用户名: 密码: 验证码:
纳米级步进压电微动台结构设计与性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为纳米技术中的关键环节,步进压电精密驱动技术是现代精密驱动技术中的热门研究领域之一,并且正在朝着高精度、高分辨率的方向加以提高,一些新方法、新原理和新技术不断涌现出来。
     本文对外驱动和内驱动两种驱动方式的步进压电微动台的工作原理、运动方式及动力学模型进行了详细地分析和研究。设计了外驱动型和内驱动型纳米级步进压电微动台的结构,外驱动型微动台以采用新颖的“推-拉”原理为基础,通过合理安排驱动器的位置,将压电陶瓷的驱动力直接加载在微动平台,从而保证系统的刚度,获得较大驱动力和行程。提出了一种新型STM样品移送系统的扫描隧道显微镜机械结构并设计了该系统的内驱动型微动台结构。建立了压电微动台的动力学结构模型,并对其夹紧机构和驱动机构的受力情况进行了理论分析。采用有限元分析软件ANSYS,进行了压电微动台的静、模态特性分析,得出了步进压电微动台位移、应力分布、驱动能力、固有频率和振型。对外驱动型微动台的结构进行仿真计算,分析了结构参数对步进压电微动台特性的影响,得到了压电微动台的固有频率和振型。通过正交试验法,得到了影响固有频率和振动幅值的最优条件,其中微动台导轨宽度的影响较大,最优的设计参数为:载物台高10mm,壁厚5mm,导轨宽55mm,从底座到连接块的高4.4mm。通过逐步回归分析方法,建立外驱动型步进压电微动台的4个因素和第一阶固有频率之间的的最优回归方程,该定量分析对纳米级步进压电微动台的设计和控制具有重要价值。完成了压电微动台驱动控制系统的设计,研制了抗干扰、控制方便的压电陶瓷驱动电源。通过对外驱动型微动台的各个参数进行了详细的试验测量,验证了动力学模型和有限元分析结果,满足纳米级的微位移、较大驱动力和行程的要求。该微动台的重复性实验结果较好,获得了匀速连续稳定的运动。该微动台具有大行程纳米测量机等好的实际应用前景。建立了STM微动台实验控制电路,对内驱动型微动台通过实验,验证了有限元分析结果,可以满足纳米级的微位移系统的要求,具有较大驱动力和行程。该微动台的载物力约为16.7N,步进频率50Hz时速度达到26.4μm/s,分辨率为驱动电压10V时约为8.84nm,在14mm的整个行程范围内具有较好的大行程稳定性。该微动台被运用在STM系统,实现了对原子实空间图像的观察。分析了附加因素对该驱动器的影响,针对这些因素的影响提出了相应的解决办法和措施。
As the key step of nano-technology, stepping piezoelectric precise driving technology is one of the hot research fields of modern precise driving technology, and is improved towards high-precision and high-resolution with the emergence of some new methods, new principles and new technologies.
