用户名: 密码: 验证码:
层合压电智能结构振动主动控制数值模拟及其优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料具有将机械能转化为电能的能力及其逆效用,常被制作成薄片形状的致动器/传感器,粘贴在主结构表面或埋置于主结构内部,构成具有自检测、自诊断、自修复及自适应等功能的层合压电智能结构。层合压电智能结构在航空航天、机械和土木工程等领域中的应用和现代控制理论的发展,极大的推动了国内外学者对柔性层合智能结构振动控制的研究热情。层合压电智能结构是一个具有不连续密度分布、不连续材料性质、机电耦合的动力系统。因此,精确而有效的分析压电材料的力电耦合行为,探索力学场,电场的耦合作用;兼顾求解计算效率,建立能准确描述层合压电智能结构在干扰荷载作用下的动态响应分析模型;揭示致动器/传感器分布位置、几何尺寸和复合材料层间铺设角度对层合智能结构振动特性的影响;分析控制器参数、结构配置对控制系统品质和性能的影响,移动荷载作用下智能结构的振动控制;研究智能结构主动控制的理论和算法,提高智能结构控制系统稳定性;压电致动器/传感器位置优化的程序设计及实现;实现层合压电智能结构多阶目标模态振动控制等,这些都是亟待解决的问题。
     论文从Hamilton原理和压电材料的力-电耦合本构方程出发,建立了线弹性压电体的动力有限元状态空间方程,基于ANSYS/APDL参数化语言编制了能够准确描述层合压电智能结构力-电耦合场的有限元数值模型。揭示了智能悬臂梁自振频率及阵型随致动器/传感器位置、尺寸、复合层合角度改变的变化规律。深入研究了压电致动器/传感器位置、数量及控制器参数对PID闭环系统控制性能的影响,引入先进的积分分离、变速积分、不完全微分PID控制有效解决了经典PID控制器参数选择不当造成的系统发散失稳等现象,提高了系统的稳定性,扩大了控制器参数选择范围。分析了移动荷载作用下层合压电智能梁系统不同振动阶段控制器参数、荷载移动速度对系统控制性能的影响。
     提出了一种根据系统输出误差实时调整修正反馈增益的自学习控制(SLC)算法。将模糊逻辑和迭代学习控制的基本思想相结合,提出了以系统输出误差及其变化量作为模糊控制器的输入,以迭代学习增益作为模糊控制器的输出,采用模糊控制实时确定迭代学习增益的模糊自学习控制(FSLC)方法,提高了自学习控制的收敛速度。建立了上下表面对称粘贴有三对压电致动器/传感器压电智能悬臂板动力分析有限元模型,通过仿真试验,证明了SLC和FSLC均能有效地控制了闭环系统振动响应,结果表明FSLC控制效果比SLC控制效果更好,为智能结构振动控制理论算法和迭代学习控制增益的确定增加了新的思路。基于线性二次型最优控制与迭代学习控制相结合的思想,研究线性二次型迭代学习混合控制方法,加快了迭代学习控制的收敛速度。基于MATLAB软件建立了多点致动一维层合压电悬臂梁动力分析的有限元数值模型,实现了层合智能梁的经典最优控制和线性二次型最优迭代学习混合控制,证明了线性二次型最优迭代学习混合控制方法能够有效控制层合压电智能结构的振动,并且控制效果得到了一定的改进。
     以离散分布压电致动器/传感器的位置参数为优化变量,压电智能结构闭环控制系统阻尼比为目标函数,提出了层合压电智能结构振动控制及压电致动器/传感器位置优化的遗传算法程序。通过有限元数值模拟,研究了悬臂板自由端在瞬时荷载和简谐荷载作用下振动控制问题,数值仿真结果验证了压电致动器/传感器位置优化程序的正确性,说明采用遗传算法搜索压电智能结构振动控制中压电致动器/传感器的最优位置是十分有效的,并具有较高的计算效率。
     基于数值仿真实验的方法,研究了复合层合压电梁比例反馈控制系统中,比例反馈增益、层间铺设方式对闭环系统控制性能的影响。基于复合层合板模态应变能分布大小,提出了一种简单易行的压电致动器/传感器位置确定方法,适用于层合智能结构多阶目标模态的振动控制。数值试验结果证明了基于模态应变能分布确定压电致动器/传感器进而实现复合层合压电智能板多阶模态振动控制的可行性和正确性。
Piezoelectric materials have been manufactured into thin actuators/sensors because of their ability to transform mechanical energy to electrical energy and vice versa. Laminated piezoelectric smart structures with piezoelectric actuators/sensors bonded on the surface or embedded in host structures have self-detection, self-diagnosis, self-healing and adaptive functions. Application of laminated piezoelectric smart structures in the fields of aerospace, mechanical as well as civil engineering and modern control theory development have greatly promoted the domestic and foreign scholars to poure enthusiasm into their vibration control research. Laminated piezoelectric smart structure is a discrete density distribution, discontinuous material properties and electro-mechanical coupling dynamic model system. Therefore, accurately and effectively analyzing the behavior of piezoelectric material electro-mechanical coupling, exploring the mechanical and electric field coupling action, taking into account of solving efficiency when establishing the accurate dynamic response model of laminated piezoelectric smart structure under disturbance loading, revealing the effect of acturators/sensors distribution location, geometry size as well as compsite material lay-ups on laminated smart structure vibration characteristics, controller parameters and structure configuration impact on system quality and performance, vibration control of smart structures undering moving load are problems to be solved. Investigating active control theory and algorithm of smart structure to improve system stability, optimization of pizeoelectirc actuator/sensor locations, realizing multi target mode vibration control and so on, all these problems mentioned above are also urgent to be solved.
     In this paper, finit element dyanimc state-space equation of linear elastic piezoelectric is derived from Hamilton principle and electro-mechanical coupling constitutive of piezoelectric materials. Numerical models are established to accurately describe the mechanich-electric coupling field based on ANSYS/APDL parameter language. The variation of natural frequency and mode shape of smart cantilever beam as actuator/sensor location, size and composite material lay-ups changing has been explored. The impact of piezoelectric actuator/sensor location, number and controller parameters on PID closed-loop control system performance is studied. The introduction of advanced PID controller with separated integration, changing rate integration and partial differential effectively settled the divergency and instability appearance of system caused by inappropriate parameters of classic PID controller. The impact of controller parameters and load moving speed on control performance is also analyzed at different vibration stages of laminated piezoelectric smart system under moving load.
     A self-learning control (SLC) algrothm able to real-time adjust and amend control feedback gain is presented according to system output error. Taking system output error with its variation and the gain of iterative learning as the input and output of fuzzy controller respectively, the fuzzy self-learning control (FSLC) method is also proposed to speed up the convergence of SLC. The numerical simulation results of piezoelectric smart cantilever plate prove that both SLC and FSLC could effectively reduce the vibration response of closed-loop system, and FSLC quality is better than SLC. Based on the idea of combining the linear quadratic optimal control with iterative learning (IL) control, the paper puts forward a new hybrid control strategy which is named linear quadratic iterative learning control to improve the iterative learning control convergence. The numerical model for dynamic analyzing of one-dimensional laminated piezoelectric cantilever beam is created by MATLAB software. And then the classic optimal control and linear quadratic optimal iterative learning hybrid control are achieved, thus the control property is improved.
     Taking the location parameters of discrete distribution piezoelectric actuators/sensors and the damping ratio of piezoelectric smart structure closed-loop control system as optimization variables and objective function respectively, the actuator/sensor optimization program based on genetic algorithm (GA) is presented. The finite element numerical simulation is conducted to consider the vibration control of cantilever plate exited by transient and harmonic loading at the free end of it. Numerical results show the validity and effectiveness of using GA for searching optimal placement of the actuator /sensor pairs in active structural vibration control.
