件,通过模拟污水试验研究了两种载体的固定化方法在不同影响条件下对氮磷的去除效果,并采用最佳包埋条件下的固定化铜绿微囊藻处理畜禽养殖废水,研究固定化铜绿微囊藻在实际污水中的生长及对实际污水中氮磷等营养元素的去除效果。研究结果如下.
     (1)正交试验以成球情况、机械强度、传质时间以及对NH4+-N和TP的净化能力为指标,考察包埋剂浓度、交联剂浓度、交联时间和包埋量等因素对上述指标的影响,从而确定海藻酸钠凝胶藻球的适宜包埋条件是:3%的海藻酸钠溶液,5%CaCl2溶液,2h交联时间,1:1的包埋量(海藻酸钠v:藻液v);而聚乙烯醇凝胶藻球的适宜包埋条件是:10%聚乙烯醇-0.5%海藻酸钠溶液,交联剂为饱和硼酸-2%CaCl2的混合溶液,12h交联时间,1:2的包埋量(聚乙烯醇-海藻酸钠v:藻液v)。在此条件下固定的铜绿微囊藻球具有较高的生物活性、较好的强度以及传质性能。
     (2)通过模拟污水试验研究两种载体(海藻酸钠和聚乙烯醇)的固定化方法在不同影响条件下对氮磷的去除效果。研究表明将光强控制在25001ux-30001ux,温度为25℃、pH为8左右时最适合包埋固定化铜绿微囊藻去除污水中的氮磷;采用高密度藻珠(5×106)、将凝胶藻珠与污水比例控制在10%-14%的范围内、污水中氮磷比的范围在5:1-10:1内,对模拟污水中的氮磷的去除效果较好。
     (3)将铜绿微囊藻固定在海藻酸钠(SA)和聚乙烯醇(PVA)中,对不同浓度的畜禽污水进行净化,研究其对实际污水中TN,NH4+-N,TP,PO43-P和COD的净化效率以及净化过程中铜绿微囊藻的生长、叶绿素a含量的变化,并与未固定的铜绿微囊藻进行对照比较实验,同时还研究了固定化藻细胞对污水pH值的影响及藻细胞的溢出量。研究结果表明,实际污水经过6d的净化处理,固定化铜绿微囊藻细胞对氮磷的去除效果明显高于悬浮藻细胞,对于不同浓度的畜禽污水,SA凝胶藻颗粒对各物质的平均去除率都要高于PVA凝胶藻颗粒;与悬浮藻相比,最终固定化藻细胞的数量和叶绿素a含量都高于悬浮藻细胞的数量和叶绿素a含量,在试验后期PVA凝胶藻球中的藻细胞数量和叶绿素a含量高于SA凝胶藻球;试验开始后水中的pH值不断的增大,最后趋于平稳,最终稳定在9左右;从试验开始SA胶球的藻细胞泄漏量一直大于PVA藻球的泄漏量,到了实验后期,SA胶球的藻细胞泄漏量几乎达到了PVA的两倍,这说明PVA固定的藻球具有更好的强度。
Microcystis aeruginosa as a kind of dominant specie on algal bloom from China was chosen for experimental material in this dissertation, SA and PVA as the immobilized carrier were experimented for immobilized Microcystis aeruginosa respectively. The author adopted orthogonal experiment to determine the optimum condition of using SA/PVA to imbed and immobilize Microcystis aeruginosa. By means of experimental simulation wastewater, this dissertation made in-depth research on the efficiency of SA/PVA removing N、P in different kinds of involved factors. Also, the optimum imbedding condition of immobilizing Microcystis aeruginosa was adopted to dispose the wastewater from livestock farm, and this dissertation investigated the growth of immobilized Microcystis aeruginosa and the efficiency of SA/PVA removing N and P in the practical wastewater.
     This orthogonal experiment was indexed by balling, mechanical strength, transferring time and the ability to purify NH4+-N/TP; and factors influencing the above indexes were investigated, including the concentration of imbedding agent, the concentration of cross-linker, the time of cross linkage, the imbedding proportion and so on. Consequently, the optimum imbedding condition based on SA gelatin balls was obtained, i.e., the concentration of imbedding agent:3% SA; the concentration of cross-linker:5% CaCl2;the time of cross linkage:2h; the imbedding proportion:1:1(VSA:VAlga); and also the optimum imbedding condition based on PVA gelatin balls was obtained, i.e., the concentration of imbedding agent:10% PVA-0.5% SA; the concentration of cross-linker:mixture solvent of saturated boric acid and 2% CaCl2; the time of cross linkage:12h; the imbedding proportion: 1:2(VPVA-SA:VAlga)-Under the above conditions, immobilized Microcystis aeruginosa had better performance on biological activity, mechanical strength and transfer.
