用户名: 密码: 验证码:
压电纤维复合材料的电—弹场及其有效性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料因其固有的机—电耦合效应在工程中得到了广泛应用。然而,压电材料的脆性使其难以制成大尺寸的结构。解决这个问题的办法之一是将压电材料(如压电纤维)与弹性基体合成为复合材料。针对这种多相材料,由于物理上的不连续将在界面附近形成局部的应力集中,这往往引起纤维与基体脱粘,甚至导致材料失效。提高界面强度的方法之一是在基体和压电纤维之间加入合适的界面相,以减少界面附近的应力集中。另一方面,压电纤维的合理排布同样可以有效地降低界面附近的应力集中。
     基于复变函数理论和含有界面相的广义自洽方法,本文研究了含压电纤维复合材料内的电-弹性场及其有效性能,重点分析了纤维排布方式以及界面相对电-弹性场和有效性能的影响。全文由七章组成,具体各章主要内容概括如下:
     第一章介绍了压电复合材料的研究现状以及有待进一步探讨的问题。
     第二章推导了本文所涉及的基本方程。基于Stroh理论首先引入了以x_3轴为极化方向的压电材料反平面问题的电弹场基本公式。其次,通过复变函数理论以及线弹性压电方程得到了极化方向为x_3方向的压电复合材料平面问题的电弹场基本公式。
     第三章主要研究了含有功能梯度界面相压电纤维复合材料反平面问题与平面问题的电弹场。基于复变函数理论,将功能梯度界面相分层均匀化,然后将基体、分层均匀化后的界面相以及压电纤维的复势函数设定为含有待定系数的级数求和形式,通过边界条件建立其相应的方程,最后求得在各种载荷下的电弹场。
     第四章分析了多个含界面相压电纤维反平面问题的电弹场。基于复变函数理论以及Stroh理论,研究了复变函数中多连通域的弹性平衡问题,得到了压电复合材料各组分内电弹场的理论解。最后用数值方法分析了界面相的材料常数、厚度以及纤维间的距离对压电复合材料电弹场的影响。
     第五章考虑了在远处面内机械载荷和沿着压电纤维方向电载荷共同作用下任意排列的含界面相压电纤维复合材料平面问题的电弹场,利用数值结果讨论了不同的界面相对压电复合材料电弹场的影响。
     第六章基于不同的模型分析了含有界面相压电纤维复合材料的有效性能。针对纤维统计均匀分布的情况,根据含有界面相广义自洽理论以及第三章至第五章求解得到的复合材料各组分内的电弹场获得了多种含有界面相压电复合材料模型的有效性能。利用数值结果讨论了不同的界面相对压电复合材料有效性能的影响。
     最后,在第七章,对本文所做的工作做了总结并对未来的工作做了展望。
Due to the mechanical-electric coupling behaviors, piezoelectric materials have been widely applied inengineering applications. However, the brittleness of piezoelectric materials has limited their sizes.One way to solve this problem is to embed the piezoelectric materials into the elastic matrix and makeup piezoelectric composites. The physical discontinuity in the composites will lead to local stressconcentration along the interface, causing the separation of the fibers from the matrix and finallyfailures. One way to improve the interface strength is to add an appropriate interphase between thepiezoelectric fibers and the matrix. In addition, the reasonable array type of piezoelectric fibers canalso effectively reduce the stress concentration near the interphase.
     Based on the complex variable theory and the generalized self-consistent method with interphase, inthe paper we study the local mechanical-electric fields and the effective properties of the piezoelectriccomposites. The effect of array type of fibers and interphase on the mechanical-electric fields andeffective properties are analyzed, respectively. This paper consists of seven chapters and the maincontents are as follows:
     In the first Chapter, a brief introduction to piezoelectric composites is given and the problems neededto be solved are outlined.