     This paper discussed proportional feedback gain and lay-ups effect on the closed-loop system performance of composite laminated piezoelectric beam by numerical simulation method. A simple and easy to implement way to determinate actuator/sensor locations is raised based on distribution of modal strain energy for multi target modes vibration control of laminated smart structures. Numerical results proved the feasibility and correctness of the method metioned above.
引文
[1]张金升,尹衍升,李嘉等.智能材料的结构和性能综述[J].中国陶瓷, 2003, 39(2): 41-47.
    [2] Shahinpoor M. Intelligent materials and structures revisited[C]. Proceedings of Smart Materials Technologies and Biomimetics Conference, San Diego, CA, USA, 1996.
    [3] Rogers C. Intelligent material systems--the dawn of a new materials age[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(1): 4.
    [4]陶宝棋,熊克.智能材料结构[M].北京:国防工业出版社, 1997.
    [5]姚康德,徐美萱.智能材料-21世纪的新材料[M].天津:天津大学出版社, 1996.
    [6] Tzou H., H. Lee,S. Arnold Smart materials, precision sensors/actuators, smart structures and structronic systems[J]. Mechanics of Advanced Materials and Structures, 2004, 11(4): 367-393.
    [7] Park G., M. Kim, D. Inman Integration of smart materials into dynamics and control of inflatable space structures[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(6): 423-433.
    [8] Bailey T., J. Hubbard Distributed piezoelectric-polymer active vibration control of a cantilever beam[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 605-611.
    [9] Takagi T. A concept of intelligent materials[J]. Journal of Intelligent Material Systems and Structures, 1990, 1(2): 149.
    [10]江冰,李兴丹. Smart结构及其应用[J].力学进展, 1994, 24(003): 353-361.
    [11] Crawley E. Intelligent structures for aerospace: a technology overview and assessment[J]. AIAA journal, 1994, 32(8): 1689-1699.
    [12] Culshaw B., W. Michie,P. Gardiner. Smart structures: the role of fiber optics[C]. Proceedings of Interferometry'94: Interferometric Fiber Sensing, Warsaw, 1994, 134-151.
    [13] Spillman Jr W., J. Sirkis,P. Gardiner. Smart materials and structures: What are they?[J]. Smart Material Structures, 1996, 5: 247-254.
    [14] Paradies R.,M. Ruge. In situ fabrication of active fibre reinforced structures with integrated piezoelectric actuators[J]. Smart Materials and Structures, 2000, 9: 220.
    [15]杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版社, 2001.
    [16]孙慷,张福学.压电学[M].北京:国防工业出版社, 1984.
    [17]蒋建平,李东旭.压电层合结构力学模型评述[J].噪声与振动控制, 2008, 28(005): 11-20.
    [18] Ray M., R. Bhattacharya,B. Samanta. Exact solutions for static analysis of intelligent structures[J]. AIAA journal, 1993, 31: 1684-1691.
    [19]王建国.层状压电半空间非轴对称问题的状态变量解[J].中国科学: A辑, 2000, 30(001): 70-78.
    [20]丁皓江,江爱民.压电梁的多项式解(Ⅰ)――若干精确解[J].应用数学和力学, 2005, 26(009):1009-1015.
    [21]丁皓江,江爱民.压电梁的多项式解(Ⅱ)――典型问题解析解[J].应用数学和力学, 2005, 26(009): 1016-1021.
    [22] Shi Z., H. Xiang, S. BF Jr. Exact analysis of multi-layer piezoelectric/composite cantilevers[J]. Smart Materials and Structures, 2006, 15: 1447.
    [23] Hosseini-Hashemi S., M. Es' haghi, H. Rokni Damavandi Taher. An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory[J]. Composite Structures, 2010,92(6): 1333–1351
    [24] Liu G., K. Dai, K. Lim, Y. Gu. A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures[J]. Computational Mechanics, 2002, 29(6): 510-519.
    [25] Liew K., H. Lim, M. Tan, X. He. Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method[J]. Computational Mechanics, 2002, 29(6): 486-497.
    [26] Liew K., X. He, M. Tan, H. Lim. Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method[J]. International Journal of Mechanical Sciences, 2004, 46(3): 411-431.
    [27] Guo X., D. Fang, A. Soh, H. Kim, J. Lee. Analysis of piezoelectric ceramic multilayer actuators based on an electro-mechanical coupled meshless method[J]. Acta Mechanica Sinica, 2006, 22(1): 34-39.
    [28] Lee J. Boundary element method for electroelastic interaction in piezoceramics[J]. Engineering analysis with boundary elements, 1995, 15(4): 321-328.
    [29] Ding H., J. Liang. The fundamental solutions for transversely isotropic piezoelectricity and boundary element method[J]. Computers & Structures, 1999, 71(4): p. 447-455.
    [30] Liu Y., H. Fan. Analysis of thin piezoelectric solids by the boundary element method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(21-22): 2297-2315.
    [31] Tzou H., C. Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach[J]. Journal of sound and vibration, 1990, 138(1): 17-34.
    [32] Shieh R. Governing equations and finite element models for multiaxial piezoelectric beam sensors/actuators[J]. AIAA journal, 1994, 32(6): 1250-1258.
    [33] Robbins D., J. Reddy. Analysis of piezoelectrically actuated beams using a layer-wise displacement theory[J]. Computers & Structures, 1991, 41(2): 265-279.
    [34] Narayanan S., V. Balamurugan. Finite element modelling of piezolaminated smart structures foractive vibration control with distributed sensors and actuators[J]. Journal of sound and vibration, 2003, 262(3): 529-562.
    [35] Balamurugan V., B. Manikandan, S. Narayanan. A higher order finite element modelling of piezolaminated smart composite plates and its application to active vibration control[J]. International Journal of Computational Methods, 2007, 4(1): 141-162.
    [36] Prasad S., D. Waechter, R. Blacow, H. King, Y. Yaman. Application of Piezoelectrics to Smart Structures[C]. II ECCOMAS Thematic conference on Smart Structures and Materials. Lisbon,Portugal, July 18-21, 2005.
    [37] Hwang W. Vibration control of a laminated plate with piezoelectric sensor/actuator: Finite element formulation and modal analysis[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(3): 317-329.
    [38] Malgaca L., H. Karagülle. Numerical and experimental study on integration of control actions into the finite element solutions in smart structures[J]. Shock and Vibration, 2009, 16(4): 401-415.
    [39] Choi G., Y. Lim,G. Choi Tracking position control of piezoelectric actuators for periodic reference inputs[J]. Mechatronics, 2002. 12(5): 669-684.
    [40] Ma K., M. Ghasemi-Nejhad. Adaptive simultaneous precision positioning and vibration control of intelligent composite structures[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(2): 163-174.
    [41] Hwu C., W. Chang, H. Gai. Vibration suppression of composite sandwich beams[J]. Journal of sound and vibration, 2004, 272(1-2): 1-20.
    [42] Vasques C., J. Dias Rodrigues. Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies[J]. Computers & Structures, 2006, 84(22-23): 1402-1414.
    [43] Sohn J., H. Kim, S. Choi. Active vibration control of smart hull structures using piezoelectric actuators[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(9): 1329-1337.
    [44] Smyser C., K. Chandrashekhara. Robust vibration control of composite beams using piezoelectric devices and neural networks[J]. Smart Materials and Structures, 1997, 6: 178-189.
    [45] Sharma M., S. Singh, B. Sachdeva. Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches[J]. Smart Materials and Structures, 2005, 14: 1017-1024.
    [46] Jordan T., Z. Ounaies. Piezoelectric ceramics characterization[M].ICASE Report No. 2001-28, 2001.
    [47] Gallego-Juarez J. Piezoelectric ceramics and ultrasonic transducers[J]. Journal of Physics E: Scientific Instruments, 1989, 22: 804-806.
