用户名: 密码: 验证码:
纳米工作台机械结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS(微机电系统)技术的发展,微芯片、微光学元件、微机械零件以及其它各种微器件不断出现,它们的几何尺寸多在微米至亚微米量级,测量精度及分辨率要求在纳米量级,近年还出现了尺寸在数十毫米且精度要求高于数十纳米的器件。要对上述这些器件进行精密加工和测量,需要发展微/纳米加工和测量技术,因此要研究能实现驱动分辨率和定位精度在纳米量级范围内的大行程工作台和微动工作台。
     本学位论文选题来源于:①国家自然科学基金资助项目:纳米三坐标测量机关键技术的研究;②国家自然科学基金重大国际合作项目:纳米三维测量关键技术与系统研究;③国家自然科学基金资助项目:基于并行像散共焦探测原理的微结构三维形貌测量基础研究。论文的任务是纳米工作台的机械结构设计,主要研究工作和创新点如下:
     1.大行程纳米工作台机械结构设计
     根据大行程纳米工作台设计要求研究了整体结构设计方案。设计了二维工作台共面结构和三维工作台共点结构,大大减小了阿贝误差对测量的影响。研究了创新型的高精度低摩擦导向模式,解决了滑动导轨慢速驱动时存在的爬行问题,满足了纳米驱动分辨率的要求。通过结构设计隔离了驱动电机振动等对工作台的干扰。
     2.大行程纳米工作台结构优化设计
     二维工作台结构研究中,对高精度低摩擦复合导轨磁铁副的结构参数进行了优化设计,构建了均匀稳定的磁力场;对工作台进行了力平衡结构设计,减小了寄生转矩对定位精度的影响。三维工作台结构研究中,进行了圆筒型永磁直线同步电机的偏心安装结构设计,抑制和吸收了电磁扰动引起的推力波动;在三维运动轴上增加了磁流变液阻尼装置,减弱了各种力扰动的影响;建立了运动系统的动态模型,对工作台结构参数进行了优化设计。
     3.大行程纳米工作台实验研究及标定实验。
     实验研究了外加阻尼力、工作台负载、电机驱动速度等对工作台定位性能的影响,为制定最佳实验方案提供了依据;对工作台进行了驱动分辨率、直线度、定位精度等重要特性指标的标定实验,检验了结构设计的正确性及结构优化设计的效果。实验结果表明,大行程二维纳米工作台和三维纳米工作台的驱动分辨率均实现了目标要求。
     4.纳米微动工作台结构研究。
     提出了一种新型的六自由度纳米微动工作台结构形式,同时满足了结构简单、体积小、控制简便、运动耦合少的设计要求。通过建立微动台运动数学模型,合理确定了工作台结构参数。研究了一种创新型的压电陶瓷驱动器封装装夹方式(已申请1项国家发明专利),优化设计了柔性铰链导向机构的结构参数。
With the development of the MEMS (micro electromechanical systems)technology, applications of micro-chips, micro-optical components,micro-mechanical parts and other kinds of micro devices are increasing, which arefrom micron to submicron in size, nanometer scale in measurement accuracy andresolution. In recent years, the devices, which are tens of millimeters in size andhigher than tens of nanometers in accuracy, are also appearing. To machine andmeasure these precision devices, the micro/nano machining and measuringtechniques are needed. Therefore, study on the nano-motion table with large travelranges (displacement from several to hundreds millimeters) and micro-travel ranges(displacement less than100μm) is becoming more and more important in the areas ofprecision machining and measurement.
     The dissertation is based on three research projects sponsored by the NationalNatural Science Foundation, entitled “the key technology research of Nano-CMM”,“the key technology and system research of3-D measurement system”, and“research on measuring3D surface topography of microstructure based on theprinciple of parallel astigmatism confocal detection”, respectively.
