用户名: 密码: 验证码:
多场耦合材料的界面力学和局部效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有优良的电力耦合性能,多场耦合材料如压电材料、功能梯度压电材料和压电纤维复合材料等作为各种执行器、传感器等广泛应用于声纳发射器、水下潜艇、医学超声成像、健康检测等智能结构。对这类材料的研究具有重要的科学意义和工程应用前景。
     本文首先介绍了多场耦合材料的研究背景和发展现状,指出了在界面力学、局部效应如奇异性、圣维南衰减等领域需要解决的问题。本文以多场耦合材料的界面力学和局部效应为两个主要研究内容。
     对于压电纤维复合材料,本文建立了修正的剪滞模型,以压电纤维的push-out试验为例,考察了粘接界面和摩擦界面上的应力传递和电场分布特征。对于部分脱粘界面,仍然以剪滞模型为基础,用断裂力学的方法建立了纤维脱粘的能量准则,研究了材料参数、电场载荷等对能量释放率和界面应力传递及纤维电场分布的影响。此外,用势函数法和汉克尔变换,解决了压电纤维中的币形裂纹问题,并考虑了弹性涂层尺寸、材料性能对币形裂纹的影响。
     对于压电材料和功能梯度压电材料,本文将它们的控制方程导入哈密顿体系或空间状态变量方程,利用分离变量法研究了压电楔和具有环向材料性能变化的功能梯度压电材料(AGPM)楔在反平面变形下的奇异性问题。数值结果表明,材料常数、楔角、材料梯度等因素对楔状体的奇异性阶次有重要的影响,因而可以利用这些因素来减小或避免应力及电场集中现象。另一方面,用类似的方法研究了压电材料和功能梯度材料在平面变形、反平面变形下的圣维南衰减问题。对于压电材料发现存在两种衰减模式,并且其衰减特征长度要远远大于弹性材料,数值算例说明,可以通过材料参数、材料梯度参数等因素来控制材料端部的衰减行为。
Due to their coupling among various fields, multi-field materials such as piezoelectric materials, functionally graded piezoelectric materials (FGPM) and piezoelectric fibre composites have been widely used as sensors and actuator in applications such as sonar projectors, under-water use, medical ultrasonic imaging applications and health monitoring systems, etc. Thus, study on these materials be of great importance scientifically and potential in engineering applications.
     In this thesis, a comprehensive review on the research background and development of the multi-field materials is presented, and some problems related to interface mechanics and local effects of multi-filed coupled materils such as singularity and Sanit-Venant’s decay effect are pointed out have been systematically studied. In the following, the thesis puts emphasis on the solution process of these problems.
     Based on some assumptions, a modified shear-lag model for piezoelectric fibre composites has been developed. Using the model, stress transfer and electric fields for a piezoelectric fibre composite with a fully bonded interface or frictional interface has been investigated. For a composite with partially debonded interface, a debonding criterion for the piezoelectric effect is presented utilizing a fracture mechanics approach to investigate the debonding process of piezoelectric fibre in the push-out test under combined electrical and mechanical loading within the framework of shear-lag theory. In addition, the problem of a penny-shaped crack in a piezoelectric fibre with an elastic coating embedded is investigated. By using the potential theory and Hankel transform, this problem is formulated as the solution of a system of dual integral equations which are reduced to a Fredholm integral equation of the second kind. Numerical studies are conducted to show the effect of the thickness and the elastic material properties of the coating on the fracture of piezoelectric fibre.
     Finally, the singularity behaviour of electroelastic fields in a wedge with homogeneous piezoelectric materials (PM) and/or angularly graded piezoelectric material (AGPM) under anti-plane deformation is investigated based on the Hamiltonian system and/or the mixed–variable state space formulation developed in this thesis. Numerical examples demonstrate that the materials properties, wedge angle and the angular variation of the materials properties have an important influence on the singularities of the PM wedge and AGPM wedge and the material inhomogeneity degreeηcan be used to control the singularities of AGPM wedge systems. Using a similar procedure to the singularity analysis, the Saint-Venant decay effects for the PM and FGPM strip and laminate under plane deformation and anti-plane deformation have been investigate. These studies indicate that the decay rate of stress and electric fields can be determined by way of the real part of the eigenvalue with the smallest positive real part of the matrix operator. There exist two type of decay mode depended on the materials properties and the characteristic decay lengths for the piezoelectric materials under plane deformation are larger that that for elastic materials. In addition, the material inhomogeneity plays an important role in Saint-Venant end effects for FGPM laminates.