     In the second Chapter, the basic equations in this paper are obtained. Based on the Stroh theory, thebasic equations of the anti-plane problem for the piezoelectric materials are firstly derived when thepolar direction is assumed to be along the x_3axis. Then according to the complex variable theory andlinear elastic piezoelectric equations, the mechanic-electric equations of the plane problems for thepiezoelectric composites are also derived when the polar direction of piezoelectric fiber is assumed tobe along the x_3axis.
     In the third Chapter, the mechanical-electric field under anti-plane and plane deformation for thepiezoelectric fiber with a functionally graded interphase embedded into the matrix is studied,respectively. The functionally graded interphase is divided into be uniform, and the complex potentialsof matrix, the after-homogenization of interphase and piezoelectric fiber are set to power series with undetermined coefficients. Then according to the corresponding boundary conditions, themechanical-electric fields of the composites are obtained under different kinds of known remote loads.
     In the fourth Capter, studied is an anti-plane problem for mechanical-electric field of the multiplepiezoelectric fibers with an interphase in the matrix. Based on the complex variable theory and theStroh formalism, the elastic equilibrium of the multiply-connected problem in the complex potential issolved and the analytical solutions for all the constituents of the piezoelectric composites are derived.Then numerical results are presented to discuss the influences of interphase properties, interphasethickness and distances on the mechanical-electric fields of the piezoelectric composites.
     In the fifth Chapter, addressed is a plane problem for mechanical-electric field of the multiplepiezoelectric fibers with interphase randomly-distributed in the elastic matrix under remote in-planemechanical load and electric load along the piezoelectric fiber. Numerical solutions are made toexplore the influence of different interphase on the mechanical-local field of the piezoelectriccomposites.
     In the sixth Chapter, investigated is the effective properties problem for a variety of an interphaseembedded into the piezoelectric composites’ models. According to the generalized self-consistentmethod with interphase and the solutions obtained from the last three Chapters, the effectiveproperties of piezoelectric composites under statistics homogeneity are derived by different kinds ofmodels. Numerical results are presented to discuss the influence of interphase on the effectiveproperties of piezoelectric composites.
     Finally, in the last Chapter, the present work is summarized and some future works are proposed onthe topic.
引文
[1]赵玉庭,姚希曾.复合材料基体与界面,上海:华东化工学院出版社,1991:1.
    [2]沈观林,胡更开编.复合材料力学,北京:清华大学出版社,2006:1.
    [3]顾里之编.纤维增强复合材料,北京:机械工业出版社,1988:1-2.
    [4]胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法,力学进展,2001,3(13):361-393.
    [5]孙建亮,周振功,王彪.功能梯度压电压磁材料中断裂问题分析,力学学报,2005,37(1):9-14.
    [6] Christian N. Della, Shu D.W. On the performance of1–3piezoelectric composites with a passiveand active matrix. Sensors and Actuators A,2007,140:200-206.
    [7]宋道仁,肖鸣山编.压电效应及其应用,北京:科学普及出版社,1987.
    [8]段慧玲.非均质材料力学中的界面效应,[博士论文],北京:北京大学,2005.
    [9]贾菲(美).压电陶瓷,北京:科学出版社,1979:18.
    [10]秦自楷编.压电石英晶体,北京:国防工业出版社,1980.
    [11] Wright A.压电纤维超声波转导复合材料,现代制造,2005,24:34-36.
    [12]杜善义,张傅明.先进复合材料智能化研究概述,航空制造技术,2002,9:17-20.
    [13]杨宾华.含压电纤维复合材料机电耦合问题的研究,[硕士论文],南京:南京航空航天大学,2008.
    [14]许金泉.界面力学,北京:科学出版社,2006:5.
    [15]郑泉水,黄克智等.世纪之交的力学——参加第20届国际理论与应用力学大会有感,力学进展,2001,30(3):478-480.
    [16]方岱宁.先进复合材料的宏微观力学与强韧化设计:发展与挑战,复合材料学报,2001,17:1-7.
    [17]杜善义,王彪编著.复合材料细观力学,北京:科学出版社,1998:5.