    [48] Mason W. Piezoelectricity, its history and applications[J]. The Journal of the Acoustical Society ofAmerica, 1981, 70(6): 1561-1566.
    [49] Jaffe B. RS. Roth and S. Marzullo. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics [J]. J. Appl. Phys, 1954, 25: 809-810.
    [50] Panda P. Review: environmental friendly lead-free piezoelectric materials[J]. Journal of materials science, 2009, 44(19): 5049-5062.
    [51] Inoue M., Y. Tada, K. Suganuma, H. Ishiguro. Thermal stability of poly (vinylidene fluoride) films pre-annealed at various temperatures[J]. Polymer Degradation and Stability, 2007, 92(10): 1833-1840.
    [52] Shung K., J. Cannata, Q. Zhou. Piezoelectric materials for high frequency medical imaging applications: A review[J]. Journal of Electroceramics, 2007, 19(1): 141-147.
    [53] Leaver P., M. Cunningham, B. Jones. Piezoelectric polymer pressure sensors[J]. Sensors and Actuators, 1987, 12(3): 225-233.
    [54] Tuzzolino A. Applications of PVDF dust sensor systems in space[J]. Advances in Space Research, 1996, 17(12): 123-132.
    [55] Kimoto A., S. Fujisaki, N. Sugitani. A proposal of new layer sensor based on PVDF film for material identification[J]. Sensors and Actuators A: Physical, 2010, 161(1-2):23-28
    [56]李青山.功能高分子与智能材料[M].哈尔滨:国防工业出版社, 2006.
    [57] Newnham R., A. Safari, J. Giniewicz, B. Fox. Composite piezoelectric sensors[J]. Ferroelectrics, 1984, 60(1): 15-21.
    [58] Tressler J., S. Alkoy, R. Newnham. Piezoelectric sensors and sensor materials[J]. Journal of Electroceramics, 1998, 2(4): 257-272.
    [59] Schlaberg H., J. Duffy. Piezoelectric polymer composite arrays for ultrasonic medical imaging applications[J]. Sensors and Actuators A: Physical, 1994, 44(2): 111-117.
    [60] Hagood N., A. McFarland. Modeling of a piezoelectric rotary ultrasonic motor[J]. IEEE Trans. Ultrason. Ferroelectronic Frequency Control, 1994, 42(2):210-224.
    [61] Chen Y.,S. Wu. Piezoelectric composites with 3-3 connectivity by injecting polymer for hydrostatic sensors[J]. Ceramics International, 2004, 30(1): 69-74.
    [62] Thi M., A. Hladky-Hennion, H. Khanh, L. Tran-Huu-Hue, M. Lethiecq, F. Levassort. Large area 0-3 and 1-3 piezoelectric composites based on single crystal PMN-PT for transducer applications[J]. Physics Procedia, 2010, 3(1): 897-904.
    [63] Dorey R., R. Whatmore. Electrical properties of high density PZT and PMN-PT/PZT thick films produced using ComFi technology[J]. Journal of the European Ceramic Society, 2004, 24(6): 1091-1094.
    [64] Moetakef P., Z. Ali Nemati. Synthesis of pyrochlore free PMN-PZT ceramics via a seedingmethod[J]. Sensors and Actuators A: Physical, 2008, 141(2): 463-470.
    [65] Moetakef P., Z. Nemati. Study of microstructure and dielectric properties of PMN-PZT ceramics via a mixed powder method including sol-gel precursor[J]. Journal of Alloys and Compounds, 2009, 476(1-2): 791-796.
    [66] Escure P., E. Lattard, M. Lejeune, J. Baumard. Stability of the perovskite phase in PMN-PZN-PT ceramics[J]. Journal of materials science, 1996, 31(15): 3937-3943.
    [67] Zuo R., L. Li, R. Chen, Z. Gui. Sintering characteristics and dielectric properties of silver-doped PMN-PZN-PT relaxor ferroelectric ceramics[J]. Journal of materials science, 2000, 35(21): 5433-5436.
    [68] Wang C. The piezoelectric and dielectric properties of PZT-PMN-PZN[J]. Ceramics International, 2004, 30(4): 605-611.
    [69] Yang Z., X. Chao, R. Zhang, Y. Chang, Y. Chen. Fabrication and electrical characteristics of piezoelectric PMN-PZN-PZT ceramic transformers[J]. Materials Science and Engineering: B, 2007, 138(3): 277-283.
    [70] Chao X., Z. Yang, G. Li, Y. Cheng. Fabrication and characterization of low temperature sintering PMN-PZN-PZT step-down multilayer piezoelectric transformer[J]. Sensors and Actuators A: Physical, 2008, 144(1): 117-123.
    [71] Zuo R., L. Li, X. Hu, Z. Gui. Effects of silver incorporation on the dielectric and ferroelectric properties of PMN-PNN-PZT ceramics[J]. Materials Research Bulletin, 2001, 36(12): 2111-2118.
    [72] Zuo R., L. Li, X. Hu, Z. Gui. Effect of silver dopant on electrical properties of PMN-PNN-PZT piezoelectric ceramics by complex impedance spectroscopy[J]. Materials Letters, 2002, 54(2-3): 185-190.
    [73] Feng G., H. Rongzi, L. Jiaji, L. Zhen, T. Chang-sheng. Effects of ZnO/Li2O codoping on microstructure and piezoelectric properties of low-temperature sintered PMN-PNN-PZT ceramics[J]. Ceramics International, 2009, 35(5): 1863-1869.
    [74] Takenaka T. Piezoelectric properties of some lead-free ferroelectric ceramics[J]. Ferroelectrics, 1999, 230(1): 87-98.
    [75] Guo Y., K. Kakimoto, H. Ohsato. Dielectric and piezoelectric properties of lead-free (Na0. 5K0. 5) NbO3-SrTiO3 ceramics[J]. Solid State Communications, 2004, 129(5): 279-284.
    [76] Maeder M., D. Damjanovic, N. Setter. Lead free piezoelectric materials[J]. Journal of Electroceramics, 2004, 13(1): 385-392.
    [77] Shrout T., S. Zhang. Lead-free piezoelectric ceramics: Alternatives for PZT?[J]. Journal of Electroceramics, 2007, 19(1): 113-126.
    [78] Xu C., D. Lin, K. Kwok. Structure, electrical properties and depolarization temperature of (Bi0.5Na0. 5) TiO3-BaTiO3 lead-free piezoelectric ceramics[J]. Solid State Sciences, 2008, 10(7): 934-940.
    [79] Fu P., Z. Xu, R. Chu, W. Li, G. Zang, J. Hao. Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 lead-free ceramics[J]. Materials Science and Engineering: B, 2010, 161-166.
    [80] Zhang S., R. Xia, L. Lebrun, D. Anderson, T. Shrout. Piezoelectric materials for high power, high temperature applications[J]. Materials Letters, 2005, 59(27): 3471-3475.
    [81] Irschik H. A review on static and dynamic shape control of structures by piezoelectric actuation[J]. Engineering Structures, 2002, 24(1): 5-11.
    [82] Park S., W. Hackenberger. High performance single crystal piezoelectrics: applications and issues[J]. Current Opinion in Solid State and Materials Science, 2002, 6(1): 11-18.
    [83] Labanca M., F. Azzola, R. Vinci, L. Rodella. Piezoelectric surgery: Twenty years of use[J]. British Journal of Oral and Maxillofacial Surgery, 2008, 46(4): 265-269.
    [84] Agrawal B., M. Elshafei, G. Song. Adaptive antenna shape control using piezoelectric actuators* 1[J]. Acta Astronautica, 1997, 40(11): 821-826.
    [85] Yousefi-Koma A. Active vibration control of smart structures using piezoelements[D] Ottawa-Carleton Institute for Mechanical and Aerospace Engineering, 1997, Carleton University: Ottawa, ON, Canada.