引文
[1] Matsuzaki, Y., Smart structures research in Japan. Smart Materials and Structures. 1997, 6 R1-R110.
    [2] Park, S.B., Sun C.T., Effect of electric field on fracture of piezoelectric ceramics. International Journal of Fracture. 1995,70,203-216.
    [3] He, L.H., Lim, C.W., Electromechanical responses of piezoelectric fiber composites with sliding interface under anti-plane deformations. Composites Part B:Engineering. 2003, 34, 374-381.
    [4] 孙福学,现代压电学,北京:科学出版社,2001
    [5] 李永,宋健,张志民,梯度功能力学,北京:清华大学出版社,2003
    [6] Liew,K.M., Yang, J., Kitipornchai,S., Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures.2003, 40, 3869-3892
    [7] Lu, P., Lee, H.P., Lu, C. An exact solution for functionally graded piezoelectric laminates in cylindrical bending. International Jouranl of Mechanical Sciences. 2005, 47, 437-458.
    [8] Miyamoto, Y., Kaysser, W.A., Rabin, B.H., etc. Functionally Graded Materials:Design, Processing and Applications. Kluwer Academic Publishers. Dordrecht. 1999
    [9] Wu, C.M., Kahn, M., Moy, W., Piezoelectric ceramics with functionally gradients: A new application in materials design. Journal of American Ceramics Society. 1996, 79, 809-812.
    [10] Ueda, S., Electromechanical response of a center crack in a functionally graded piezoelectric strip. Smart Materials and Structures. 2005, 14, 329-342.
    [11] Wang, B.L., Zhang, X.H., A mode III crack in functionally graded piezoelectric materials strip. Transactions of the ASME, Journal of Applied Mechanics.2004. 71, 327-333
    [12] Carpinteri, A., Paggi, M. On the asymptotic stress field in angularly nonhomogeneous materials. International Joural of Fracture 2005, 135, 267-283
    [13] Nelson, L.J., Smart piezoelectric fibre composites. Materials Science and Technology. 2002, 18, 1245-1256
    [14] 赵寿根,程伟,1-3 型压电复合材料及其研究进展,力学进展,2002,32,57-68
    [15] Bent, A.A., Hagood, N.W., Rodgers, J.P. Anisotropic Actuation with piezoelectric fibre composites. Journal of Intelligent Material Systems and Structures. 1995, 6, 338-349.
    [16] http://www.smart-materials.com
    [17] Janos, B.Z., Hagood, N.W., Overview of active fiber composites technologies. Proceedings of the 6th International Conference on new Actuators-ACTUATOR 98, 1998, Bremen, Germany
    [18] Hagood, N.W., Bent, A.A., Development of piezoelectric fiber composites for structural actuation. AIAA Paper, 1993, 1693-1717
    [19] Newnham, R.E., Skinner, D.P., Cross, L.E., et al. Connective and piezoelectric-pyroelectric composites. Material Research Bulletin, 1978, 13, 525-536
    [20] Safari, A., Newnham, R.E., et al. Perforated PZT-polymer composites for piezoelectric transducer applications. Piezoelectric, New York, Gorden and Breach Science Pulisher, 1985.
    [21] Hagood, N.W., Kindel, R., et al, Improving transverse actuation of piezoelectric using interdigitated surface electrodes. SPIE Paper, 1993, 1917-1925
    [22] Tan, P., Tong, L.Y., Micro-electromechanics models for piezoelectric-fiber -reinforced composite materials. Composites Science and Technology, 2001, 61, 759-769.