    [18] Voigt W. Uber die Bezeihung zwischen den beiden Elastizitatskongstanten istroper Korper,Wied Ann,1889,38:573-589.(转自Mura T书)
    [19] Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingungfur Einkristalle, Zangew Math Mech,1929,9:49-58.(转自Mura T书)
    [20] Hill, R. The elastic behavior of a crystalline aggregate, Proc. Phys. Soc.,1952, A65:349-354.
    [21] Hershey, A.V. The elasticity of an isotropic aggregate of anisotropic cubic crystals, Journal ofApplied Mechanics,1954,21:236-240.
    [22] Kroner, E. Berechung der elastischen konstanten des viekristalls aus den konstanten deseinkristalls, Zeitschrift fur Physik,1958,151:504-518.
    [23] Kerner, E.H. The elastic and thermo-elastic properties of composite media, Proceedings of theRoyal Society,1956, B69:801-808.
    [24] Mori, T., Tanaka, K. Average stress in matrix and average energy of materials with misfittinginclusions,1973, Acta Metallurgica,21:571-574.
    [25] Eshelby, J. D. The defermination of the elastic field of an ellipsoidal inclusion, and the relatedproblem, Proceedings of the Royal Society, London A,1957,241:367-396.
    [26] Eshelby, J. D. The elastic field outside an ellipsoidal inclusion, Proceedings of the RoyalSociety, London A,1959,252:561-569.
    [27] Mura, T. Micromechanics of Defects in Solids, Matinus Nijhoff Publishers,1987.
    [28] Waplpole, L.J. On bounds for the overall elastic moduli of inhomogeneous systems-I, Journal ofthe Mechanics and Physics of Solids,1966,14:151-162.
    [29] Waplpole, L.J. On bounds for the overall elastic moduli of inhomogeneous systems-II, Journalof the Mechanics and Physics of Solids,1966,14:289-301.
    [30] Hashin, Z., Shtrikman, S.A. Variational approch to the theory of the elastic behavior ofpolycrystals, Journal of the Mechanics and Physics of Solids,1962,10:335-342.
    [31] Hashin, Z., Shtrikman, S.A. Variational approch to the elastic behavior of multiphase materials,Journal of the Mechanics and Physics of Solids,1963,11:127-140.
    [32] Smith J.C. Correction and extension of van der poel’s method for calculating the shear modulusof a particulate composite, Journal of Research of the National Bureau of Standards,1974,78A(3):355-361.
    [33] Smith J.C. Simplification of van der poel’s method for calculating the shear modulus of aparticulate composite, Journal of Research of the National Bureau of Standards,1975,79A(2):419-423.
    [34] Christensen R.M., Lo K.H. Solutions for effective shear properties in three phase space andcylinder model, Journal of the Mechanics and Physics of Solids,1979,27:315-30.
    [35] Aboudi J., Benveniste Y. The effective moduli of cracked bodies in plane deformations,Engineering Fracture Mechanics,1987,26:171-184.
    [36] Benveniste Y. A new approach to the application of Mori-Tanaka’s theory in compositematerials, Mechanics of Materials,1987,6:147-157.
    [37] Huang Y., Huang K.C., Chandra A. A generalized self-consistent mechanics method formicrocraked solids, Journal of the Mechanics and Physics of Solids,1994,42:1273-1291.
    [38] Huang Y., Huang K.C., Wei X., et al. A generalized self-consistent mechanics method forcomposites materials with multiphase inclusions, Journal of the Mechanics and Physics ofSolids,1994,42:491-504.
    [39] Huang, K.C., Sun Q.P. Thermoelastic martensitic transformation induced plasticity-micromechanical modeling, experiments and simulations, In: Bakker A, ed, Invited papers ofthe7thint. conf. on mechanical behaviour of materials, European Structural IntegritySociety-ESIS, Netherlands: Delft University Press,1995.