    [86] Zabihollah A., R. Sedagahti, R. Ganesan. Active vibration suppression of smart laminated beams using layerwise theory and an optimal control strategy[J]. Smart Materials and Structures, 2007, 16: 2190-2201.
    [87] Crawley E., J. De Luis. Use of piezoelectric actuators as elements of intelligent structures[J]. AIAA journal, 1987, 25(10): 1373-1385.
    [88] Tzou H., M. Gadre. Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls[J]. Journal of sound and vibration, 1989, 132(3): 433-450.
    [89] Giurgiutiu V., A. Zagrai, J. Bao. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring [J]. Structural Health Monitoring, 2002, 1(1):41-61.
    [90] Suleman A., A. Costa. Adaptive control of an aeroelastic flight vehicle using piezoelectric actuators[J]. Computers & Structures, 2004, 82(17-19): 1303-1314.
    [91] Hansson J., M. Takano, T. Takigami, T. Tomioka, Y. Suzuki. Vibration Suppression of Railway Car Body with Piezoelectric Elements[J]. JSME International Journal Series C, 2004, 47(2): 451-456.
    [92] Kozek M., C. Benatzky, A. Schirrer, A. Stribersky. Vibration damping of a flexible car body structure using piezo-stack actuators[J]. Control Engineering Practice, 2011, 19(3): 298-310.
    [93]李书进,瞿伟廉,王军武.压电材料智能控制器对框架结构地震反应的主动控制[J].地震工程与工程振, 2000, 20(001): 100-104.
    [94] Fujita T., M. Enomoto, T. Arikabe, T. Ogawa, N. Murai, Y. Hashimoto, H. Hamaguchi, T. Kitahara. Active microvibration control of precision manufacturing factories with smart structure using piezoelectric actuators[C]. Procedcdings of the International Society for Optimal Engineering. Neeport Beach,CA,USA, 2001.
    [95] Sethi V., G. Song. Multimode vibration control of a smart model frame structure[J]. Smart Materials and Structures, 2006, 15: 473-479.
    [96] Kapuria S., P. Kumari, J. Nath. Efficient modeling of smart piezoelectric composite laminates: a review[J]. Acta Mechanica, 2010, 1-18.
    [97] Ray M., K. Rao, B. Samanta. Exact analysis of coupled electroelastic behaviour of a piezoelectric plate under cylindrical bending[J]. Computers & Structures, 1992, 45(4): 667-677.
    [98] Ray M., R. Bhattacharya, B. Samanta. Exact solutions for dynamic analysis of composite plates with distributed piezoelectric layers[J]. Computers and Structures, 1998, 66(6): 737-743.
    [99] Chen C., Y. Shen, X. Wang. Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending[J]. International Journal of Solids and Structures, 1996, 33(30): 4481-4494.
    [100] Cheng Z., C. Lim, S. Kitipornchai. Three-dimensional exact solution for inhomogeneous and laminated piezoelectric plates[J]. International Journal of Engineering Science, 1999, 37(11): 1425-1439.
    [101]王建国.层状压电介质空间轴对称问题的状态空间解[J].力学学报, 2001, 33(1): 115-120.
    [102] Wang J., S. Fang, L. Chen. The state vector methods for space axisymmetric problems in multilayered piezoelectric media[J]. International Journal of Solids and Structures, 2002, 39(15): 3959-3970.
    [103] Wang J., L. Chen, S. Fang. State vector approach to analysis of multilayered magneto-electro-elastic plates[J]. International Journal of Solids and Structures, 2003, 40(7): 1669-1680.
    [104] Wang J., L. Qu, F. Qian. State vector approach of free-vibration analysis of magneto-electro-elastic hybrid laminated plates[J]. Composite Structures, 2010, 92(6): 1318-1324.
    [105] Liu X., Q. Wang, S. Quek. Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates[J]. International Journal of Solids and Structures, 2002, 39(8): 2129-2151.
    [106] Aldraihem O., A. Khdeir. Exact deflection solutions of beams with shear piezoelectric actuators[J]. International Journal of Solids and Structures, 2003, 40(1): 1-12.
    [107] Poizat C.,A. Benjeddou. On analytical and finite element modelling of piezoelectric extension and shear bimorphs[J]. Computers & Structures, 2006, 84(22-23): 1426-1437.
    [108] Susanto K. Vibration analysis of piezoelectric laminated slightly curved beams using distributed transfer function method[J]. International Journal of Solids and Structures, 2009, 46(6): 1564-1573.
    [109]刘正兴,李山青.轴向载荷作用下压电—弹性层合梁段的二维解析解[J].上海力学, 1999, 20(004): 348-356.
    [110]林启荣,金占礼.压电弹性层合梁的电场作用下的二维解析解[J].上海交通大学学报, 2001, 35(004): 518-521.
    [111]黄德进,丁皓江,王惠明.均布载荷作用下正交各向异性固支梁的解析解[J].浙江大学学报:工学版, 2006, 40(003): 511-514.
    [112]陈江瑛,翁国飞,丁皓江.功能梯度压电旋转圆环的三维解析解[J].深圳大学学报:理工版, 2009, 26(003): 321-326.
    [113] Tauchert T. Piezothermoelastic behavior of a laminated plate[J]. Journal of Thermal Stresses, 1992, 15(1): 25-37.
    [114] Suleman A., V. Venkayya. A simple finite element formulation for a laminated composite plate with piezoelectric layers[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(6): 776-782.
    [115]邓年春,邹振祝.压电板的主动控制[J].压电与声光, 2004, 26(006): 517-520.
    [116] Ebrahimi F., A. Rastgoo. Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers[J]. Smart Materials and Structures, 2008, 17: 015044.
    [117] Chandrashekhara K., A. Agarwal. Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(4): 496-508.
    [118] Chandrashekhara K., K. Bhatia. Active buckling control of smart composite plates-finite-element analysis[J]. Smart Materials and Structures, 1993, 2: 31-39.
    [119] Jonnalagadda K., G. Blandford, T. Tauchert. Piezothermoelastic composite plate analysis using first-order shear deformation theory[J]. Computers & Structures, 1994, 51(1): 79-89.
    [120] Lin C., C. Hsu, H. Huang. Finite element analysis on deflection control of plates with piezoelectric actuators[J]. Composite Structures, 1996, 35(4): 423-433.
    [121] Wang S., S. Quek, K. Ang. Vibration control of smart piezoelectric composite plates[J]. Smart Materials and Structures, 2001, 10: 637.
    [122] Vel S., R. Batra. Analysis of piezoelectric bimorphs and plates with segmented actuators[J]. Thin-Walled Structures, 2001, 39(1): 23-44.
    [123] Kapuria S., G. Dube, P. Dumir. First-order shear deformation theory solution for a circular piezoelectric composite plate under axisymmetric load[J]. Smart Materials and Structures, 2003, 12:417-423.
    [124]缑新科,崔明月.压电层合板的振动主动控制[J].噪声与振动控制, 2009, 29(005): 50-53.
    [125] Thinh T., L. Ngoc. Static behavior and vibration control of piezoelectric cantilever composite plates and comparison with experiments[J]. Computational Materials Science, 2010, 49(4):S276-S280.
    [126] Heyliger P., J. Reddy. A higher order beam finite element for bending and vibration problems[J]. Journal of sound and vibration, 1988, 126(2): 309-326.
    [127] XQ P., L. KY, L. GR. Active vibration control of composite beams with piezoelectrics: a finite element model with third order theory[J]. Journal of sound and vibration, 1998, 209(4): 635-650.
    [128] Lee S., J. Reddy, F. Rostam-Abadi. Transient analysis of laminated composite plates with embedded smart-material layers[J]. Finite elements in analysis and design, 2004, 40(5-6): 463-483.