     By means of experimental simulation wastewater, this dissertation made in-depth research on the efficiency of SA and PVA removing N、P in different kinds of involved factors. The results indicated that the configuration, i.e., illumination:2500lux-3000lux; temperature:25℃; pH:8, was best fit for immobilized Microcystis aeruginosa removing N、P in the simulation wastewater; and the configuration, i.e., high density gelatin(5×106); the proportion of gelatin balls to wastewater:10%-14%; the proportion of N/P in the wastewater:5:1-10:1, was better for removing N、P in experimental simulation wastewater.
     By means of immobilizing Microcystis aeruginosa on SA/PVA and purifying different concentration of wastewater from livestock farm, the author studied on the removal rate for TN, NH4+-N, TP, PO43-P and COD, the growth of Microcystis aeruginosa in the purifying process and the change of Chlorophyll a content. Meanwhile the author drawed a parallel between immobilized and non-immobilized Microcystis aeruginosa, and studied on the influence on pH from immobilized gelatin cells and their leakage. The results indicated that after six days of purification for wastewater, immobilized Microcystis aeruginosa had better effect on removing N、P than suspended algae obviously; for different concentration wastewater from livestock farm, the average removal rate of SA to each involved component was higher than PVA; Compared with suspended algae, the amount of immobilized algae and the content of Chlorophyll a were higher; In the later period of experiment, the amount of algae and the content of Chlorophyll a about PVA were higher than S A; pH had been increasing in the early days, leveled off and reached 9 finally; At the beginning, the leakage of SA gelatin cells kept greater than PVA gelatin cells, and finally the leakage of SA gelatin cells almost reached the double of PVA, which showed that immobilized algae by PVA had higher strength.
引文
[1]贾玉霞.规模化畜禽养殖环境影响及主要防止问题[J].环境保护科学,2002,28(3):25-26.
    [2]张淑瑛,卢映东.规模化畜禽养殖污染危害与防治对策[J].黑龙江环境通报,2004,28(1):29-30.
    [3]李远.我国规模化畜禽养殖业存在的环境问题与防治对策[J].上海环境科学,2002,21(10):597-599.
    [4]高定,陈同斌,刘斌,等.我国畜禽养殖业粪便污染风险与控制策略[J]地理研究,2006,25(2):311-319.
    [5]王方浩,马文奇,窦争霞,等.中国畜禽粪便产量估计及环境效应[J].中国环境科学,2006,26(5):614-617.
    [6]张怡,李岚.我国规模化畜禽养殖业的环境问题与防治对策[C].中国环境科学学会学术年会优秀论文集,2007:1102-1103.
    [7]陈蕊,高怀友,傅学起,等.畜禽养殖废水处理技术的研究与应用[J].农业环境科学学报,2006,25(增刊):374-377.
    [8]邓良伟,陈铬铭.IC工艺处理猪场废水试验研究[J].中国沼气,2001,19(2):12-15.
    [9]张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报.2000,13(增刊):105-112.
    [10]田宁宁,王凯军,李宝林,等.畜禽养殖场粪污的治理技术[J].中国给水排水,2002,18(2):71-73.
    [11]邓良伟.水解—SBR工艺处理规模化猪场粪污研究[J].中国给水排水,2001,17(3):8-11.
    [12]廖新佛,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113-117.
    [13]叶勇,谭风仪,卢昌义,等.红树林系统处理畜牧废水营养盐的研究[J].环境科学学报,2001,21(2):224-228.
    [14]李秀金ASBR-SBR组合反应器用于高浓度有机污水处理[J].中国农业大学学报,2002,7(2):110-116.
    [15]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,(6):44-46.
    [16]范建伟,张杰.活性污泥膜分离技术在畜禽废水处理中的应用[J].工业用水与废水,2002,33(3).