     In this paper, a detailed analysis and study for the stepper piezoelectric micro-moving stage with both external and inner driving is done through their working principles、movements and kinetic models. Both the External-micro-moving stage and inner-micro-moving stage nano-stepper piezoelectric micro-moving stages’structure is designed, the External-micro-moving stage nano-stepper piezoelectric micro-moving stage is based on the new "push-pull" principle, the driving force of piezoelectric ceramics is loading on the stage’s platform directly through the reasonable arrangements of the actuator’s position, thus ensuring the system’s stiffness and gaining larger driving force and range. A new STM samples transferred system is proposed, and the structure of its inner-micro-moving stage is designed. Dynamical structural model of the piezoelectric micro-moving stage is built, and the intensifying and driving institutions’stress is analyzed theoretically. Finite element analysis software ANSY is used to analyze the static and modal characteristics of the piezoelectric micro-moving stage and get its displacement、stress distribution、driving ability、natural frequencies and mode shapes. The structure of External-micro-moving stage micro-stages is stimulated, and the influence of structural parameters on it is analyzed, thus, its natural frequencies and mode shapes are got. Through the orthogonal experiment method, the optimal conditions impacting the natural frequency and the amplitude is gained, among which the width of the guide rail’s impact is greater. The optimal design parameters are: the object stage’s 10mm height , 5mm thickness, width 55mm, the height from the base to the connecting block 4.4mm. Through the stepwise regression analysis, external-micro-moving stage nano-stepper piezoelectric micro-moving stages’4 factors and the multiple regression equation of the natural frequency are established, and the quantitative analysis is of great value for the design and control of nano-stepper piezoelectric micro-moving stage. The design of the driving control system of piezoelectric micro-moving stage is finished, the PZT power for anti-interference and convenient control is designed. Through the detailed test and measurement of all the parameters of the external-micro-moving stage nano-stepper piezoelectric micro-moving stage, the dynamic model and finite element analysis results are verified, meeting the requirements of nanometer micro-displacement、larger driving force and range. The micro-moving stage’s reproducibility experimental results are better, and obtaining uniform steady movement. The micro-moving stage is of good practical application in long-range nanometer measurement machine. STM micro-moving stage experimental control circuits are built, the finite element analysis results are verified through experiments of the internal-micro-moving stage micro-moving stage, meeting the requirements of nano-micro-displacement system, with larger drives and range. The loading force of the micro-moving stage is about 16.7N, stepping frequency is 50Hz, the velocity is 26.4μm/s, and the resolution is bout 8.84nm when the driving voltage is 10V, and it has good long-range stability within the 14mm entire range. The micro-moving stage is used in the STM system, realizing the observation of real-space images of atomic. Additional factors’impact on the micro-moving stage is analyzed, and the relevant solutions and measures are put forward towards the impact.