    [40] Ponte-Castaneda, P., Willis, J.R. The effect of spatial distribution on the effective behavior ofcomposite materials and cracked media, Journal of the Mechanics and Physics of Solids,1995,44:1919-1951.
    [41]黄克智,黄永刚编著.固体本构关系,北京:清华大学出版社,1999.
    [42] Hori M., Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phasecomposites. Mechanics of Materials,1993,14:189-206.
    [43] Nemat-Nasser S., Hori M. Double-inclusion model and overall moduli of multi-phasecomposites, Journal of Engineering Materials and Technology,1994:305-309.
    [44] Hu G.K., Weng G.J. The connections between the double-inclusion model and the PonteCastaneda-Willis, Mori-Tanaka, Kuster-Toksoz models, Mechanics of Materials,2000,32:495-503.
    [45] Kachanov M. Effective elastic properties of cracked solids: critical review of some basicconcepts, Applied Mechanics Review,1992,45(8):304.
    [46] Roscoe, R. The viscosity of suspensions of rigid spheres, British Journal of Applied Physics,1952,3:267-269.
    [47] Boucher S.S. Modules effectifs de materiaus guasi homogenes etd incousions elastiques, II Casdes concentrations finies en enclusions, Revue M.1976:221.
    [48] Mclaughlin R. A study of the differential scheme for composite materials, International Journalof Solids and Structures,1977,15:237-244.
    [49]杜丹旭.多相材料有效性质的理论研究,[博士论文],北京:清华大学,2000.
    [50] Wen M., Zheng Q.S., Du D.X. Some basic problems in numerically simulating effectiveproperties and local fields of composite materials, Acta Mechanica Solida Sinica,1999,12:328-339.
    [51] Zheng Q.S., Du D.X. Closed-form interacting solutions for overall elastic moduli of compositematerials with multi-phase inclusions, holes and microcracks, Key Engineering Materials,1998,145-149:479-488.
    [52] Zheng Q.S., Du D.X. An explicit and universally applicable estimate for the effective propertiesof multiphase composites which accounts for inclusion distribution, Journal of the Mechanicsand Physics of Solids,2001,49(11):2765-2788.
    [53] Du D.X., Zheng Q.S. A further exploitation of the interaction direction derivative (IDD)estimate for the effective properties of multiphase composites taking into account inclusiondistribution, Acta Mechanica,2002,157:61-80.
    [54] Lekhnitskii S.G. Theory of Elasticity of an Anisotropic Body, Moscow: Mir Publisher,1981.
    [55] Stroh A.N. Dislocations and cracks in anisotropic elasticity, Philosophical Magazine,1958,3:625-646.
    [56] Stroh A.N. Steady state problems in anisotropic elasticity, Journal of Mathematical Physics,1962,41:77-103.
    [57]高存法.压电介质断裂问题理论研究,[博士论文],南京:南京航空航天大学,1998.
    [58]王旭,沈亚鹏.面外剪切下各向异性三相椭圆夹杂中均匀应力,力学学报,2002,34(1):37-46.
    [59] Barnett D.M., Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators,Physica Status Solidi B,1975,67:105-111.
    [60] Barnett D.M., Lothe J., Gavazza S. D. et al. Considerations of the existence of interfacial(Stoneley) waves in bonded anisotropic elastic half-Spaces, Proceedings of the Royal Society,1985,402:153-166.
    [61] Ting T.C.T. Anisotropic Elasticity: Theory and Applications, England: Oxford University Press,1996.
    [62] Ting T.C.T. Some identities and the structure of Ni in the Stroh formalism of anisotropicelasticity, Quarterly of Applied Mathematics,1988,46:109-120.
    [63] Li Q.Q., Ting T.C.T. Line inclusions in anisotropic elastic solids, Journal of Applied Mechanics,1989,56:556-563.
    [64] Ting T.C.T., Yan G.P. The anisotropic elastic solids with an elliptic hole or rigid inclusion,International Journal of Solids and Structures,1996,33:343-359.