    [129] Moita J., C. Soares, C. Soares. Active control of forced vibrations in adaptive structures using a higher order model[J]. Composite Structures, 2005, 71(3-4): 349-355.
    [130] Moita J., P. Martins, C. Mota Soares, C. Mota. Soares Optimal dynamic control of laminated adaptive structures using a higher order model and a genetic algorithm[J]. Computers & Structures, 2008, 86(3-5): 198-206.
    [131]蒋建平,李东旭.压电复合梁热机电耦合有限元模型[J].振动与冲击, 2007, 26(010): 19-22.
    [132]蒋建平,李东旭.热载荷下压电复合板有限元建模与形变控制[J].力学学报, 2007. 39(4): 503-509.
    [133]王锋,李道奎,唐国金.基于高阶位移模式的压电层合板动力有限元模型[J].计算力学学报, 2007, 24(006): 892-898.
    [134]钟美法,邓子辰,王志金.基于精细积分的压电层合板有限元分析及振动控制[J].西北工业大学学报, 2010, (001): 123-128.
    [135] Wang J., Y. Yong, T. Imai. Finite element analysis of the piezoelectric vibrations of quartz plate resonators with higher-order plate theory[J]. International Journal of Solids and Structures, 1999, 36(15): 2303-2319.
    [136] Wang J., J. Yang. Higher-order theories of piezoelectric plates and applications[J]. Applied Mechanics Reviews, 2000, 53(4): 87-99.
    [137] Franco Correia V., M. Aguiar Gomes, A. Suleman, C. Mota Soares, C. Mota Soares. Modelling and design of adaptive composite structures[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 185(2-4): 325-346.
    [138] Chee C., L. Tong, G. Steven. A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation[J]. Computers & Structures, 2000, 77(3): 253-268.
    [139] Wu X., C. Chen, Y. Shen, X. Tian. A high order theory for functionally graded piezoelectric shells[J]. International Journal of Solids and Structures, 2002, 39(20): 5325-5344.
    [140] Nguyen Q., L. Tong. Shape control of smart composite plate with non-rectangular piezoelectric actuators[J]. Composite Structures, 2004, 66(1-4): 207-214.
    [141] Kant T., S. Shiyekar. Cylindrical bending of piezoelectric laminates with a higher order shear and normal deformation theory[J]. Computers & Structures, 2008, 86(15-16): 1594-1603.
    [142] Thornburgh R., A. Chattopadhyay, A. Ghoshal. Transient vibration of smart structures using a coupled piezoelectric-mechanical theory[J]. Journal of sound and vibration, 2004, 274(1-2): 53-72.
    [143]蒋建平,李东旭.压电层合板高阶计算模型[J].振动与冲击, 2008, 27(004): 89-94.
    [144] Torres D., P. Mendon. HSDT-layerwise analytical solution for rectangular piezoelectric laminated plates[J]. Composite Structures, 2010, 92(8): 1763-1774.
    [145] Reddy J. A generalization of two-dimensional theories of laminated composite plates[J]. Communications in Applied Numerical Methods, 1987, 3(3): 173-180.
    [146] Reddy J., E. Barbero, J. Teply. A plate bending element based on a generalized laminate plate theory[J]. International Journal for Numerical Methods in Engineering, 1989, 28(10): 2275-2292.
    [147] Robbins Jr D., J. Reddy. An efficient computational model for the stress analysis of smart plate structures[J]. Smart Material Structures, 1996, 5: 353-360.
    [148] Saravanos D., P. Heyliger. Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(3): 350-363.
    [149] Saravanos D., P. Heyliger, D. Hopkins. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates[J]. International Journal of Solids and Structures, 1997, 34(3): 359-378.
    [150] Semedo Garcao J., C. Mota Soares, J. Reddy. Analysis of laminated adaptive plate structures using layerwise finite element models[J]. Computers & Structures, 2004, 82(23-26): 1939-1959.
    [151] Kapuria S., P. Dumir, A. Ahmed. An efficient coupled layerwise theory for dynamic analysis of piezoelectric composite beams[J]. Journal of sound and vibration, 2003, 261(5): 927-944.
    [152] Kapuria S.,N. Alam. Efficient layerwise finite element model for dynamic analysis of laminated piezoelectric beams[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(19-22): 2742-2760.
    [153] Balas M. Feedback control of flexible systems[J]. Automatic Control, IEEE Transactions on, 1978, 23(4): 673-679.
    [154] Balas M. Trends in large space structure control theory: fondest hopes, wildest dreams[J]. Automatic Control, IEEE Transactions on, 1982, 27(3): 522-535.
    [155] Forward R. Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast-Experiment[J]. Journal of Spacecraft and Rockets, 1981, 18(1): 11-17.
    [156] Chen C., M. Napolitano, C. Chen. A new learning algorithm for neural network state estimation in active vibration control[J]. Smart Materials and Structures, 1992, 1: 250-257.
    [157] Liao C., C. Sung. An elastodynamic analysis and control of flexible linkages using piezoceramic sensors and actuators[J]. Journal of Mechanical Design, 1993, 115: 658-665.
    [158] Akella P., X. Chen, W. Cheng, D. Hughes, J. Wen. Modeling and control of smart structures with bonded piezoelectric sensors and actuators[J]. Smart Materials and Structures, 1994, 3: 344-353.
    [159] Prakah-Asante K., K. Craig. The application of multi-channel design methods for vibration control of an active structure[J]. Smart Materials and Structures, 1994, 3: 329-343.
    [160] Yang S.,Y. Liu. Frequency domain control of flexible beams with piezoelectric actuator[J]. Journal of Dynamic Systems, Measurement, and Control, 1995, 117(4): 541-546.
    [161] Lim Y., V. Varadan, V. Varadan. Closed loop finite element modeling of active structural damping in the frequency domain[J]. Smart Materials and Structures, 1997, 6: 161-168.
    [162] Blanguernon A., F. Lene, M. Bernadou. Active control of a beam using a piezoceramic element[J]. Smart Materials and Structures, 1999, 8: 116-124.
    [163] Shih H. Distributed vibration sensing and control of a piezoelectric laminated curved beam[J]. Smart Materials and Structures, 2000, 9: 761-766.
    [164] Morgan R., K. Wang. An active-passive piezoelectric absorber for structural vibration control under harmonic excitations with time-varying frequency, Part 1: Algorithm development and analysis, Part 2: Experimental validation and parametric study[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2002, 124(1): 77-89.
    [165] Gosavi S., A. Kelkar. Passivity-based robust control of piezo-actuated flexible beam[C]. American Control Conference, Proceedings of the 2001, Arlington, VA , USA , 3: 2492-2497.
    [166] Vautier B., S. Moheimani. Charge driven piezoelectric actuators for structural vibration control: issues and implementation[J]. Smart Materials and Structures, 2005, 14: 575-586.
    [167] Ezhilarasi D., M. Umapathy, B. Bandyopadhyay. Design and experimental evaluation of piecewise output feedback control for structural vibration suppression[J]. Smart Materials and Structures, 2006, 15: 1927-1938.
    [168] Trindade M. Simultaneous extension and shear piezoelectric actuation for active vibration control of sandwich beams[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(6): 591-600.
    [169] Lin S. PD control of a rotating smart beam with an elastic root[J]. Journal of sound and vibration, 2008, 312(1-2): 109-124.
    [170] Alhazza K., A. Nayfeh, M. Daqaq. On utilizing delayed feedback for active-multimode vibration control of cantilever beams[J]. Journal of sound and vibration, 2009, 319(3-5): 735-752.
    [171] Saunders W., D. Cole, H. Robertshaw. Experiments in piezostructure modal analysis for MIMO feedback control[J]. Smart Materials and Structures, 1994, 3: 210-218.
    [172] Gu Y., R. Clark, C. Fuller, A. Zander. Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene fluoride (PVDF) modal sensors[J]. Journal of Vibration and Acoustics, 1994, 116: 303-308.