引文
[1] 白春礼,纳米科技及其发展前景,科学通报,2001, 46(2): 89-92
    [2] Siege.R.W, Nanostructure science and technolohy: a worldwide study,Maryland, WTEC, 1999:131-149
    [3] Drexler.E, Unbounding the future: the nanotechnology revolution, New York, William Morrow and Company, 1991:93-140
    [4] Hiratsuka.Y, Controlling the direction of kinesin-driven microtubule movement along microlithographic tracks, Biophysical Journal, 2001, 81:1555-1561
    [5] Collins.Phillip.G, Nanotube nanodevice , Science, 1997, 384:147-151
    [6] Tuzun.Robert.E, Dynamics of a laser driven molecular motor, 1995(6 ):52-63
    [7] 佟鹏,高建强,王兵树,曹文亮,纳米技术的研究与应用,能源研究与信息,2002,18(3):10-14
    [8] 沈骊天,纳米技术革命的未来展望与现实革命,科学技术与辩证法,2000,20
    [9] 宇平,王琦,智能结构及其传感器和致动器, 宇航材料工艺, 1996
    [10] 压电驱动微位移放大装置的研究,吉林大学学位论文,1998,索取号:98111
    [11] 吴博达,鄂世举,压电驱动与控制技术的发展与应用,机械工程学报,2003(10):55-58
    [12] 庞振基,黄其圣,精密机械设计,机械工业出版社,1999
    [13] 鈴森康一,神田岳文,橋本竜弥,越智淳平,マイクロアクチュエータ集積によるフィジカルマンマシンインタラクション,日本機械学会第3 回機素潤滑設計部門講演会2003,4
    [14] 东京大学マイクロマシン研究共同体.超技术マイクロマシン.NTT 出版株式会社,1993:218-236
    [15] 王立鼎,吴一辉. 抓住机遇,推动我国微型机械的快速发展,中国机械工程,1999, 10(2):121-122
    [16] R.Rong, et al. Research on the Mechanism and Characteristics of Electromagnetic Micro-actuator.第二届中日机械电子学学术讨论会论文集,1997:91-94
    [17] 鄂世举,压电晶片式电液伺服阀的研究,吉林大学博士学位论文,2003
    [18] Martinez DR, Hinnerichs TD, Redmond JM, Vibration control for precision Manufacturing using piezoelectric actuators, Proceedings of The Sixth International Conference on Adaptive Structures and Technologies, Rome, Italy, October 1997:3-22
    [19] Uchino K. Recent development of piezoelectric actuators for adaptive structures, Proceedings of The Third International Conference on Adaptive Structures and Technologies, San Diego, California, USA, November 1992:245–257
    [20] 卢全国,压电步进精密驱动器理论与试验研究,吉林大学硕士学位论文,2002
    [21] 上羽贞行,富川义郎著,杨志刚,郑学伦译, 超声波马达理论及应用,上海科学技术出版社,1997
    [22] 程良伦,杨宜民. 新型精密直线驱动器及其控制器的研究,计算技术及自动化,2000, 19(1):19-21
    [23] 张福学,王丽坤,现代压电学(上册),北京,科学出版社,2001:84-99
    [24] 杨志刚,双弯曲压电超声马达理论与试验研究,吉林工业大学,博士学位论文
    [25] 赵淳生,超声马达的发展与应用,测控技术,1996, 15(1):8-10
    [26] 张传忠,压电陶瓷的新应用和新工艺,压电与声光,2000 , 22(2):35-37
    [27] Regelbrugge ME, Huribut BJ. Developing of a self-sensing multilayer piezo-ceramic actuator for structural damping applications. Proceedings of The Fourth International Conference on Adaptive Structures and Technologies, Cologne, Federal Republic of Germany, November 1993:29–42
    [28] R.Banservicius, Piezoelectric Multi-degree of Freedom Actuator/Sensors, Pro.3 International Conference on Motion and Vibration Contro, 1996:K9-K15
    [29] 周伟,超声行波直线马达的研究,吉林工业大学硕士研究生毕业论文,1997
    [30] 姚伯威,胡泓,蛇形步进式直线驱动器的研究,机械, 2000, 27(1):45-47
    [31] 张定会,采用柔性铰链实现微位移的方法研究,工业仪表与自动化装置,1999,第5期:10-14
    [32] Uchino K. Materials issues in design and performance of piezoelectric actuators-an overview, Acta Mater 1998 , 46(11):3745-3753
    [33] 薛实福,李庆详,精密仪器设计,北京:清华大学出版社,1991
    [34] LiuJingquan,Wu Boda等,非接触场声波马达,压电与声光, 1998, 20(2): 95-98
    [35] 李朝东,微电机研究的最新动态与应用展望,微特电机, 2003, 1:1-6
    [36] 洪尚任,超声波马达,自动化仪表, 1996, 17(10):1-4
    [37] K.Nakamura et al., Ultrasonic Motor Using Free Bending Vibration of a Short Cylinder, Journal of the Acoustical Society of Japan, 988: 795-796
    [38] A.Kawamura, N Takeda, Linear ultrasonic piezoelectric actuator. IEEE Transactions on Industry Applications, 1991(27): 23 -26.