     This thesis focus on the mechanical structure of nano-motion table, the mainresearch works and its originality can be summarized as follows:
     (1)The mechanical design of nano-motion table with large travel ranges
     According to the design requirements of the nano-motion table with large travelranges, the overall table structure has been designed. A coplanar structure for thetwo-dimensional table and a stigmatic structure for the three-dimensional table havebeen developed, which greatly reduce the Abbe error. An innovative high-precisionand low friction orientation has been researched, which solves the crawl problem ofthe sliding rail when the table is slowly driven, and meets the requirement of theresolution of nano-motion scale. Through mechanical designing, the vibration of thedrive motor has been isolated from the table.
     (2) The structural optimization of nano-motion table with large travel ranges
     For2-DOF nano-motion table, two innovative tasks have been accomplished:①the magnet vice structure parameters of the high precision and low frictioncomposite rail has been optimized, which builds a uniform and stable magneticfield;②a force balance system has been designed to reduce the parasitic torque onthe positioning accuracy of the table. For3-DOF nano-motion table, three improvements have been made:①eccentric installation of the tubular permanentmagnet linear synchronous motor has been designed, which inhibits and absorbs thethrust fluctuation caused by electromagnetic disturbance;②MRF dampers have beeninstalled in the three-dimensional motion axis, which reduce the impact of variouspower disturbances;③a dynamic model of motion system has been established andused for optimizing the parameters of the table.
     (3)Experimental investigation and calibration of nano-motion table with largetravel ranges
     The effect of external damping force, table load and the motor driving speed onthe table positioning performance have been investigated, which provide a basis formaking the best experimental program; the resolution, straightness, positioningaccuracy and other important performance of the nano table have been calibrated,which proves the correctness of the design and structure optimization results. Theexperimental results show that the resolutions of the2-DOF and3-DOF nano-motiontable with large travel ranges have met the objectives and requirements.
     (4)The structure study on nano-motion table with micro-travel ranges
     Through studying the overall structure of the6-DOF nano-motion table withmicro-travel ranges, the design goals including simple structure, small size, easily controland motion of less coupling have been achieved. A mathematical model of micro table hasbeen established and the structural parameters of the table have been determined. Anunencapsulated piezoelectric actuator has been packaged, and the structuralparameters of the flexible hinges have been designed. A national invention patentbased on above developments has been applied.