    [65]丁启财,王敏中.各向异性弹性力学一般边值问题的广义Stroh公式,力学学报,1993,25:283-301.
    [66] Ting T.C.T. Symmetric representation of stress and strain in the Stroh formalism and physicalmeaning of the tensor L, S, L and S, Journal of Elasticity,1998,50:91-96.
    [67] Gao C.F., Tong P. and Zhang T.Y. Fracture mechanics for a modeIII crack in amagnetoelectroelastic solid, International Journal of Solids and Structures,2004,41:6613-6629.
    [68] Zhang T.Y., Gao C.F. Fracture behaviors of piezoelectric materials, Theoretical and AppliedFracture Mechanics,2004,71:486-492.
    [69] Gao C.F., Fan W.X. Exact solutions for the plane problem in piezoelectric materials with anelliptic crack, International Journal of Solids and Structures,2004,36:2527-2540.
    [70] Li X.F., Wang B.L. Anti-plane shear crack normal to and terminating at the interface of twobonded piezoelectric ceramics, International Journal of Solids and Structures,2007,44(11-12):3796-3810.
    [71]王保林,韩杰才,杜善义.压电材料中裂纹面电边界条件的适用性,固体力学学报,2004,25(4):399-403.
    [72] Du S.Y., Liang J., Han J.C. General coupled solution of anisotropic piezoelectric materials withan elliptic inclusion, Acta Mechanica Sinica.1994,10:273-281.
    [73] Liu J.X., Wang B., Du S.Y. Electro elastic fundamental solutions of anisotropic piezoelectricmedium with an elliptic hole, Acta Mechanica Sinica,1997,13.
    [74] Chen F.M., Shen M.H., Chen S.N. An exact thermopiezoelasticity solution for a three-phasecomposite cylinder, International Journal of Engineering Science,2006,44:1482-1497.
    [75] Shen M.H., Chen S.N., Chen F.M. A piezoelectric screw dislocation interacting with anonuniformly coated circular inclusion, International Journal of Engineering Science,2006,44:1-13.
    [76] Shen M.H., Chen F.M., Hung S.Y. Piezoelectric study for a three-phase composite containingarbitrary inclusion, International Journal of Mechanical Science,2010,52(4):561-571.
    [77] Tong Z.H., Lo S.H., Jiang C.P. et al. An exact solution for thethree-phase-electro-magneto-elastic cylinder model and its application topiezoelectric-magnetic fiber composites, International Journal of Solids and Structures,2008,45:5205-5219.
    [78] Jiang C.P., Chen F.L., Yan P. et al. A four-phase confocal elliptical cylinder model for predictingthe effective thermal conductivity of coated fiber composites, Philosophical Magazine,2010,90:3601-3615.
    [79] Shen M.H., Chen S.N., Chen F.M. Piezoelectric study on confocally multicoated ellipticalinclusion, International Journal of Engineering Science,2005,43:1299-1312.
    [80] Wu L. Z., Chen J., Meng Q.G. Two piezoelectric circular cylindrical inclusions in the infinitepiezoelectric medium, International Journal of Engineering Science,2000,38:879-892.
    [81] Koiter W.T. Stress distribution in an infinite elastic sheet with a doubly-periodic set of equalholes, Boundary problems in differential equations, edited by Rudoph, E. Langer,1960.
    [82] Filshtinskii L.A. Doubly-periodic problem of the theory of elasticity for an isotropic mediumweakened by congruent groups of arbitrary holes, Journal of Applied Mathematics andMechanics,1972,36(4):643-651.
    [83] Nemat-Nasser S., Hori M. Micromechanics: Overall properties of heterogeneous materials,Elsevier, Amsterdam,1999.
    [84]路见可.双周期平面弹性理论中的复Airy函数,数学杂志,1986,3:89-90.
    [85] Xu Y. L., Lo S. H., Jiang C. P. et al. Electro-elastic behavior of doubly periodic piezoelectricfiber composites under anti-plane shear, International Journal of Solids and Structures,2007,44:976-995.