    [39] Y.Roh, S.S.Lee, W.Han, Design and fabrication of a new traveling wave-type ultrasonic linear motor, Sensors and Actuators A 2001(94):205-210
    [40] 褚祥诚,李龙土,压电超声微马达的研究,压电与声光, 2001,23(4), 279-282
    [41] 孙立宁,安辉等,改善电致伸缩陶瓷微位移器性能的研究,中国机械工程,1994(2):6-7
    [42] Xu W, King.T, Flexure hinges for Piezo-actuator displacement amplifiers: flexibility accuracy and stress considerations. Precision Engineering.1996, 19(1): 4-10
    [43] 孙立宁,董为等,宏/微双重驱动机器人系统的研究现状与关键技术,中国机械工程, 2005,16(1): 89-92
    [44] Sharon A, Hogan N, Hard D E. High Bandwidth Force Regulation and Inertia Reduction Using a Macro/Micro Manipulator System. The 1988 IEEE International Conference on Robotics & Automation. Philadelphia, 1988
    [45] 陈大任,压电陶瓷微位移驱动器概述,电子元件与材料, 1994,13(1): 2-7
    [46] 徐锡林,压电型微驱动器,上海交通大学学报,1997, 31(1):67-70
    [47] 颜国正,赵国光,余承业,微小型任意行程电磁冲击式纳米级步进驱动袋置及其控制技术的研究,仪器仪表学报, 1996, 17(4):391~396
    [48] 吴鹰飞 ,李勇,周兆英,刘钦彦,蠕动式X-Y-θ微动工作台的设计实现,中国机械工程, 2001, 12(3):263-265
    [49] Higuchi, Precise Positioning Mechanism Utilizing Rapid Deformations of Plezoelectric Elements, Proceeding of IEEE Micro Electro Mechanical System Workshop, 1990, 20(3):165-174
    [50] 孙绍云,曲东升,孙立宁,王力,蔡鹤皋宏/ 微驱动定位系统滑模变结构控制的研究,机器人2004, 26(1):32-34
    [51] Binnig.G, Quate C.F, Atomic force microscope, Phys Rev Letter, 1986, 56:930-936
    [52] Goto, Hiroshi, Sasaoka, Toshio, Vertical micro positioning system using PZT Actuators, Bulletin of the Japan Society of Precision Engineering, 1988, 22(4):77-282
    [53] 孙立宁,安辉等,仿生型超精密平面驱动器及控制器的研究和应用,高技术通讯, 1994 (3):14-16
    [54] 刘品宽,孙立宁等, 新型二维纳米级微动工作台的动力学分析,光学精密工程, 2002, 10(2):144-147
    [55] 王建林,纳米定位机构及其控制系统的研究,机械设计与研究, 2001, 17(2):273-280
    [56] 胡晓东,胡小唐,杨勇,三维一体化超微定位系统性能的研究,中国机械工程, 1999, 10(1):1201-1203
    [57] 范细秋,卢志文,张鸿海,SPM三维纳米极微定位的研究,机械工程师,1999, 3:44-46
    [58] Astrom. K. J and Hagglund.T, Automatic Tuning of PID Controllers,2nd , Instrument Society of America, 1992
    [59] Juhas J, A platform for micro positioning with piezo leg(in Serbian), M .Sc.Thesis, Univerisity of Novi Sad, 1999
    [60] Higuchi T, W atanabe M, Kudou K, Precise positioner utilizing rapid deformations of a piezoelectric element, JSPE-54-1188-11-21O7
    [61] S.Sakuta, K.Okawa, K.Ueda, Experimental studies on ultra precision positioning—an inchworm movement method using fine and coarse positionings, Int. J. Japan Soc. Prec. Eng, 1993, 27(3):235-240
    [62] Chih-Liang Chu, Sheng-Hao Fan, A novel long-travel piezoelectric-driven linear nanopositioning stage, Precision Engineering 2006,30: 85–95
    [63] Eda, Hiroshi, Onoma, Takash, Sahasi,Masashi, Kobayasi, Tadahiko, Development of device with high power and ultra precise positioning, Journal of the Japan Society of Precision Engineering, 1991, 57(3):532-537
    [64] 杜贤算,丁喜冬,惯性步进扫描器控制接口的设计,中山大学研究生学刊(自然科学、医学版),2005,26(2):10-14
    [65] Sun Baoyu ,Lu ju. Ultra precision micro-displacement mechanism based on piezoelectric actuator. Journal of Harbin Institute of Technology. 2004, 36(4):487-489.