    [173]孙东昌, Z. Xu智能板振动控制的分布压电单元法[J].力学学报, 1996, 28(006): 693-699.
    [174] Han J., K. Rew, I. Lee. An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor[J]. Smart Materials and Structures, 1997, 6: 549-588.
    [175] Sadri A., R. Wynne, J. Wright. Robust strategies for active vibration control of plate-like structures: theory and experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 1999, 213(6): 489-504.
    [176] Lam K., T. Ng. Active control of composite plates with integrated piezoelectric sensors and actuators under various dynamic loading conditions[J]. Smart Materials and Structures, 1999, 8: 223-237.
    [177] Kim J., S. Choi, C. Cheong, S. Han, J. Lee. Control of structure-borne noise of a plate featuring piezoceramic actuators[J]. Smart Materials and Structures, 1999, 8: 1-12.
    [178] Lee Y., C. Ng. Vibration control of composite plates under random loading using piezoelectric material[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214(1): 9-25.
    [179] Lee Y., J. Yao. Structural vibration suppression using the piezoelectric sensors and actuators[J]. Journal of Vibration and Acoustics, 2003, 125: 109-113.
    [180] Tzou H., D. Wang. Vibration control of toroidal shells with parallel and diagonal piezoelectric actuators[J]. Journal of Pressure Vessel Technology, 2003, 125: 171-176.
    [181] To C., T. Chen. Optimal control of random vibration in plate and shell structures with distributed piezoelectric components[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1389-1398.
    [182] Kamada T., T. Fujita, T. Hatayama, T. Arikabe, N. Murai, S. Aizawa, K. Tohyama. Active vibration control of frame structures with smart structures using piezoelectric actuators (vibration control by control of bending moments of columns)[J]. Smart Materials and Structures, 1997, 6: 448-456.
    [183] Kamada T., T. Fujita, T. Hatayama, T. Arikabe, N. Murai, S. Aizawa, K. Tohyama. Active vibration control of flexural-shear type frame structures with smart structures using piezoelectric actuators[J]. Smart Materials and Structures, 1998, 7: 479-488.
    [184] Dadfarnia M., N. Jalili, B. Xian, D. Dawson. A Lyapunov-based piezoelectric controller for flexiblecartesian robot manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126: 347-358.
    [185] Seba B., J. Ni, B. Lohmann. Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis[J]. Smart Materials and Structures, 2006, 15: 509-517.
    [186] Hu Q., G. Ma. Optimal sliding mode manoeuvring control and active vibration reduction of flexible spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2006,. 220(4): 317-335.
    [187] Jiang Y., Q. Hu, G. Ma. Attitude manoeuvring and vibration reducing control of flexible spacecraft using smart materials[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(3): 357-367.
    [188]欧近萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社, 2003.
    [189]张家凡.一般振动系统的多输入状态反馈部分极点配置[J].振动与冲击, 2001, 20(004): 45-46.
    [190]俞立,陈国定.不确定系统的鲁棒输出反馈区域极点配置[J].控制理论与应用, 2002, 19(002): 244-246.
    [191]刘满,井元伟,张嗣瀛.区域极点配置问题的研究方法[J].控制与决策, 2005, 20(003): 241-245.
    [192]董兴建,刘龙,孟光等.基于有限元和系统辨识的智能结构主动控制[J].振动工程学报, 2005, 18(003): 329-334.
    [193] Moon S. Finite element analysis and design of control system with feedback output using piezoelectric sensor/actuator for panel flutter suppression[J]. Finite elements in analysis and design, 2006, 42(12): 1071-1078.
    [194] Meirovitch L., L.M. Silverberg Control of structures subjected to seismic excitation[J]. Journal of Engineering Mechanics, 1983, 109: 604.
    [195] Chen C., Y. Shen. Optimal control of active structures with piezoelectric modal sensors and actuators[J]. Smart Materials and Structures, 1997, 6: 403-409.
    [196] Xu B., J. Jiang. Integrated optimization of structure and control for piezoelectric intelligent trusses with uncertain placement of actuators and sensors[J]. Computational Mechanics, 2004, 33(5): 406-412.
    [197]魏燕定,陈定中,程耀东.压电悬臂梁振动的模态控制[J].浙江大学学报(工学版), 2004, 38(9): 1180-1184.
    [198]王波,王荣秀,黄尚廉.压电智能梁振动的组合模态控制法[J].压电与声光, 2004, 26(006): 510-513.
    [199] Baz A., S. Poh. Performance of an active control system with piezoelectric actuators[J]. Journal of sound and vibration, 1988, 126(2): 327-343.
    [200]朱晓锦.压电机敏桁架结构振动自动应控制及实验研究[J].振动测试与诊断, 1998, 18(002): 98-102.
    [201]朱晓锦,陶宝祺.压电机敏结构振动响应的多通道自适应控制[J].测控技术, 2000, 19(009): 28-31.
    [202]李俊,徐德民.非匹配不确定非线性系统的自适应反演滑模控制[J].控制与决策, 1999, 14(001): 46-50.
    [203] Zeinoun I., F. Khorrami. An adaptive control scheme based on fuzzy logic and its application to smart structures[J]. Smart Materials and Structures, 1994. 3: 266-276.
    [204] Lin F.J., H.J. Shieh, P.K. Huang, L.T. Teng. Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2006, 53(9): 1649-1661.
    [205] Qiu J., M. Haraguchi. Vibration control of a plate using a self-sensing piezoelectric actuator and an adaptive control approach[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8-9): 661-669.
    [206] Arbel A. Controllability measures and actuator placement in oscillatory systems[J]. International Journal of Control, 1981, 33(3): 565-574.
    [207] Devasia S., T. Meressi, B. Paden, E. Bayo. Piezoelectric actuator design for vibration suppression: placement and sizing[C]. Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ , USA, 1992, 2:1367-1372.
    [208] Kang Y., H. Park, W. Hwang, K. Han. Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams[J]. AIAA journal, 1996, 34(9): 1921-1926.
    [209] Han J., I. Lee. Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms[J]. Smart Materials and Structures, 1999, 8: 257-267.
    [210] Kermani M., M. Moallem, R. Patel. Optimizing the performance of piezoelectric actuators for active vibration control[C]. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC IEEE, 2002.
    [211]王永,董卓敏,李红征等.柔性结构振动主动控制中传感器/执行器位置优化研究[J].南京理工大学学报:自然科学版, 2002, 26(0S1):29-35
    [212]潘继,陈龙祥,蔡国平.柔性板压电作动器的优化位置与主动控制实验研究[J].振动与冲击, 2010, (002): 117-120.
    [213]王宗利,林启荣.压电智能梁振动控制的优化设计[J].力学季刊, 2000, 21(004): 454-461.
    [214] Wang Q., C. Wang. A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures[J]. Journal of sound and vibration, 2001, 242(3): 507-518.
    [215] Ning H. Optimal number and placements of piezoelectric patch actuators in structural activevibration control[J]. Engineering Computations, 2004, 21(6): 651-665.
    [216]白冰,常军,刘正兴.梁振动控制中压电作动器的位置优化准则[J].上海交通大学学报, 2005, 39(002): 288-292.
    [217] Yan T., R. Lin. General optimization of sizes or placement for various sensors/actuators in structure testing and control[J]. Smart Materials and Structures, 2006. 15: 724-736.
    [218] Robandi I., K. Nishimori, R. Nishimura, N. Ishihara. Optimal feedback control design using genetic algorithm in multimachine power system[J]. International Journal of Electrical Power & Energy Systems, 2001, 23(4): 263-271.
    [219] Li Y., J. Onoda, K. Minesugi. Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression[J]. Acta Astronautica, 2002, 50(6): 335-341.
    [220] Kumar K., S. Narayanan. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs[J]. Smart Materials and Structures, 2008, 17: 055008.