引文
[1]U. Persson.Measurement of surface roughness using infraredscattering[J], Measurement,1996,Vol.18, No.2,109-116
    [2]Katerina Moloni.Ensuring nanopositioner accuracy requires sensormonitoring and careful x-y stage design [J], Optical Engineering, USA.2002,6:40-41
    [3]Woody, S.C. and Smith, S. T.. Resonance-based vector touch sensors [J],Precision Engineering,2003, Vol.27, No.3,221-233
    [4]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004,2.139-189
    [5]Jae W.Ryu,Dae-Gab Gweon,and Kee S.Moont.Optimal design of a flexurehinge based XYθ wafer stage[J].Precision Engineering,1997,18-28
    [6]Chang-Woo Lee and Seung-Woo Kim.An ultraprecision stage for alignmentof wafers in advanced microlithography[J]. Precision Engineering,1997,113-122
    [7]Nicolae Lobontiu,Ephrahim Garcia.Analytical model of displacementamplification and stiffness optimization for a class of flexure-basedcompliant mechanisms[J].Computers and Structures,2003,2797-2810
    [8]Renyi Yang,Musa Jouaneh,and Rudolph Schweizert.Design andcharacterization of a low-profile micropositioning stage[J].Precision Engineering,1996(18),20-29
    [9]Y.Tian,B.Shirinzadeh,D.Zhang.Design and dynamics of a3-DOFflexure-based parallel mechanism for micro/nanomanipulation[J].Microelectronic Engineering,2010(87),230-241
    [10]Byung-Ju Yi,Goo Bong Chung,Heung Yeol Na,etc.Design and Experimentof a3-DOF Parallel Micromechanism Utilizing Flexure Hinges[J].IEEEon ROBOTICS AND AUTOMATION,2003(19),604-612
    [11]R. J. Hocken, D. L. Trumper, C. Wang. Dynamics and Control of theUNCC/MIT Sub-Atomic Measuring Machine[J]. Annals of the CIPR, Vol.50, No.1,2001,373-376
    [12]De-Yuan Zhang, Takahito Ono, Masayoshi Esashi.Piezoactuator-integrated monolithic microstage with six degrees offreedom [J].Sensors and Actuators A,2005,301-306
    [13]田延岭,张大卫,闫兵.二自由度微定位平台的研制[J].光学精密工程,2006,14(1):94-99
    [14]马立,荣伟彬,孙立宁.三维纳米级微动工作台的设计与分析[J].光学精密工程,2006,14(6):1017-1024
    [15]Yung Ting,Chun-Chung Li,Ho-Chin Jar,and Chang-Wei Chiang.Design andControl of a Nano-precision Cartesian Platform[J].IEEE onIntelligent Robots and Systems,2006,1898-1903
    [16]王勇,刘志刚,薄锋,朱健强.五自由度纳米级定位工作台的设计研究[J].中国机械工程,2005,16(15):1317-1321
    [17]Wen-Yuh Jywe, Yeau-Ren Jeng, Chien-Hung Liu, et.al. A novel5DOF thincoplanar nanometer-scale stage [J].Precision Engineering,2008,32:239-250
    [18]David L.Trumper,Won-jong Kim,Mark E Williams.Design and AnalysisFramework for Linear Permanent-Magnet Machines[J].IEEE on INDUSTRYAPPLICATIONS,1996,371-379
    [19]谢传钵.分布重复投影光刻机精密快速定位工件台的研究[J].光电工程,1996,4:67-72
    [20]嵇钧生.X射线光刻机中应用的精密定位工作台[J].航空精密制造技术,1998,3:10-12
    [21]熊木地.大行程亚微米精度激光直写设备定位技术的研究[D].长春:中国科学院博士学位论文,2000
    [22]郑子文.超精密机床伺服控制技术研究[D].长沙:国防科技大学博士学位论文,2001