    [17]Voltolina,D., Cordero, B., Nieves,M., et al. Growth of Scenedesmus sp. in artificial wastewater[J]. Bioresource Tehnology.1998,68:265-268.
    [18]Ekholm,P. & Krogems, K. Bioavailability of phosphorus in purified municipal wastewaters[J].War. Res.1998,32(2):343-351.
    [19]Saglam, A,et at. Biosorption for mercury by carbo×ymethylcellulose and immobilized Phaneroehaete chrysosporium[J]. Microchemical Journal,2002,71:73—81.
    [20]张自杰主编.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2001:263-264.
    [21]许春华,周琪.高效藻类塘的研究与应用[J].环境保护,2001,08:41-43.
    [22]Carlos Vilchez et al., Enzyme and Microbial Technology,20:562-572
    [23]茹至刚.环境保护与治理[M].冶金工业出版社.1988,95.
    [24]P,S.Lau,N.F.Y.Tam et al, Effect of density on nutrient removal form primary settled wastewater, Environmental pollution 89(1995):59-66.
    [25]M.E. Martinez, et al., Bioresource technology,2000,(67):233-240.
    [26]Tam N F Y,Wong Y S. Effect of immobilized micro algal bead concentrations on wastewater nutrient removal [J]. Environmental pollution,2000, (107):145-151.
    [27]De-Bashan L E, Herandez J P,Morey T, et al.Microalgae growth-promoting bacteria as'helpers' for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater[J]. Water Research,2004,38(2):466-474.
    [28]Travieso L. Experiments on immobilization ofmicroalgae for nutrient removal in wastewater treatment [J].Bioresource Techno,2002,5(3):181-186.
    [29]陈娟,刘雷.藻类固定化技术研究概况及发展趋势[J].江西化工,2007,6(2):27-29.
    [30]张向阳,等.固定化小球藻去除污水中氮、磷的试验研究[J].中国给水排水,2008,24(1):95-101.
    [31]王爱丽,宋志慧.固定化铜绿微囊藻对污水的净化及其生理特征变化[J].青岛科技大学学报,2005,26(5):398-409.
    [32]潘辉,熊振湖,孙炜.固定化菌藻对市政污水中氮磷去除的研究[J].环境科学技术,2006,29(1):14-34.
    [23]Matheickal, J. T., Yin, P. & Kaewsarn, P.Heavy metal of common marine macroalgal biomass[J]. Water Research,1999,33(6):1534-1537.
    [34]Suhasini, I.P., Sriram, Q., Asolekar, S. R., et al. Biosorptive removal and recovery of cobalt from aqueoussystems[J]. Proc. Biochem.,1999,34(3):47-239.
    [35]杨芬.藻类对重金属的生物吸附技术研究及其进展[J].曲靖师范学院学报,2002,21(5):47-50.
    [36]Mehta S K, Gaur J P. Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgarism[J].Protistology,2001,(37):261-271.
    [37]Akhtar Nasreen, Iqbal Muhammad. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III)[J]. Journal of Environmental Sciences,2008,(20):231-239.
    [38]张恩栋,等.Cu2+对固定化小球藻深度除磷及其生理指标的影响[J].广东化工,2006,33(7):87-89.
    [39]Nelson YM. Model for Trace Metal Exposure in Filter Feeding Flamingos at Alkaline RiftValery Lake, Kenya[J]. Environ Top ical Chem.,1998,(17):2302-2309.
    [40]Yan H, Yie CM, Yin C Q.Kinetics of Phthalate Ester Biodegradation by Chlorella pyrenoidosa [J].Environ Topical Chem,1995,(14):931-938.
    [41]陆光华,赵元慧,汤洁.绿藻对硝基苯类化合物的富集与释放研究[J].环境科学研究,2001,14(3):4-5.
    [42]Cordoba, L.T., et aL. Final treatment for cattle manure using immobilized microalgae:Study of the support media[J]. Resources, Conservation and Recycling,1995,13:167-175.
    [43]王维等.藻类在污水净化中的应用及机理简介[J].重庆环境科学,2002,12:41-43.
    [44]孙红文,黄国兰,从丽莉等.藻类对偶氮染料的降解及定量结构-生物降解性研究[P].中国环境科学,1999,19(4):289-29.
    [45]孙红文,黄国兰,等.藻类与有机污染物间的相互作用研究[J].环境化学,2003,22(5):440-444.