    [86] Xiao Z.M., Yan J., Chen B.J. Electroelastic analysis for a griffith crack interacting with a coatedinclusion in piezoelectric solid, International Journal of Engineering Science,2005,43:639-654.
    [87]谢新亮,肖俊华,徐耀玲等.双周期带涂层纤维压电复合材料反平面问题分析,航空学报,2008,29(2):333-337.
    [88]徐耀玲,蒋持平.双周期圆柱形夹杂纵向剪切问题的精确解,力学学报,2003,35:265-271.
    [89]杨勇.多界面层双周期压电纤维复合材料反平面问题的解析法,[硕士论文],秦皇岛:燕山大学,2009.
    [90] Xiao Z.M., Bai J. On piezoelectric inhomogeneity related problem—part I: a close-formsolution for the stress field outside a circular piezoelectric inhomogeneity, International Journalof Solids and Structures,1999,37:945-959.
    [91] Xiao Z.M., Bai J. On piezoelectric inhomogeneity related problem—part II: a circularpiezoelectric inhomogeneity interacting with a nearby crack, International Journal of Solids andStructures,1999,37:961-976.
    [92] Xiao Z.M., Bai J., Maeda R. Electro-elastic stress analysis on piezoelectric inhomogeneity—crack interaction, International Journal of Solids and Stuructures,2001,38:1369-1394.
    [93] Xiao Z.M., Bai J. Numerical simulation on a coated piezoelectric sensor interacting with acrack, Finite Elements in Analysis and Design,2002,38(8):691-706.
    [94] Jiang C.P., Cheung Y.K. An exact solution for the three-phase piezoelectric cylinder modelunder antiplane shear and its applications to piezoelectric composites, International Journal ofSolids and Structures,2001,38:4777-4796.
    [95] Lee Jaesang, James G., Boyd I.V. Effective properties of three-phase electro-magneto-elasticcomposites, International Journal of Engineering Science,2005,43:790–825.
    [96]叶碧泉,羿旭明,靳胜勇等.用界面单元法分析复合材料界面力学性能,应用数学和力学,1996,17(4):343-348.
    [97]余湘彬,仲政.弱界面颗粒增强复合材料的有效弹性模量,同济大学学报,2000,28(3):257-261.
    [98] Yao Koutsawa, Salim Belouettar, Ahmed Makradi et al. Generalization of the micromechanicsmulti-coating approach to coupled fields composite materials with eigenfields: Effectiveproperties, Mechanics Research Communications,2011,38:45-51.
    [99] Jiang C.P., Cheung Y.K. A fiber/matrix/composite model with a combined confocal ellipticalcylinder unit cell for predicting the effective longitudinal shear modulus, International Journalof Solids and Structures,1998,35(30):3977-3987.
    [100] Jiang C.P., Tong Z.H., Cheung Y.K. A generalized self-consistent method accounting for fibersection shape, International Journal of Solids and Structures,2003,40:2589-2609.
    [101] Jiang C.P., Tong Z.H., Cheung Y.K. A generalized self-consistent method for piezoelectricfiber reinforced composites under antiplane shear, Mechanics of Materials,2001,33:295-308.
    [102] Xu Y.L., Lo S.H., Jiang C.P. et al. Electroelastic behavior of doubly periodic piezoelectricfiber composites under antiplane shear, International Journal of Solids and Structures,2007,44:976-995.
    [103]徐耀玲,沈艳芝,刘新桥.双周期分布圆环形截面夹杂反平面问题的解析方法,计算力学学报,2010,27(1):157-161.
    [104]徐耀玲,候红丽,沈艳芝.涂层对复合材料电-磁-弹性性能的影响,固体力学学报,2009,30(5):450-458.
    [105]徐耀玲,肖俊华,沈艳芝.增强相周期分布的多涂层纤维复合材料反平面问题的解析方法,工程力学,2010,27(11):196-203.