    [66] 卢秋红,高志军,颜国正,颜德田,压电型惯性微驱动器研究,压电与声光,2004, 26(2): 487-489
    [67] 徐锡林,压电型微驱动器,上海交通大学学报, 1997, 31(1):67-70
    [68] 樋口,渡辺,工藤, 圧電素子の急速変形を利用した超精密位置決め機構,精密工学会誌, 1988, 54, (11):2107-2111
    [69] Higuchi, Y.Yamagata, K.Kudoh, K.Iwasaki, Micro Robot Arm Utilizing Rapid Deformations of Piezoelectric Elements. Proc., 5th International Symposium on Robotics Research. The MIT Pres, Aug. , 1989:441-445
    [70] Shuo Hung Chang,Han-Chung Wang, A high speed impact actuator using multilayer piezoelectric ceramics, IBM Corp., Research Division, T. J. Watson Research Center, May, 1990, Yorktown Heights, NY 10598 U.S.A
    [71] T.Higuchi, K.Furutani, Y.Yamagata, K. Kudoh, M.Ogawa, Improvement of velocity of impact drive mechanism by controlling friction. Adv. Automat. Technol., 1994, 5 (2):71–75
    [72] Y.Yamagata, T.Higuchi, A micropositioning device for precision automatic assembly using impact force of piezoelectric elements, Proceedings of the IEEE International Conference on Robotics and Automation, 1999:666-671
    [73] M.Goldfarb, N.Celanovic, Modeling piezoelectric stack actuators for control of Micromanipulation, IEEE Transactions on Control Systems Technology, 1997(17):69-75
    [74] K. Furutani, T. Higuchi, Y.Yamagata, N. Mohri, Effect of lubricationon impact drive mechanism, Prec. Eng., 1998, 22:78–86
    [75] T. Morita, Y. Yoshida, Y. Okamoto, M.K. Kurosawa, T. Higuchi. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator, IEEE Trans. Ultrason. Ferroelect. Freq., 1999, 466:1435-1439
    [76] 杨志刚,陈西平等,压电双晶片式管内移动机构的振动解析,压电与声光, 2000, 22(6):410-413
    [77] R.F. Fung, C.F. Han. Effects of frictional models on the dynamic responses of an impact drive mechanis. 27th Conference on Theoretical and Applied Mechanics,Vol.I. Tainan, Taiwan, 2003:1-8
    [78] 刘泳,万德安,新型双脚步推式微型进给机构的研究,宇航计测技术, 1999, 19(2): 11-15
    [79] 刘华,颜国正,丁国清. 惯性式压电陶瓷驱动器的研究, 压电与声光,2001,23(4):275-278
    [80] 刘泳,万德安,双脚步进式微型进给机构的研制,中国机械工程,1999, 10(8):856-858
    [81] 章海军,黄峰, 压电陶瓷冲击驱动机构在微细进给与操作中的应用,浙江大学学报, 2000, 34(5):519-522
    [82] 章海军,黄文浩,林松. 与光学显微镜结合的原子力显微镜及其冲击式微位移机构, 仪器仪表学报, 1996,17(1):364-368
    [83] G Binnig, H Rohrer et al. Phys Rev Lett., 1982, 49, 57-61
    [84] 黄俊钦, 微量超微量测量的几个问题, 测控技术, 1997, 16 (3) :1-4
    [85] 李成基,李韫言,商广义,扫描电子显微镜与扫描隧道显微镜联用装置, 分析测试技术与仪器, 1997, 5 (1):5-8
    [86] 大石忠尚,纳米级几何量的计量,国外计量, 1989, 2:6-8
    [87] 杨自本,安国振,蔡敦和,小尺寸测量,北京,中国计量出版社, 1996
    [88] 杨辉,吴明根,现代超精密加工技术,航空精密制造技术, 1997, 33 (1) :1-8
    [89] 邾继贵,吕海宝,漆新民,位移精密测量技术的研究,国防科技大学学报, 1994,16 (2) :43-48
    [90] Sommargren G. E. 精密测量中用的新激光测量系统,国外计量,1989, 4 :19-22
    [91] 王桂荣,常丹华,超精密位移传感,工业仪表与自动化装置, 1996 (2) :8-11
    [92] 张仪如,祝逸庆,厘米量程纳米准确度位移测量仪及误差分析,激光与光电子学进展, 1995 (7) :8-16