    [23]孙立宁,孙绍云,等.大行程高精度宏/微双重驱动机器人系统研究[J].高技术通讯,2004,4:50-52
    [24]严乐,卢秉恒,等.冷压印光刻工艺精密定位工作台的研制[J].中国机械工程,2004,1:75-78
    [25]Kwang Suk Jung,Yoon Su Baek.Characteristics comparison of planarstages using repulsive and attractive type of surface actuatorprinciple[J]. Sensors and Actuators A,2005,173-182
    [26]Junhong Mao,Hiroyuki Tachikawa,Akira Shimokohbe.Precisionpositioning of a DC-motor-driven aerostatic slidesystem[J].Precision Engineering,2003,32-41
    [27]卢礼华.基于滚珠丝杠的大行程纳米定位系统建模和控制技术研究[D].哈尔滨工业大学博士学位论文,2007
    [28]Samir M. High precision linear slide. Part I: design and construction[J]. International Journal of Machine Tools and Manufacture,2000,40(7):1039-1050
    [29]Won-jong Kim,Shobhit Verma,Huzefa Shakir.Design and precisionconstruction of novel magnetic-levitation-based multi-axisnanoscale positioning systems[J]. PrecisionEngineering,2007,337-350
    [30]朱煜,尹文生,段广洪.光刻机超精密工件台研究[J].电子工业专用设备,2004,33(2):25-27
    [31]李鸣鸣.大行程纳米定位系统若干关键技术研究[D].上海大学博士学位论文,2007
    [32]诸葛晶昌,李淑清.大范围纳米驱动定位压电马达的研究[J].自动化与仪表,2005,(1):11-14
    [33]王伟丽.纳米三坐标测量机械结构及接触式测头技术研究[D].合肥工业大学博士学位论文,2008
    [34]刘祚时,倪潇娟,三坐标测量机的现状和发展趋势[J].机械制造,2004,42:32-33
    [35]奚琳.新型纳米三坐标测量机二维定位平台研究[D].合肥工业大学硕士学位论文,2007
    [36]THK综合商品目录[M].TOKYO:THK CO.,LTD,2006
    [37]徐从裕.大行程纳米定位驱动控制方法与系统研究[D].合肥工业大学博士学位论文,2008,51-65
    [38]程伶俐,余晓芬.纳米磁悬浮二维工作台力平衡结构设计[J].农业机械学报,2009,9(40):197-200
    [39]修世超,谭庆昌,孟慧琴.同轴环形磁铁磁作用力计算的等效磁荷法[J].沈阳黄金学院学报,1995,14(3):359-363
    [40]奚琳,余晓芬,范伟.新型Nano-CMM二维定位平台研究[J].合肥工业大学学报,2006,29(12):1605-1608
    [41]刘旭林.永磁磁路设计的基本知识. http://blog.niwota.com/nb/liuxulin
    [42]黄明辉,杨安全,杨锋力.一种磁轴承的两永磁环间磁作用力的计算[J].机构研究与应用,2005,18(1):39-41
    [43]哈尔滨工业大学理论力学教研室编.理论力学[M].北京:高等教育出版社,2002:109-122
    [44]余晓芬,程伶俐,胡佳文,余卿.大行程纳米二维工作台的动态优化设计[J].电子测量与仪器学报,2010,24(3):289-293
    [45]刘品宽,孙立宁,曲东升,等.新型二维纳米级微动工作台的动力学分析[J].光学精密工程,2002,10(2):143-147
    [46]AARSH HASSANPOUR ISFAHANI, SADEGH VAEZ-ZADEH. Design optimization ofa linear permanent magnet synchronous motor for extra a low forcepulsations [J]. Energy Conversion and Management,2007,48:443-449
    [47]刘静,王福忠,余淋,等.永磁直线同步电机的动态模型建立以及IGA优化设计[J].电气技术,2009,5:25-27
    [48]张志彬,曾周末,赵伯雷,等.复合材料型超声直线电机的研究[J].仪器仪表学报,1999,20(5):485-488
    [49]FAA-JENG LIN, RONG-JONG WAI. Robust recurrent fuzzy neural networkcontrol for linear synchronous motor drive system [J]. Neurocomputing,2003,50:365-390
    [50]P. VAN DEN BRAEMBUSSCHE, J. SWEVERS, H.VAN BRUSSEL, et al. Accuratetracking control of linear synchronous motor machine tool axes [J].Mechatronics,1996,6(5):507-521
    [51]邹积浩,朱善安.基于电压预测的直线永磁同步电机直接推力控制[J].仪器仪表学报,2005,26(12):1262-1266
    [52]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005,152-203
    [53]马文平,余晓芬,程伶俐,余卿.用于微纳米测量的磁流变阻尼固紧系统[J].应用科学学报.2010,28(1):106-110
    [54]齐畅.高性能XY工作台的运动建模与控制研究[D].北京航空航天大学硕士学位论文,2002,39-57
    [55]刘强,齐畅,樊锋,欧钢.高性能工作台的宽频多模态复合运动建模与分析,台湾科技大学,第三届海峡两岸制造科技研讨会论文集,台北,2002,486-494
    [56]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002