    [106]孙建亮,周振功,王彪.功能梯度压电压磁材料中断裂问题分析,力学学报,2005,37(1):9-14.
    [107]李尧臣,亓峰,仲政.功能梯度矩形板的近似理论与解析解,力学学报,2010,42(4):670-681.
    [108]胡克强,仲政,金波.功能梯度压电材料反平面裂纹问题,力学季刊,2002,23(1):70-76.
    [109]马力,吴林志,聂武.在反平面变形下功能梯度压电板条的应力强度因子分析,工程力学,2006,23(1):47-51.
    [110]韩杰才,徐丽,王保林,张幸红.梯度功能材料的研究进展及展望,固体火箭技术,2004,27(3):207-214.
    [111] Han J.C., Wang B.L. Thermal shock resistance enhancement of functionally graded materialsby multiple cracking, Acta Materialia,2006,54(4):963-973.
    [112] Wang B.L., Mai Y.W. Periodic array of cracks in functionally graded materials subjected totransient loading, International Journal of Engineering Science,2006,44(5-6):351-364.
    [113] Bian Z.G., Chen W.Q., Lim C.W., et al. Analytical solutions for single-and multi-spanfunctionally graded plates in cylindrical bending, International Journal of Solids and Structures,2005,42:6433-6456.
    [114] Ma L., Wu L.Z., Zhou Z.G. et al. Fracture analysis of a functionally graded piezoelectric strip,Composite Structures,2005,69:294-300.
    [115] Bian Z.G., Lim C.W., Chen W.Q. On functionally graded beams with integrated surfacepiezoelectric layers, Composite Structures,2006,72:339-351.
    [116] Yan Z., Jiang L.Y. Study of a propagating finite crack in functionally gradedpiezoelectricmaterials considering dielectric medium effect, International Journal of Solids andStructures,2009,46:1362-1372.
    [117]甘国友,严继康,孙加林.压电复合材料的现状与展望,功能材料,2000,5:456-459.
    [118]Muskhelishvili N.I. Some Basic Problems of the Mathematical Theory of Elasticity,Groningeng: Noordhoof,1963.
    [119]王敏中,赵颖涛.二维各向异性弹性力学的Stroh公式及其推广,力学与实践,2001,23(6):7-15.
    [120] Eshelby J.D., Read W.T., Shockley W. Anisotropic elasticity with applications to dislocationtheory, Act Metallurgica,1953,1:251-259.
    [121] Parton V.Z., Kudryavtsev B.A. Electromagnetoelasticity, New York: Gordon and Breach,Science Publishers,1988.
    [122]徐芝纶.弹性力学,北京:高等教育出版社,2003.
    [123]樊大钧.数学弹性力学,北京:新时代出版社,1983.
    [124]仲政.压电材料椭圆夹杂界面局部脱粘问题的分析,应用数学和力学,2004,25(4):405-416.
    [125]李红,谢松法编.复变函数与积分变换,北京:高等教育出版社,2008.
    [126]路见可,钟寿国,刘士强编著.复变函数,武汉:武汉大学出版社,2001.
    [127]西安交通大学高等数学教研室编.工程数学—复变函数,北京:高等教育出版社,1994.
    [128]周博,谢东来,张宪海编著. MATLAB科学计算,北京:机械工业出版社,2010.
    [129]吴鹏编著. MATLAB高效编程技巧与应用:25个案例分析,北京:北京航空航天大学出版社,2010.
    [130]张德丰. MATLAB数值计算方法,北京:机械工业出版社,2010.
    [131]蔡旭晖,刘卫国,蔡立燕编著. MATLAB基础与应用教程,北京:人民邮电出版社,2009.
    [132]岂兴明编著. MATLAB7.0程序设计快速入门,北京:人民邮电出版社,2009.
    [133]张琨,毕靖,丛滨编著. MATLAB7.6从入门到精通,北京:电子工业出版社2009.