    [93] 孙维盛,超精密振动一位移测量仪及其应用,机械与电子, 1992 (1) :9~12
    [94] 徐盛林,陈耿,精密超精密定位技术与其应用,中国机械工程,1997, 8 (4) :73-75
    [95] 陈维山,赵学涛,刘军考,郝 铭,压电超声波马达发展现状及研究方向,电机与控制学报,2006,10(5):498-502
    [96] 田延岭,张大卫,闰 兵,二自由度为定位平台的研究,光学精密工程,2006,14(1):94-99
    [97] 刘超,章海军,张冬仙, 新型惯性式微驱动器及其在微纳米定位中的应用, 光学仪器, 2005, 27(6):33-37
    [98] 陈立国,孙立宁,边信黔,荣伟彬, 面向微操作的宏/微精密定位技术研究, 控制与检测,2005(5):49-51
    [99]刘建芳,赵宏伟,华顺明,杨志刚,曾 平,主动驱动/被动箝位型压电精密步进驱动器研究, 机械设计与研究,2006,22(6):42-56
    [100] 刘建芳,杨志刚,赵宏伟,范尊强,外驱动双向推力型压电步进精密驱动器研究,机械工程师,2006(9):37-40
    [101] 刘正兴等,计算固体力学,上海交通大学出版社,2000
    [102] 陶宝棋,智能材料结构,北京:国防工业出版社,1997
    [103] J.范兰德拉特,R.E.塞德林顿,压电陶瓷,北京:科学出版社,1981:4-17
    [104] 徐永利,李尚平,陶瓷驱动器的发展与展望,功能材料,2000, 31(5):28-31
    [105] 严继康,甘国友,孙加林,陈敬超,压电马达用压电陶瓷的研究,压电与声光,2002,24(4):289-291
    [106] Frantisek Petr, The compensation method for the scale linearization of the high precision laser interferometer, Proceedings of SPIE, 1999, 3820:144-153
    [107] 孙立宁,荣伟彬,曲东升等,基于微操作的大行程高分辨率旋转微驱动器的研究,光学精密工程,2001, 9(6):7-13
    [108] 赵宏伟,刘建芳等,压电型步进精密旋转驱动器,光学精密工程, 2005,13(3):305-310
    [109] 刘建芳,杨志刚,范尊强,程光明,压电直线精密驱动器研究,光学精密工程,2005, 13(1):65-72
    [110] G. C. Joyce and G. C. Wilson, Micro-step motor, Phys. E, Sci. Instrum, 1969, 2(9):661–663
    [111] A. E. Gee, A micro-incher machine carriage drive with automatic feedback control of step-pitch, step-phase and inter-step positioning, Prec. Engm,1982,(4):85–91
    [112] A. Hara, H. Takao, Y. Kunio, T. Sadayuki, and N. Keiji, Electromechanical translation device comprising an electrostrictive drive of a stacked ceramic capacitor type, U. S. Patent 4570096, 1986.
    [113] Mike Holmes, Robert Hocken, David Trumper, The long-range scanning stage:a novel platforn for scanned-probe microscopy, Precision Engineering, 2000,24:191-209
    [114] E.Shamoto, H.Shin and T. Moriwaki,Development of precision feed mechanism by applying Principle and basic performance of walking drive (1st report)-Principle and basic performance of walking drive, Jpn. Soc. Prec. Eng, 1993, 59(2):317–322
    [115] W.G.May Jr., Piezoelectric electromechanical translation apparatus, U. S. Patent 3902084, 1975
    [116] J Kim, J D Kim, S B Choi, A hybrid inchworm linear motor, Mechatronics 2002(12):525-542
    [117] Li Xinxin, Wang Wen, Chen Zichen, New Challenges in Precision Positioner Development, Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA, 2005 :408-413
    [118] 费继承,王庆康,万永中,段智勇,压电线性马达与纳米马达,压电与声光,2003, 25(4):295-298
    [119] 王建林,胡小唐,纳米定位技术研究现状,机械设计与研究,2000(1):43-44
    [120] 段智勇,王庆康,压电陶瓷线性位移步进马达研究,电子机械工程,2004, 20(3):4-8
    [121] 陆伯印,曲兴华,郭敬滨,高稳定微动匀速压电马达,仪器仪表学报,1993, 14(2):120-125
    [122] 陆伯印,赵美蓉等,可换向超声线型马达速度控制特性的研究,仪器仪表学报, 1995, 16(3):297-301