    [221] Roy T., D. Chakraborty. Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm[J]. Journal of sound and vibration, 2009, 319(1-2): 15-40.
    [222] Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey[J]. Computers and Structures, 2000, 76(1): 347-364.
    [223] Mackerle J. Smart materials and structures: FEM and BEM simulations a bibliography (1997-1999)[J]. Finite elements in analysis and design, 2001, 37(1): 71-83.
    [224]孙慷,张福学.压电学(上册)[M]:北京:国防工业出版社,1984.
    [225] Wang Z., S. Chen, W. Han. The static shape control for intelligent structures[J]. Finite elements in analysis and design, 1997, 26(4): 303-314.
    [226] Tseng C. Electromechanical dynamics of a coupled piezoelectric/mechanical system applied to vibration control and distributed sensing[D]. University of Kentucky, Lexington, KY, 1989.
    [227] Lin M., A. Abatan, C. Rogers. Application of commercial finite element codes for the analysis of induced strain-actuated structures[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(6): 869-875.
    [228] Benjeddou A., M. Trindade, R. Ohayon. A unified beam finite element model for extension and shear piezoelectric actuation mechanisms[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(12): 1012-1025.
    [229] Lim Y. Finite-element simulation of closed loop vibration control of a smart plate under transient loading[J]. Smart Materials and Structures, 2003, 12: 272-286.
    [230] Leissa A.W. Vibration of plates (NASA SP-160)[M]. US Government Printing Office, Washington, DC, 1969.
    [231]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社, 2003.
    [232]赵宏伟,孙立宁.压电陶瓷驱动器在机器人柔性臂应用中的研究[J].压电与声光, 2000, 22(003): 173-176.
    [233] Mitra M., S. Gopalakrishnan, M. Bhat. Vibration control in a composite box beam with piezoelectric actuators[J]. Smart Materials and Structures, 2004, 13: 676-690.
    [234] Jaensch M., M. Lampérth. Investigations into the stability of a PID-controlled micropositioning and vibration attenuation system[J]. Smart Materials and Structures, 2007, 16: 1066-1075.
    [235] Rao Sr G. Linear dynamics of an elastic beam under moving loads[J]. Journal of Vibration and Acoustics, 2000, 122: 281-289.
    [236] Verichev S., A. Metrikine. Instability of vibrations of a mass that moves uniformly along a beam on a periodically inhomogeneous foundation[J]. Journal of sound and vibration, 2003, 260(5): 901-925.
    [237] Hilal M., H. Zibdeh. Vibration analysis of beams with general boundary conditions traversed by a moving force[J]. Journal of sound and vibration, 2000, 229(2): 377-388.
    [238] Wu J. Vibration of a rectangular plate undergoing forces moving along a circular path[J]. Finite elements in analysis and design, 2003, 40(1): 41-60.
    [239] Sung Y. Modelling and control with piezoactuators for a simply supported beam under a moving mass[J]. Journal of sound and vibration, 2002, 250(4): 617-626.
    [240] Olsson M. On the fundamental moving load problem[J]. Journal of sound and vibration, 1991, 145(2): 299-307.
    [241] Sklansky J. Learning systems for automatic control[J]. Automatic Control, IEEE Transactions on, 1966, 11(1): 6-19.
    [242] Lambert J., M. Levine. Learning control heuristics[J]. Automatic Control, IEEE Transactions on, 1968, 13(6): 741-742.
    [243] Fu K.S. Learning control systems--Review and outlook[J]. Automatic Control, IEEE Transactions on, 1970, 15(2): 210-221.
    [244] Arimoto S., S. Kawamura, F. Miyazaki. Bettering operation of robots by learning[J]. Journal of Robotic Systems, 1984, 1(2): 123-140.
    [245] Uchiyama M. Formulation of high-speed motion pattern of a mechanical arm by trial[J]. Transactions of the Society for Instrumentation and Control Engineers, 1978, 14(6): 706-712.
    [246] Arimoto S., S. Kawamura, F. Miyazaki, S. Tamaki. Learning control theory for dynamical systems[C]. Decision and Control, 1985 24th IEEE Conference on , 1985.
    [247] Arimoto S., S. Kawamura,F. Miyazaki. Bettering operation of dynamic systems by learning: A new control theory for servomechanism or mechatronics systems[C]. Proceedings of the IEEEconference on decision and control, Las Vegas, Nevada , 1984 , 1064–1069.
    [248]皮道映,孙优贤.离散非线性系统开闭环P型迭代学习控制律及其收敛性[J].控制理论与应用, 1997, 14(002): 157-161.
    [249] Wang D. Convergence and robustness of discrete time nonlinear systems with iterative learning control[J]. Automatica, 1998, 34(11): 1445-1448.
    [250] Ahn H.S., K.L. Moore, Y.Q. Chen. Stability analysis of discrete-time iterative learning control systems with interval uncertainty[J]. Automatica, 2007, 43(5): 892-902.
    [251]晏静文,侯忠生.学习增强型PID控制系统的收敛性分析[J].控制理论与应用, 2010, 27(6): 761-768.
    [252] Teng T., C. Peng, C. Chuang. A study on the application of fuzzy theory to structural active control[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(2): 439-448.
    [253] LA Z. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Transactions on Systems, Man, and Cybern, 1973, 3(1): 28-44.
    [254] Mamdani E. Application of fuzzy algorithms for control of simple dynamic plant[J]. Proc. IEE, 1974, 121(12): 1585-1588.
    [255] Brown C., J. Yao. Fuzzy sets and structural engineering[J]. Journal of structural engineering, 1983, 109(5): 1211-1225.
    [256] Tsoukkas A., H. Vanlandingham. Application of Fuzzy Logic Control to active vibration damping[C]. Dynamics and control of large structures, Proceedings of the 8th VPI&SU Symposium, Blacksburg, VA, UNITED STATES, 1991, 371-380.
    [257] Faravelli L., T. Yao. Use of adaptive networks in fuzzy control of civil structures[J]. Computer-Aided Civil and Infrastructure Engineering, 1996, 11(1): 67-76.
    [258] Kwak M., D. Sciulli. Fuzzy-logic based vibration suppression control experiments on active structures[J]. Journal of sound and vibration, 1996, 191(1): 15-28.
    [259] Park H., R. Agarwal, K. Nho. Fuzzy logic control of structure vibration of beams[C]. Aerospace Sciences Meeting and Exhibit, AIAA, 2000: 0172.
    [260] Sharma M., S. Singh, B. Sachdeva. Modal control of a plate using a fuzzy logic controller[J]. Smart Materials and Structures, 2007, 16: 1331-1341.
    [261]张京军,曹丽雅,袁伟泽等.压电智能结构振动的模糊控制及仿真实现[J].工程力学, 2009, 26(10): 228-232.
    [262]郑凯,陈杰,杨义勇.压电自适应桁架结构智能振动控制[J].控制理论与应用, 2010, 27(7): 943-947.
    [263] Bhattacharya P., H. Suhail, P. Sinha. Finite element analysis and distributed control of laminated composite shells using LQR/IMSC approach[J]. Aerospace Science and Technology, 2002, 6(4):273-281.
    [264]路小波,陶云刚.基于神经网络的柔性结构振动主动控制研究[J].振动工程学报, 2000, 13(001): 107-111.
    [265] de Abreu G.L., J.F. Ribeiro. A self-organizing fuzzy logic controller for the active control of flexible structures using piezoelectric actuators[J]. Applied Soft Computing, 2002, 1(4): 271-283.
    [266] Lin J., W.Z. Liu. Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam[J]. Journal of sound and vibration, 2006, 296(3): 567-582.
    [267]张兴国,林辉.迭代学习控制理论进展与展望[J].测控技术, 2006, 25(011): 1-5.