    [23] Williams, R.B., Inman, D.J., An overview of composite actuators with piezoelectric fibers. SPIE Proceeding, 2002
    [24] Maclean, B.J., Jacobsen, S.C., Active fibers ofr development of adaptive structures. ARPA Actuator Issues Workshop, 1995-1996
    [25] Fernandez, J.F, Dogan, A., Zhang, Q.M., et al. Hollow piezoelectric composites. Sensors and Actuators, A: Physical 1995, 51,183-192
    [26] Zhang Q., Wang, H., Cross, L.E., Piezoelectric tubes and tubular composites for actuator and sensor applications. Journal of Materials Science. 1993, 28, 3962-3968
    [27] Brei, D., Cannon, B.J., Piezoceramic hollow fiber active composites. Composites Science and Technology. 2004, 64, 245-261
    [28] Toupin, R.A., Saint-Venant’s principle. Arch, Rat Mech.Anal. 1968, 26, 193-240
    [29] Horgan, C.O., Recent developments concerning Saint-Venant’s principle: An update, Applied Mechanics Review. 1989, 42, 295-303
    [30] Horgan, C.O., Knowles, J.K., Recent developments concerning Saint-Venant’s principle, Advances in Applied Mechanics. 1983, 23, 180-269
    [31] 王敏中,高等弹性力学,北京:北京大学出版社,2002
    [32] Batra, R.C., Yang, J.S., Saint-Venant’s principle in linear piezoelectricity. Journal of Elasticity, 1995, 38, 209-218.
    [33] Batra, R.C., Zhong, X., Saint-Venant’s principle’s for a helical piezoelectric body. Journal of Elasticity, 1996, 43, 69-79
    [34] Fan, H., Decay rates in a piezoelectric strip. International Journal of Engineering Science, 1995, 33(8), 1095-1103
    [35] Ruan, X.P., Danforth, S.C., Safari, A., Chou, T., Saint-Venant end effects in piezoelceramic materials. International Journal of Solids and Structures, 2000, 37, 2625-2637.
    [36] Tarn, J.Q., Huang, L.J., Saint-Venant end effects in multilayered piezoelectric Laminates. International Jouranl of Solids and Structures. 2002, 4979-4998
    [37] Borrelli, A., Horgan, C.O., Patria, M.C., Saint-Venant end effects for plane deformation of linear piezoelectric solids. International Journal of Solids and Structures. 2006, 43, 943-956.
    [38] Borrelli, A., Horgan, C.O., Patria, M.C., Saint-Venant’s principle for anti-plane shear deformations of linear piezoelectric materials. SIAM Journal on Applied Mathematics, 2003, 62, 2027-2044.
    [39] Borrelli, A., Horgan, C.O., Patria, M.C., Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proceedings of the Royal Society of London, Series A, 2004, 460, 1193-1212
    [40] Xu, X.L., Rajapakse, P.K.N.D. On singularities in composite piezoelectric wedges and junctions. International Journal of Solids and Structures 2002;37:3253-3275A.
    [41] Williams, M.L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Journal of Applied Mechanics. 1952, 74, 526-528.
    [42] Williams, M.L., The stress around a fault or crack in dissimilar media. Bull Seismol. Society of American, 1959, 49, 199-204.
    [43] Rice, J.R., Sih, G.C., Plane problems of cracks in dissimilar media. Journal of Applied Mechanics. 1965, 32, 418-423.
    [44] Sih, G.C., Rice, J.R., The bending of plates of dissimilar materials with cracks. Journal of Applied Mechanics. 1964, 31, 477-482.
    [45] Erdogan, F., Stress distribution in a nonhomogeneous elastic plane with cracks. Journal of Applied Mechanics. 1963, 11, 985-996.
    [46] Bogy, B.D., Wang, K.C., Stress singularity at interface corners in bonded dissimilar isotropic elastic materials. International Journal of Solids and Structures. 1971, 17, 993-1005.
    [47] Wang, S.S., Choi, I., Boundary layer effects in composite materials, Part I: Free edge singularity. Journal of Applied Mechanics. 1982, 49, 541-548.
    [48] Wang, S.S., Choi, I., The interface crack behavior in dissimilar anisotropic composites under mixed mode loading. Journal of Applied Mechanics. 1983, 50, 179-183.
    [49] Chen, D.H., Nisitani, H., Singular stress field near the corner of jointed dissimilar materials. Journal of Applied Mechanics. 1993, 60, 607-613.
    [50] Kang, Y.L., Lua, H., Investigation of near-tip displacement fields of a crack normal to and terminating at a bimaterial interface under mixed-mode loading. Engineering Fracture Mechanics. 2002, 69, 2199-2208
    [51] 亢一澜,Laermann K.H., 异质材料界面端部应力奇异性的试验分析,力学学报,1995,27,506-512
    [52] Chen, H.P., Stress singularities in anisotropic multi-material wedges and junctions. International Journal of Solids and Structures. 1998, 35, 1057-1073.
    [53] Sosa, H., Pak, Y.E., Three-dimensional eigenfunction analysis of a crack in a piezoelectric materials. International Journal of Solids and Structures. 1990, 26, 1-15.