    [123] Newton D, Garcia E, Horner G, A linear piezoelectric motor, Smart Mater Struct 1997(6):295–304
    [124] Shamoto E, Moriwaki T, Development of a walking drive ultraprecision Positioner, Precision Eng, 1997, 20(2):85–92
    [125] Michele Pozzi, Tim King, Piezoelectric Actuators in Micro-positioning, Engineering Science and Education Journal, 2001, 10(1):31-36
    [126] J.A.Palmer,B.Dessent,J.F.Mulling, et al, The design and characterization of a novel piezoelectric transducer-based linear motor, IEEE/ASME Trans. Mechatronics, 2004, 9(2):392-398
    [127] B.Zhang ,Z.Zhu. Developing a linear piezomotor with nanometer resolution and high stiffness[J]. IEEE/ASME Trans. Mechatronics, 1997, 2(1):22–29
    [128] Peter E. Tenzer, Ridha Ben Mrad, A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners, Transactions on Mechatronics,2004, 9(2): 427-435
    [129] Chanwoo Moon, Sungho Lee, J.K Chung, Hagyoeng Sung, Precision Position Control of a Linear Stage Integrated with an Inchworm Type Actuator, SCIE Annual conference, Japan, 2004: 572-576
    [130] Shimizu N, Kimura T, Nakamura T, Umebu I. An ultrahigh vacuum scanning tunneling microscope with a new inchworme mechanism. J Vac Sci Technol, 1990, 8(1):333-338
    [131] 赵美蓉,温丽梅,林玉池,张玉祥,大行程纳米级步进压电电动机,机械工程学报,2004, 40(8):119-122
    [132] 张玉祥,赵美蓉,用于大范围纳米定位系统的新型直线压电马达,电子测量与仪器学报,2002, 增刊: 1097-1101
    [133] 陆伯印,赵美蓉,新型高精度V形滑动摩擦导轨的研究,光学机械,1992,6:12-18
    [134] 赵美蓉,曲兴华,陆伯印,新型纳米导轨,仪器仪表学报,1999, 20(4):44-45
    [135] 庞振基,傅雄刚主编,精密机械零件,机械工业出版社,1989
    [136] 梶村皓こ,坂東寛,水谷亘等, 走査型トンネル顕微鏡,固体物理, 1987, 22(3):176-185
    [137] A.Suleman , S.Burns, D.Waechter, Design and modeling of an electrostrictive inchworm actuator, Mechatronics, 2004, 14:567–586
    [138] B.Zhang, Z.Zhu. Developing a linear piezomotor with nanometer resolution and high stiffness, IEEE/ASME Trans. Mechatronics, 1997, 2(1):22–29
    [139] C.H. Nguyen, S.J. Pietrzko, Piezoelectric–mechanical–acoustic couplings from a PZT-actuated vibrating beam and its sound radiation, Mechanical Systems and Signal Processing , 2004, 18:929–945
    [140] P.E. Tenzer, R. Ben Mrad, On amplification in inchworme precision positioners, Mechatronics, 2004, 14: 515–531
    [141] Nicolae Lobontiu, Ephrahim Garcia,Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms, Computers and Structures, 2003, 81 : 2797–2810
    [142] G. Piras, W.L.Cleghorn, Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links,Mills Mechanism and Machine Theory, 2005, 40 : 849–862
    [143] 阎兵,田延岭,张大卫,张铁城,基于有限元分析的纳米级微进给平台设计,天津职业技术师范学院学报,2003, 13(1):1-4
    [144] 刘国嵩,赵宏伟,曾平,程光,新型压电步进型精密直线驱动器,光学精密工程, 2005,13(3):291-297