    [46]于保成,等.炼油厂达标外排水藻类固定化法深度处理与回用研究[J].苏州大学学报(工科版),2005,25(3):25-28.
    [47]O.V Shipin, PGJ Mering and J.R. Hoffinann, Petro concept:a tentative approach to biological phosphorus removal incorporating waste stabilization ponds[J]. Water science and technology 2000,42(10-11):223-229.
    [48]Yakup Nurdogan and William J.Oswald, Enhanced nutrient removal in high-rate ponds[J], Wat. Sci. Tech., Vol,31 No.12,pp.33-43,1995.
    [49]Ekholm,P. & Krogems, K. Bioavailability of phosphorus in purified municipal wastewaters[J]. War. Res.1998,32(2):343-351.
    [50]陈鹏,周琪.高效藻类氧化塘处理有机废水的研究和应用[J].上海环境科学,2001,20(7):309-311.
    [51]韩仕群,张振华,严少华.国内外利用藻类技术处理废水、净化水体研究现状[J].农业环境发展,2000(1):13-16.
    [52]Craggs, R. J., Davies-Collev,R. J., Tanner,C.C., et aL. Advanced pond system:performance with high rate ponds of different depths and areas[J]. Wat. Sci. Tech.,2003,48(2):259-267.
    [53]Steen,P., Brenner,A., Shabtai,Y., et aL. Improved fecal coliform decay in integrated duckweed and algal ponds[J]. War. Sci.Tech.,2000,42(10-11):363-370.
    [54]Rupert J. Careggs, etc., Phosphorus removal from wastewater using an algal turf scrubber[J],Water science technology, Vol.33,No.7,p.191-198,1996.
    [55]李哗,李凌等.生物固定化技术在含氮废水处理中的研究[J].工业安全与环保,2004,30(6):18-20.
    [56]黄国兰,孙红文等.固定化藻类的生理特征和对染料的脱色能力研究[J].环境科学学报,2000,07,20(4):445-449.
    [57]Guo-min Cao, Qing-xiang, xian-bo Sun, Tong Zhang, Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogenremoval by coimmobilized cells[J],Enzyme and Microbial Technology,30(2002):49-55.
    [58]Cao, G., Sun, x., Zhang, T. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J]. Enzyme and Microbial Technology,2002,30:49-55.
    [59]Naessens, M., Leclerc, J. C.& Tran-Minh, C.Fiber Optic Biosensor Using Chlorella Vulgaris for Determination of To×ic Compounds[J]. Ecotoxicology and Environmental Safety 2000,46(2): 181-185.
    [60]彭明江,杨平,郭勇.固定化藻类去除氮、磷的研究进展[J].资源开发与市场,2005,21(6):507~508.
    [61]沈耀良,黄勇等.固定化微生物污水处理技术[M].北京:化学工业出版社,2002.
    [62]De-Bashan L E, Herandez J P,Morey T, et al.Microalgae growth-promoting bacteria as'helpers' for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater[J].Water Research,2004,38(2):466-474.
    [63]胡鸿钧,李尧英,魏印心等编著.中国淡水藻类—系统、分类及生态[M].科学出版社,2006.
    [64]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:上海科学技术出版社,1979.
    [65]金相灿,刘树坤,章宗涉编.中国湖泊环境(第一册)[M].北京:北京海洋出版社,1995.
    [66]Lu Y,Wen J F. Isolation, pure cultivation and total DNA extraction of Microcysis Aeruginosa Kutz. in Dianchi Lake [J] Journal of Science,2001,13(3):285-288.
    [67]Kromkamp J, Heuvel A, Mur L R.Phosphorus uptake and photosynthesis by phosphate-limited cultures ofthe cyanobacterium Microcystis aeruginosa[J]. European Journal of Phycology. 1989,24(4):347-355.
    [68]Sommer U.Comparison between steady state and non—steady state competition:experiments with natural phytoplankton[J].Limnology and Oceanography.1985:335-346.
    [69]Fujimoto N, Sudo R, Sugiura N, et al. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures[J]. Limnology and Oceanography.1997:250-256.
    [70]陈蕊,高怀友,傅学起,等.畜禽养殖废水处理技术的研究与应用[J].农业环境科学学报,2006,25(增刊):374-377.