    [54] Kuo, C.M., Barnett, D.M., Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In:Wu, J.J., Ting, T.C.T. Barnett, D.M.(EDs.), Modern Theory of Anisotropic Elasticity and Applications. SIAM, Philadelphia, 1991, 33-50
    [55] Shindo, Y., Narita, F., Tanaka, K. Electroelastic intensification near anti-palne shear crack in orthotropic piezoelectric ceramic strip. Theoretical and Applied Fracture Mechanics. 1996, 25, 65-71
    [56] Shindo, Y., Tanaka, K., Narita, F., Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mechanics 1997, 120, 31-45
    [57] Narita, F., Shindo, Y., Layered piezoele ctric medium with interface crack under anti-plane shear. Theoretical and Applied Fracture Mechanics. 1998, 30, 119-126
    [58] Narita, F., Shindo, Y., The interface crack problem for bonded piezoelectric and orthotropic layers under antiplane shear loading. International Journal of Fracture. 1999, 98, 87-101
    [59] Ou, Z.C, Wu, X.J., On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. International Journal of Solids and Structures. 2003, 40, 7499-7511
    [60] Chue, C.H., Chen, C.D., Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems. 2002, 39, 3131-3158.
    [61] Chue, C.H., Chen, C.D., Antiplane stress singularities in a bonded bimaterial piezoelectric wedge. Archive of Applied Mechanics, 2003, 72, 673-685.
    [62] Chen, C.D., Chue, C.H.., Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear. International Journal of Solids and Structures, 2003, 40, 6513-6526
    [63] Chen, M.C., Zhu, J.J., Sze, K.Y., Electroelastic singularities in piezoelectric-elastic wedges and junctions. Engineering Fracture Mechanics, 2006, 73, 855-868
    [64] Chen, C.D., On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bonded wedge. International Journal of Solids and Structures, 2006, 43, 957-981
    [65] Zhang, H.W., Zhong, W.X., Hamiltonian principle based stress singularity analysis near crack corners of multi-materials junctions. International Journal of Solids and Structures. 2003, 40, 493-510.
    [66] Erdogan, J., Stress intensity factors. ASME Journal of Applied Mechanics. 1983, 50, 992-1002
    [67] Erdogan, F., Wu, B., The surface crack problem for a plate with functionally graded properties. ASME Journal of Applied Mechanics. 1997, 64, 449-456
    [68] Erdogan, F., Fracture mechanics of functionally gradient materials. Composites Engineering. 1995, 5, 753-770.
    [69] Delale, F. and Erdogan, F., The crack problem for a nonhomogeneous plane. ASME Journal of Applied Mechanics. 1983, 50, 609-614
    [70] Poizat, C., Sester, M., Effective properties of composites with embedded piezoelectric fibers. Computational Materials Science. 1999, 16, 89-97.
    [71] Li, J.Y., Dunn, M.L., Micromechanics of magnetoelectroelastic composite materials: average fields and effective behaviour. Journal of Intelligent Material Systems and Structures. 1998, 9, 404-416.
    [72] Berger, H., Kari, S., etc., An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. International Journal of Solids and Structures. 2005, 42, 5692-5714
    [73] Kornmann, X., Huber, C., Microstructure and mechanical properties of PZT fibers. Journal of the European Ceramic Society. 2004, 24, 1987-1991
    [74] Xiao, Z.M., J, B., On piezoelectric inhomogeneity related problem-Part I: a close-form solution for the stress field outside a circular piezoelectric inhomogeneity. International Journal of Engineering Science. 1999, 37, 945-959.
    [75] Levin, V.M., The propagation of elastic waves in composite materials reinforced with piezoelectric fibers. Journal of Applied Mathematics and Mechanics. 1999, 63, 977-984.
    [76] Rajapakse, R.K.N.D., Electroelastic response of a composite cylinder with a piezoceramic core. In: Proceedings of SPIE Smart Materials and Structures Conference. 1996, 2715, 684-694.
    [77] Rajapakse, R.K.N.D., Zhou, Y., Stress analysis of piezoceramic cylinders. Smart Materials and Structures. 1997, 6, 169-177
    [78] Rajapakse, R.K.N.D., Chen,Y., Senjuntichai, T., Electroelastic field of a piezoelectric annular finite cylinder. International Journal of Solids and Structures. 2005, 42, 3487-3508.