    [268] Jiang P. Iterative learning neural network control for nonlinear system trajectory tracking* 1[J]. Neurocomputing, 2002, 48(1-4): 141-153.
    [269] Xu J.X., J. Xu. A new fuzzy logic learning control scheme for repetitive trajectory tracking problems[J]. Fuzzy sets and systems, 2003, 133(1): 57-75.
    [270]苗静.迭代学习控制理论[J].西安工业大学学报, 2007, 27(003): 306-306.
    [271] Arimoto S. Learning control theory for robotic motion[J]. International Journal of Adaptive Control and Signal Processing, 1990, 4(6): 543-564.
    [272] De Luca A., S. Panzieri. An iterative scheme for learning gravity compensation in flexible robot arms[J]. Automatica, 1994, 30(6): 993-1002.
    [273]孙明轩,黄宝鉴,张学智.任意初态下不确定时滞系统的PD型迭代学习控制*.控制理论与应用, 1998, 15(6): 853-858.
    [274] Park K.H. A study on the robustness of a PID-type iterative learning controller against initial state error[J]. International Journal of Systems Science, 1999, 30(1): 49-59.
    [275] Madady A. PID type iterative learning control with optimal gains[J]. International Journal of Control Automation and Systems, 2008. 6(2): 194-203.
    [276] Togai M., O. Yamano. Analysis and design of an optimal learning control scheme for industrial robots: A discrete system approach[C]. Decision and Control, Proceedings of 24th IEEE Conference on, 1985, 1399-1404.
    [277]吴东南,程勉.多步控制修正下的学习控制[J].自动化学报, 1989, 15(005): 445-450.
    [278]孙明轩,万伯任.非线性系统高阶迭代学习算法[J].控制与决策, 1994, 9(3): 195-199.
    [279] Arimoto S., T. Naniwa, H. Suzuki. Robustness of P-type learning control with a forgetting factor for robotic motions[C]. Decision and Control, Proceedings of the 29th IEEE Conference on, 1990, 5: 2640-2645.
    [280] Furuta K., M. Yamakita. Iterative generation of optimal input of a manipulator[C]. Robotics and Automation, Proceedings, of 1986 IEEE International Conference on, 579-584.
    [281] Amann N., D.H. Owens, E. Rogers. Iterative learning control for discrete-time systems withexponential rate of convergence[C]. IEE Proc-Part D:Control theory and applications, 1996, 143(2): 217-224.
    [282] Amann N., D.H. Owens, E. Rogers. Predictive optimal iterative learning control[J]. International Journal of Control, 1998, 69(2): 203-226.
    [283] Owens D.H., K. Feng. Parameter optimization in iterative learning control[J]. International Journal of Control, 2003, 76(11): 1059-1069.
    [284] Seo W., B. Park, J. Lee. Intelligent learning control for a class of nonlinear dynamic systems[J]. IEE Proceedings Control Theory & Application, 1999, 146(2): 165-170.
    [285] Gunnarsson S., M. Norrl?f. On the design of ILC algorithms using optimization [J]. Automatica, 2001, 37(12): 2011-2016.
    [286] Yang S., Z. Qu, X. Fan, X. Nian. Novel iterative learning controls for linear discrete-time systems based on a performance index over iterations[J]. Automatica, 2008, 44(5): 1366-1372.
    [287]肖擎纲,曾阳素.基于误差最小化的新型迭代学习算法[J].中南大学学报:自然科学版, 2008, 39(002): 356-361.
    [288] Ramesh Kumar K., S. Narayanan. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs[J]. Smart Materials and Structures, 2008, 17: 055008.
    [289]任兴仑,童昕.压电智能梁振动控制的遗传算法优化设计[J].华侨大学学报:自然科学版, 2002, 23(001): 81-86.
    [290]吕永桂,魏燕定,吕存养等.悬臂板振动控制传感器/致动器优化配置[J].兵工学报, 2006, 27(001): 88-92.
    [291]吕永桂,魏燕定,陈子辰.基于遗传算法的压电扭转驱动器优化布置[J].浙江大学学报:工学版, 2007, 41(003): 471-474.
    [292]魏燕定,娄军强,吕永桂等.振动主动控制中线性二次型最优控制问题研究[J].浙江大学学报:工学版, 2009, 43(003): 420-424.
    [293]王威远,魏英杰,王聪等.压电智能结构传感器/作动器位置优化研究[J].宇航学报, 2007, 28(004): 1025-1029.
    [294]咸奎成,黄海.压电桁架作动器/传感器优化配置算法研究[J].计算力学学报, 2008, 25(006): 827-832.
    [295]高瑞贞,张京军,郑骥等.基于改进遗传算法主动柔性结构压电元件位置优化[J].计算力学学报, 2008. 25(4): 542-546.
    [296] Sadri A., J. Wright, R. Wynne. Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms[J]. Smart Materials and Structures, 1999, 8: 490-498.
    [297] Zhang H., B. Lennox, P.R. Goulding, A.Y.T. Leung. A float-encoded genetic algorithm technique for integrated optimization of piezoelectric actuator and sensor placement and feedback gains[J].Smart Materials and Structures, 2000, 9: 552-557.
    [298] Kim T.W., J.H. Kim. Optimal distribution of an active layer for transient vibration control of a flexible plate[J]. Smart Materials and Structures, 2005, 14: 904-916.
    [299] Ramesh Kumar K.,S. Narayanan The optimal location of piezoelectric actuators and sensors for vibration control of plates[J]. Smart Materials and Structures, 2007, 16: 2680-2691.
    [300] Karagülle H., L. Malgaca, H. ktem. Analysis of active vibration control in smart structures by ANSYS[J]. Smart Materials and Structures, 2004, 13: 661-667.
    [301] Xu S., T. Koko. Finite element analysis and design of actively controlled piezoelectric smart structures[J]. Finite elements in analysis and design, 2004, 40(3): 241-262.
    [302] de Godoy T. ,T. Marcelo Areias. Modeling and analysis of laminate composite plates with embedded active-passive piezoelectric networks[J]. Journal of sound and vibration, 2011, 330(2): 194-216.
    [303] Kusculuoglu Z.K., T.J. Royston. Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications[J]. Smart Materials and Structures, 2005, 14: 1139-1153.
    [304] Hsu M.H. Electromechanical Analysis of Piezoelectric Laminated Composite Beams[J]. Journal of Marine Science and Technology, 2005, 13(2): 148-155.
    [305] Yan S., M.N. Ghasemi-Nejhad. Analytical modeling and active vibration suppression of adaptive composite panels with optimal actuator configurations[J]. Smart Materials and Structures, 2007, 16: 2516.
    [306] Kapuria S., M. Yasin. Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model[J]. Journal of sound and vibration, 2010, 329(16): 3247-3265.
    [307] Chandiramani N. Active control of a piezo-composite rotating beam using coupled plant dynamics[J]. Journal of sound and vibration, 2010, 329(14): 2716-2737.
    [308] Valoor M.T., K. Chandrashekhara, S. Agarwal. Active vibration control of smart composite plates using self-adaptive neuro-controller[J]. Smart Materials and Structures, 2000, 9: 197-204.
    [309] Bassiouni A., R. Gad-Elrab, T. Elmahdy. Dynamic analysis for laminated composite beams[J]. Composite Structures, 1999, 44(2-3): 81-87.
    [310] Kapuria S., M.Y. Yasin. Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node[J]. Smart Materials and Structures, 2010, 19: 045019.
    [311] Boudaoud H., S. Belouettar, E.M. Daya, M. Potier-Ferry. A numerical method for nonlinear complex modes with application to active-passive damped sandwich structures[J]. EngineeringStructures, 2009, 31(2): 284-291.
    [312] Ma C.C., C.C. Lin. Experimental investigation of vibrating laminated composite plates by optical interferometry method[J]. AIAA journal, 2001, 39(3): 491-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700