    [57]陈桂明,张明照,戚红雨等.应用MATLAB建模与仿真[M].北京:科学出版社,2001
    [58]胡小唐,庄在龙,姜晶等.一种5-D压电驱动微位移工作台的设计[J].仪器仪表学报,1996,Vol.17.No.1:301-305
    [59]孙立宁,王振华,曲东升等.六自由度压电驱动并联微动机构设计与分析[J].压电与声光,2003.8,Vol.25.No.4:277-279
    [60]孙立宁,徐文军,安辉等.一种新型6-DOF并联机器人研究[J].哈尔滨工业大学学报,1999,31(1):17-21
    [61]Y.AMIRAT, FRANCOIS, G.FRIED etc. DESIGN AND CONTROL OF A NEW SIX DOFPARALLEL ROBOT [J].APPLICATION TO EQUESTRIAN GAIT SIMULATION.Mechatronics,1996,6(2):227-239
    [62]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004.2.139-189
    [63]Nicolae L, Jeffrey S, Ephrahim G etc. Design of symmetricconic-section flexure hinges based on closed-form complianceequations Journal of International Societies for PrecisionEngineering and Nanotechnology [J]. Mechanism and Machine Theory,37(2002):477-498
    [64]Nicolae L, Jeffrey S, Edward O etc. Parabolic and hyperbolic flexurehinge: flexibility, motion precision and stress characterizationbased on compliance closed-form equations [J]. Precision Engineering,26(2002):183-192
    [65]Nicolae L, Jeffrey S.Corner-Filleted Flexure Hinges[J]. Transactionsof the ASME, Journal of Mechanical Design,2001,123:346-352
    [66]Nicolae L, Ephrahim G. Two-axis flexure hinges with axially-collocated and symmetric notches [J]. Computers and Structures,81(2003):1329-1341
    [67]Wen-Yuh Jywe, Yeau-Ren Jeng, Chien-Hung Liu, et al. A novel5DOF thincoplanar nanometer-scale stage [J], Precision Engineering,2008,32:239-250
    [70]Juhas L,Vuhanic A,Asamovic N, Nagy L, Borovac B. A platform formicropositioning based on piezo legs [J]. Mechatronics,2001,11:869-97
    [71]孙立宁,安辉,张涛.多维超精密微驱动器及控制系统的研究[J].仪器仪表学报,1995.2,Vol.16.No1:324-327
    [72]范伟,余晓芬,奚琳.压电陶瓷驱动系统及控制方法研究[J].光学精密工程,2007,3(15):368-371
    [73]程伶俐,余晓芬,余卿,胡佳文.压电陶瓷驱动器弹性套筒的研究[J].中国机械工程,2010,21(10):1139-1142
    [74]白新桂.数据分析与理论优化设计[M].北京:清华大学出版社,1986
    [75]苏翼林.材料力学[M].天津:天津大学出版社,2001,92-110
    [76]博弈创作室.ANSYS9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006
    [77]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [78]邢静忠,王永岗,陈晓霞等编著.ANSYS7.0分析实例与工程应用[M].北京:机械工业出版社,2003
    [79]陈时锦,杨元华,孙西芝,程凯.基于柔性铰链的微位移工作台性能分析与优化设计[J].机械设计,2004,21(7):46-49
    [80]Paros J M, Weisbord L. How to design flexure hinge [J]. Machine Design,1965
    [81]Wei Xu, Tim King. Flexure hinges for piezoactuator displacementamplifiers: flexibility, accuracy, and stress considerations [J].Precision Eng,1996
    [82]Jae W Ryu, Dae-Gab Gweon, Kee S Moont. Optimal design of a flexurehinge based XYθ wafer stage [J]. Precision Eng,1997
    [83]Smith S T, Chetwynd D G, Bowen D K. Design and assessment of monolithichigh-precision translation mechanisms[J]. J Phys E: Sci Instrum,1988
    [84]王华,张宪民.整体式空间3自由度精密定位平台的优化设计与试验[J].机械工程学报,2007,43(3):66-71
    [85]魏玉凤.纳米级六自由度微动工作台机械结构设计[D].合肥工业大学硕士学位论文,2004
    [86]张晓峰,林彬.大行程纳米级分辨率超精密工作台的发展方向[J].南京航空航天大学学报,2005,37:179-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700