    [79] Zhou, L.M., A study on the fracture mechanics of interfaces in fibre-matrix composites. PhD. Dissertation, Sydney: the University of Sydney. 1994.
    [80] Liu, H.Y., Theoretical and numerical studies on fibre fragmentation in advanced composites. PhD. Dissertation, Sydney: the University of Sydney. 1997.
    [81] Gao, Y.C., Mai, Y.W., Cotterell, B., Fracture of fiber-reinforced materials. Journal of Applied Mathematic and Physics (ZAMP). 1988, 39, 550-572
    [82] Gao, Y.C., Damage modeling of fibre reinforced composites. Theoretical and Applied Fracture Mechanics. 1989, 11, 147-155.
    [83] Huseh, C.H., Elastic load transfer from partially embedded axially loaded fibre to matrix. Journal of Material and Science Letters. 1988, 7, 497-500.
    [84] Huseh, C.H., Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. Materials Science and Engineering. 1990, A123, 1-11
    [85] Huseh, C.H, Interfacial friction analysis for fibre-reinforced composites during fiber push-down(indentation). Journal of Material Science. 1990, 25, 818-828.
    [86] Huseh, C.H., Interfacial debonding and fibre pull-out stresses of fibre-reinforced composite V: with a viscous interface. Materials Science and Engineering. 1991, A124, 1-9.
    [87] Hsueh, C.H., Modifications of fibre pull-out analysis. Journal of Material Science Letters. 1992, 11, 1663-1666.
    [88] Hsueh, C.H., Pull-out of a ductile fibre from a brittle matrix. Journal of Materials Science., 1994, 29, 5135-5130.
    [89] Nairn, J.A., Liu, Y.C., Stress transfer into a fragmented anisotropic fibre through an imperfect interface. International Journal of Solids and Structures. 1997, 34,1255-1281
    [90] Nairn, J.A., Liu, Y.C., On the use of energy methods for interpretation of results of single-fibre fragmentation experiments. Composite Interface. 1997, 4, 241-267
    [91] Zhou, L.M., Mai, Y.W., A new model for evaluation of interfacial frication coefficient and residual clamping stress in fibre push-out test. Philosophical Magazine letter. 1993, 68, 5-11.
    [92] Zhou, L.M. Kim, J.K., Baillie, C., et al. Fracture mechanics analysis of the fibre fragmentation test. Journal of Composite Materials. 1995, 29, 881-902.
    [93] Liu, H.Y., Zhou, L.M., Mai, Y.W., On fibre pull-out with a rough interface. Philosophical Magazine A. 1994, 70, 359-372.
    [94] Liu, H.Y., Mai, Y.W., Zhou, L.M., et al., Simulation of the fibre fragmentation process by a fracture mechanics analysis. Composites Science and Technology, 1994, 52, 253-260.
    [95] Zhang, X., Liu, H.Y., Mai, Y.W., et al. On steady-state fibre pull-out I: the stress field. Composites Science and Technology. 1999, 59, 2179-2189.
    [96] Liu, H.Y., Zhang, X., Mai, Y.W., et al. On steady-state fibre pull-out II: Computer simulation. Composites Science and Technology. 1999, 59, 2191-2199.
    [97] Zhou, L.M., Mai, Y.W., Ye, L., Analyses of fibre push-out test based on the fracture mechanics approach. Composites Engineering. 1995, 10-11, 1199-1219.
    [98] Liu, H.Y., Qin, Q.H., Mai, Y.W., Theoretical model of piezoelectric fibre pull-out. International Journal of Solids and Structures. 2003, 40, 5511-5519.
    [99] Pak, Y.E., Crack extension force in a piezoelectric ceramics. ASME Journal of Applied Mechanics. 1990, 57, 647-653.
    [100] Park, S.B., Sun, C.T., Effect of electric field on fracture of piezoelectric ceramic. International Journal of Fracture. 1995, 70, 203-216.
    [101] Park, S.B., Sun, C.T., Fracture criteria for piezoelectric ceramics. Journal of American Ceramic Society. 1995, 78, 1475-1480.
    [102] Qin, Q.H., Fracture mechanics of piezoelectric materials. WIT Press. 2001.
    [103] Zhang, T.Y., Zhao, M.H., Tong, P., Fracture of piezoelectric ceramics. Advances in Applied Mechanics. 2001. 38, 147-289.