    [145] 王华,张宪民,欧阳,高飞,平面三自由度微动工作台的输入耦合分析,中国机械工程, 2005, 16(5):137-141
    [146] 闫兵,田延岭,张大卫,三自由度微定位工作台的设计与特性分析,理代爿遭工程, 2004(2):10-14
    [147] 刘国嵩,杨志冈0,曾 平,程光明, 新型压电步进式二维精密驱动器, 光学精密工程,2006,14(4):602-606
    [148] S. H. Chang,B. C. Du.A precision piezodriven micropositioner mechanism with large travel ranget, Review of scientific instrument,1998,69(4):1785-1791
    [148] Jih-Lian Ha, Ying-Shieh Kung , Sheng-Chuen Hu, Rong-Fong Fung, Optimal design of a micro-positioning Scott-Russell mechanism by Taguchi method, Sensors and Actuators A ,2006,125:565–572
    [149] 沈健,朱仁胜,赵韩,单自由度微位移机构柔性铰链的研究,上海交通大学学报, 2004, 38(6):932-936
    [150] M.Sunar, S.J.Hyder, B.S.Yilbas, design of piezoelectric actuators for structural control, Comput Methods Appl. Mech. Engrg, 2001,190:6257-6270
    [151] 赵建伟,孙徐仁,田莳,低频压电陶瓷驱动器驱动电源研制,压电与声光,2002, 24(2):107-110
    [152] Zhao Yang, Zhou Ting, Ren Weiming, Li Dacheng, Heterodyne interferometer with a dual-mode He-Ne laser for absolute distance interferometer, Proceedings of SPIE, 1995, 2544:11-12
    [153] 王忠祥,丁辉,纳米测量技术的若干进展,现代科学仪器, 2003, 3: 3-5.
    [154] 陈本永,李达成,纳米测量技术的挑战与机遇,仪器仪表学报, 2005,26(5):547-550
    [155] Tolles W.M, Nanoscience and nanotechnology in Europe, Nanometrology,1996, 7:59-105
    [156] Bobroff. N, Recent advances in displacement measuring interferometry, Meas. Sci. Technol, 1995, 4:907-926
    [157] Brand.U,Herrmann.K,A laser measurement system for the high-precision calibration of displacement transducers, Meas.Sci.Technol, 1996, 7:911-917
    [158] 尹德芹,颜国正,颜德田,压电陶瓷动态应用的新型驱动电源研究,压电与声光, 2000, 22(2):86-89
    [159] 林伟,叶虎年,冯海,叶梅,压电陶瓷导致动器驱动电源的研究,MEMS器件与技术, 2006, 3:138-141
    [160] 王宏,钟朝位,张树人,压电陶瓷驱动器线性动态驱动电源的研制,压电与声光,2004,26(3):189-191
    [161] 李富良,张晖,基于PA85的新型压电陶瓷驱动电源,电子质量, 2004, 1:14-15
    [162] A Kawamura, N Takeda, Linear ultrasonic piezoelectric actuator, IEEE Transactions on Industry Applications, 1991, 27: 23 -26
    [163] 贺国伟,单片硬件抗干扰实践经验,电子制作, 2006(2):63-67
    [164] 韩晓英,关于抗电磁千扰问题的一些看法,石河子科技, 2006(2):21-22
    [165] Tenzer P. E, Mrad R. B, A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners, IEEE/ASME Trans. Mechatronics, 2004, 9(2):427-435
    [160] 王宏,钟朝位,张树人,压电陶瓷驱动器线性动态驱动电源的研制,压电与声光,2004,26(3):189—191
    [161] 李富良,张晖,基于PA85的新型压电陶瓷驱动电源,电子质量,2004,1:14-15
    [162] A Kawamura, N Takeda. Linear ultrasonic piezoelectric actuator . IEEE Transactions on Industry Applications. 1991,27: 23 -26.
    [163] 贺国伟,单片硬件抗干扰实践经验.电子制作2006/2:63
    [164] 韩晓英,关于抗电磁千扰问题的一些看法,石河子科技,2006(2):21-22
    [165] Tenzer P E, Mrad R B. A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners. IEEE/ASME Trans. Mechatronics, 2004, 9(2):427–435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700