    [71]李小霞,解庆林.菌藻共生系统处理污水的研究及应用前景[J].广西民族学院学报:自然科学版,2006,12(3):112-114.
    [72]N.F Y Tam,PS.Lan and YS. Wong, wastewater inorganic N and P removal by immobilized Chlorella vulgaris[J],Water science technology,1994,30(6),368-374.
    [73]Domenico Voltolina et al, Bioresourc Technology,1998,68:265-268.
    [74]李花子,王建龙,文湘华,等.聚乙烯醇-硼酸固定化方法的改进[J].环境科学研究,2002,15(5),25-27.
    [75]陈娟.固定化小球藻及其对氮磷利用的研究[D].南昌大学,2007.
    [76]黄秀梨,辛明秀.微生物实验教程(第二版)[M].北京:高等教育出版社,2008.
    [77]刘世名等.生物反应器高密度异养培养小球藻[J].华南理工大学学报.2003,28(2):81~86.
    [78]王振祥,纪岚.测定叶绿素a方法探讨[J].安徽化工,2004,30(5):48.
    [79]周永欣,章宗涉.水生生物毒性试验方法[M].北京:农业出版社,1989.
    [80]严清.固定化菌、藻系统对污水中氮磷营养盐的净化研究[D].中山大学,2007.
    [81]Tam,N.F.Y.&Wong,Y.S.Effect of immobilized microalgal bead concentrations on wastewater nutrient removal [J].Environmental Pollution,2000,107(1):145-151.
    [82]Jimenez-Perez,M.V.,Sanchez-Castillo,P.Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure[J].Enzyme and Microbial Technology,2004,34:392-398.
    [83]王霞,吕宪国,张学林,等.松花湖铜绿微囊藻无菌株和单藻株生长因素的研究[J].生态学杂志,2005,24(5):518~522.
    [84]刘静玲,盛连喜,侯瑞珍.不同温度下铜绿微囊藻生长特性的初步研究[J].农业与技术,1994,(12):21-24.
    [85]李小龙,耿亚红,李夜光,等.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势[J].武汉植物学研究,2006,24(3):225-230.
    [86]翟晓萌.海藻酸钠固定化包埋微生物处理有机微污染源水[J].环境科学,2000,21(16):80-84.
    [87]金相灿,李兆春,郑朔方,等.铜绿微囊藻生长特性研究[J].环境科学研究,2004,17(增刊1):52~54,61.
    [88]王翠红.固定化藻菌系统处理含酚废水[J].水处理技术.2000,264:236-239.
    [89]Happer D.Eutrophication of Freshwater-Principles,problems and restoration[M]. London: Chapman&Hall,1992.
    [90]Takahashi M, I.Mamura, Komatsu et al. Malti-regression analysis of microcystis bloom with various environmental parameters in eutrophic lake Kasumigaura [J]. Hydrobiologia,1981, (112), 53-60.
    [91]陈雪初,孙扬才,曾晓文,等.低光照度对源水中铜绿微囊藻增殖的抑制作用[J].中国环境科学,2007,27(3):352~355.
    [92]沈英嘉,陈德辉.不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响[J].湖泊科学,2004,16(3):285~288.
    [93]袁丽娜,宋炜,肖琳.附生假单胞菌存在下不同光照时间对铜绿微囊藻生长与磷代谢的影响[J].生态与农村环境学报,2006,22(2):85~87.
    [94]Home A J,Goldman C R.Limmology(SecondE dition)[M].New York:McGraw Hill,Inc.,1994.
    [95]易文利,王国栋,刘选卫,等.氮磷比例对铜绿微囊藻生长及部分生化组成的影响[J].西北农林科技大学学报(自然科学版),2005,33(6):151~154.
    [96]刘玉生,韩梅,梁占彬,等.光照、温度和营养盐对滇池微囊藻生长的影响[J].环境科学研究,1995,8(6):7~11.
    [97]李志伟,崔力拓,齐凤生,等.铜绿微囊藻生长特征及营养盐对其生长的影响[J].水利渔业,2006,26(1):65~68.
    [98]Tam,N. F. Y.& Wong, Y. S. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal[J].Environmental Pollution,2000,107(1):145-151.
    [99]Lau,P. S., Tam N. E. Y. & Wong Y.S.Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris[J].Bioresource technology,1998,63:115-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700