    [134]张笑天,杨奋强编著. MATLAB7.x基础教程,西安:西安电子科技大学出版社2008.
    [135]周剑平.精通Origin7.0,北京:北京航空航天大学出版社,2004.
    [136]叶卫平,方安平,于本方编著. Origin7.0科技绘图及数据分析,北京:机械工业出版社2004.
    [137]郝红伟,施光凯编著. Origin6.0实例教程,北京:中国电力出版社,2000.
    [138]周剑平. Origin实用教程,西安:西安交通大学出版社,2007.
    [139] Gao C.F., Tong P., Zhang T.Y. Interaction of a dipole with an interfacial crack in piezoelectricmedia, Composites Scienc and Technology,2005,65:1345-1362.
    [140] Pak Y.E. Circular inclusion problem in anti-plane piezoelectricity, International Journal ofSolids and Structures,1997,29:2403-2419.
    [141]林文赋,彭亚新编.高等数学:理工类,北京:人民出版社,2006.
    [142]杨海涛主编.高等数学:理工类,上海:同济大学出版社,2007.
    [143]文丽,吴良大编.高等数学(第一、二、三册),北京:北京大学出版社,1999.
    [144]罗贤强,陈怀琴编.高等数学,北京:北京航空航天大学出版社,2006.
    [145]李大华编.工科数学分析(上、下册),武汉:华中科技大学出版社,2007.
    [146]张传义,包革军,张彪编.工科数学分析,北京:科学出版社,2001.
    [147] Γ. H.萨文.孔附近的应力集中,北京:科学出版社,1958.
    [148] Kushch V. I., Shmegera S. V., Buryachenko V. A. Interacting elliptic inclusions by the methodof complex potentials, International Journal of Solids and Structures,2005,42:5491-5512.
    [149] Han X. L., Wang T. Z. C. Elastic fields of interacting elliptic in-homogeneities, InternationalJournal of Solids and Structures,1999,36:4523-4541.
    [150] Yang B.H., Gao C.F. Plane problems of multiple piezoelectric inclusions in a non-piezoelectricmatrix, International Journal of Engineering Science,2010,48:518-528.
    [151] Dai L.H., Huang Z.P., Wang R. Explicit expressions for bounds for the effective moduli ofmulti-phased composites by the generalized self-consistent method, Composites Science andTechnology,1999,59(11):1691-1699.
    [152] Dai L.H., Huang Z.P., Wang R. Explicit expressions for bounds for the effective moduli ofmulti-phased composites by the generalized self-consistent method, Composites Science andTechnology,1999,59(11):1691-1699.
    [153] Dai L.H., Huang Z.P., Wang R. A generalized self-consistent Mori-Tanaka model forpredicting the effective moduli of the coated inclusion based composite materials, ActaMechanica Solida Sinica,1998,11(3):199-208.
    [154] L.H., Huang Z.P., Wang R. An explicit expression of the effective moduli for compositematerials filled with coated inclusions, Acta Mechanica Solida Sinica,1998,14(1):37-52.
    [155] Zhong Y,Wang J., Wu YM, et al. Effective moduli of particle-filled composite withinhomogeneous interphase: Part II-mapping method and evaluation, Composites Science andTechnology,2004,64(9):1353-1362.
    [156] Ming Y, Huang W.Z.P., Zhong Y, et al. Effective moduli of particle-filled composite withinhomogeneous interphase: Part I-bounds, Composites Science and Technology,2004,64(9):1345-1351.
    [157] Duan H.L., Yi X., Huang Z.P., Wang J. A unified scheme for prediction of effective moduli ofmultiphase composites with interface effects: Part I-Theoretical framework,2007,39:81-93.
    [158] Duan H.L., Yi X., Huang Z.P., Wang J. A unified scheme for prediction of effective moduli ofmultiphase composites with interface effects: Part II-Application and scaling laws,2007,39:94-103.
    [159]邱爱保.重积分数值解的Matlab实现,宜春学院学报,2008,30:15-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700