    [104] Wang, B., Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. International Journal of Engineering Science. 1992, 30, 781-789.
    [105] Chen, W.Q., Shioya, T., Complete and exact solutions of a penny-shaped crack in a piezoelectric solid: antisymmetric shear loadings. International Journal of Solids and Structures. 2000, 37, 2603-2619.
    [106] Chen, W.Q., Shioya, T., Fundamental solution for a penny-shaped crack in a piezoelectric medium. Journal of the Mechanics and Physics of Solids. 1999, 47, 1459-1475.
    [107] Zhao, M.H., Shen, Y.P., Liu, Y.J. et al. Isolated crack in three-dimensional piezoelectric solid: Part I-Solution by Hankel transform . Theoretical of Applied Fracture Mechanics. 1997, 26, 129-139.
    [108] Zhao, M.H., Shen, Y.,P., Liu, Y.J., et al., Isolated crack in three-dimensional piezoelectric solid: Part II-Stress intensity factors for circular crack. Theoretical of Applied Fracture Mechanics. 1997, 26, 141-149.
    [109] Kogan, L., Hu, C.Y., Stress and induction field of a spherical inclusion of a penny-shaped crack in a transversely isotropic piezoelectric material. International Journal of Solids and Structures. 1996, 33, 2719-2737
    [110] Wang, Z.K., Huang, S.H., Fields near elliptical crack tip in piezoelectric ceramics. Engineering Fracture Mechanics. 1995, 51, 447-456.
    [111] Wang, Z.K., Zheng, B.L., The general solution of three-dimensional problems in piezoelectric media. International Journal of Solids and Structures. 1995, 32, 105-115.
    [112] Yang, H.J., Lee, K.Y., Penny shaped crack in a piezoelectric cylinder surrounded by an elastic medium subjected to combined in-plane mechanical and electrical loads. International Journal of Solids and Structures. 2003, 40, 573-590.
    [113] Narita, F., Lin, S., Shindo, Y., Penny-shaped crack in a piezoceramic cylinder Mode I loading. Archive of Mechancs. 2003, 55, 275-304.
    [114] Lin, S., Narita, F., Shindo, Y., Electroelastic analysis of a piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix. International Journal of Solids and Structures. 2003, 40, 5157-5174.
    [115] 汤任基,裂纹柱的扭转理论, 上海:上海交通大学出版社,1996
    [116] Sneddon, I., Tait, R.J., The effect of a penny-shaped crack on the distribution of stress in a long circular cylinder. International Engineering Science. 1963, 1, 391-409.
    [117] Sneddon, I., Welch, J.T., A note on the distribution of stress in a cylinder containing a penny-shaped crack. International Engineering Science. 1963, 7, 411-419.
    [118] Sneddon, I., Lowengrub, M., Crack problem in the classical thory of eleasticity. New York, Wiley., 1966
    [119] 钟万勰,弹性力学求解新体系, 大连:大连理工大学出版社,1995
    [120] 姚伟岸,钟万勰, 辛弹性力学, 北京:高等教育出版社, 2002
    [121] Mahesh, S., Hanan, J.C., et al. Shear-lag model for a single fiber metal marix composite with an elastic-plastic matrix and a slipping interface. International Journal of Solids and Structures. 2004, 41, 4197-4218.
    [122] Gao, X.L., Li, K., A shear-lag model for carbon nanotube-reinforced polymer composites. International Journal of Solids and Structures. 2005, 42, 1649-1667.
    [123] Wang, X.L., Hu, G..K., Stress transfer for a SMA fiber pulled put from an elastic matrix and related bridging effect. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1142-1151.
    [124] Tiersten, H.F., Linear Piezoelectric Plate Vibrations, New York, Plenum Press, 1969.
    [125] Narita F., Lin,S. and Shindo Y., Penny-shaped crack in a piezoceramic cylinder under Mode I loading. Archive of Mechanics, 2003, 55, 275-304.
    [126] 姚伟岸,电磁弹性固体反平面问题辛求解体系及圣维南原理, 大连理工大学学报,2004,44(5),630-633
    [127]边文凤,孙芳,王彪,哈密顿体系下机电耦合问题的基本方程,计算力学学报,2005,22(4),411-414
    [128] Gu, Q., Xu, X.S., Leung Andrew, Y.T., Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media. Journal of ZheJiang University Science A. 2005, 6, 915-921

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700