用户名: 密码: 验证码:
纳米聚合物单纤维传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳尺度传感器在器件体积、功耗、灵敏度、重复性、成本、生产控制等方面较传统传感器都有较大的优势,纳米技术和MEMS传感器两种技术的结合使传感器进一步朝集成化、智能化发展,大幅提升了传感灵敏度、选择性和可靠性。目前基于微纳结构的传感器已逐渐成为物理、化学、生物领域众多传感器采用的一种重要结构形式。微纳纤维型传感器作为微纳传感器的一重要组成部分,由于其便于制备控制,便于定量分析,适于和微纳结构结合而获得了广泛的关注。本文对聚合物纳米纤维的制备、合成、压电特性、气敏特性和气敏机理等有关问题进行了较为系统的研究。主要研究内容如下:
     在现有静电纺丝基础上,使用近场电纺技术制备了外形、结构可控的聚合物单根纳米纤维/纤维阵列,为深入分析纤维压电、气敏机理提供了可能,通过控制电纺过程的工艺参数对纤维形态进行控制,探讨了不同材料、不同条件参数对近场电纺过程和结果的影响。
     制备了聚偏氟乙烯纤维,进行了可纺性研究和配比优化。在电纺过程中直接利用了高电场和大拉伸比,有效地提高了纤维中β相比例,从而使制备的纤维具有比传统压电薄膜更高的压电系数和单位电荷输出效应。设计了专用电荷放大器,可对微小电荷量进行引出。经测试该压电纤维具有良好的机-电转化特性,转化效率高于传统聚偏氟乙烯膜,在压力传感、人工触觉,微纳发电等领域都具有良好的应用前景。
     研究单根导电聚合物纤维的电特性,测试了纤维与不同电极材料的接触特性,对肖特基接触的产生条件进行了研究。应用MEMS技术研制了单纤维场效应特性测试平台,实验数据说明聚苯胺纤维具备场效应,在柔性电路,有机半导体等方面有着良好的应用。实验说明质子酸掺杂的聚苯胺纤维具有优越的场效应性能和氨气气敏特性,可有效利用场效应结构控制纤维内部载流子活动,提升其气敏性能,可有效检测低至1ppm浓度的氨气。
     以气敏选择性高、灵敏度高为目标,使用纳米钯颗粒材料对导电聚合物纤维进行了掺杂,制备获得功能材料颗粒-导电聚合物的混合纤维,对氢气具有高灵敏响应,为制备阵列型多目标气体传感器提供了良好平台。纳米纤维设计发挥了纳米材料比表面积大,灵敏度高的优势,同时结构稳定,对1%浓度氢气响应灵敏度为1.07。提出了柔性串珠纳米钯微粒结构单根纤维模型。柔性导电纤维材料连结钯粒子,避免了钯功能粒子因吸氢作用体积膨胀造成的传感器重复测试失效等问题,又突破了目前离散钯粒子氢气测量范围有限的局限,有效氢气浓度测量范围从传统的4%左右扩展超过10%。
     通过控制电纺参数对制备得纤维直径进行了有效控制,通过实验验证了纤维直径对气敏响应灵敏度、响应时间、脱附时间的影响,提出了功能材料颗粒-导电聚合物混合纤维的等效电路模型,结合气体扩散公式验证了气敏实验数据,为传感器改性提供了理论依据。
The nano-fabrication technology and micro electronics and mechanism system offer the promise of improved sensors with small size, low-power consumption, high sensitivity, fast response time and reliable repeatability. There are increasing demands for nano/micro sensors in physical, chemical and bio-sensing areas. Nano/micro fiber sensor, as part of nano/micro sensors, draws wide attention due to its adaptability to micro electronic system. This dissertation presents the synthetic procedure, piezoelectric sensing and gas sensing characteristics.
     Based on current electrospinning methods, near field electrospinning is used to synthesize controllable single polymer fiber and aligned fiber array. This synthetic procedure has unique properties over its bulk counterparts, which provides the possibility to analysis piezoelectrical and gas sensing mechanism deeply. Different materials, fabrication parameters and environment conditions are compared to optimize the fiber characteristics.
     poly(vinylidene fluoride) fiber is synthesized by near field electrospinning. Compared with conventional electrospinning, near field electrospinning provides higher electrical field which brings better fiber polling effect. PVDF fiber showed higher piezoelectricity efficiency than conventional PVDF film. These fibers will be attractive for many applications, including pressure sensor, tactile sensor and energy harvester.
     Singl e polyaniline nanof iber was investigated to understand electrical performance and sensing mechanisms. The fibers showed Schottky contact and ohmic contact based on different electrode materials. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. Conductive nanofiber could be promising for flexible circuits and organic semiconductor applications. Applied higher gate voltage will contribute to the increase in gas sensitivity. The FET characteristics of sensor exposed to different gas concentrations indicate that adsorption of NH3 molecules reduce the carrier mobility in polyaniline nanofiber.
     The need for selective gas sensors with high sensitivity, and fast response is increasing for various applications. Metals and metal salts exhibit selective changes in the working function on exposure to specific gases. In this dissertation, polyaniline nanofibers doped with palladium nanoparticles have been deposited in control led 2-D patterns across two gold electrodes by near field electrospinning without the conventional lithography process. We successfully fabricated single polyaniline hybrid nanofiber with ultra low power consumption. Test results indicated the nanofiber gas sensors have the advantages of selectivity, sensitivity and reversibility. Polymer and palladium hybrid could form a flexible structure to minimize the effect of lattice expanding for stable sensing structure in hydrogen sensing.
     The diameter of fiber can be controlled by many factors, including bias voltage, needle-to-electrode distance, as well as the solution concentrations. Fibers with different diameters are tested to verify the response time. Metal-polymer hybrid equivalent model and gas diffusion mechanism are developed in the dissertation. This theory will contributes to future improvements of gas sensors.
引文
[1]EJSING L, HANSEN M F, MENON A K, et al. Planar Hall effect sensor for magnetic micro-and nanobead detection [J]. Appl Phys Lett,2004,84(4729.
    [2]SEMANCIK S, CAVICCHI R, WHEELER M, et al. Microhotplate platforms for chemical sensor research [J]. Sensor Actuat B:Chem,2001,77(1-2):579-91.
    [3]XIE B, DANIELSSON B, NORBERG P, et al. Development of a thermal micro-biosensor fabricated on a silicon chip [J]. Sensor Actuat B:Chem,1992,6(1-3): 127-30.
    [4]HERZER G. Grain structure and magnetism of nanocrystalline ferromagnets [J]. Magnetics, IEEE Transactions on,1989,25(5):3327-9.
    [5]KANEL S R, GRENECHE J M, CHOI H. Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material [J]. Environ Sci Technol,2006,40(6):2045-50.
    [6]DAI KATO, §, XU G, IWASAKI Y, et al. Heavy phosphate adsorption on amorphous ITO film electrodes:Nano-barrier effect for highly selective exclusion of anionic species [J]. Langmuir,2007,23(16):8400-5.
    [7]TIWARI S, RANA F, CHAN K, et al. Single charge and confinement effects in nano crystal memories [J]. Appl Phys Lett,1996,69(9):1232-4.
    [8]李燕,王成伟,刘维民, et al. Ag-AAO纳米有序阵列复合等离子共振吸收特性研究[J]. ACTA OPTICA SINICA,2005,25(12):103.
    [9]DIPPEL M, MAIER A, GIMPLE V, et al. Size-dependent melting of self-assembled indium nanostructures [J]. Phys Rev Lett,2001,87(9):95505.
    [10]DICK K, DHANASEKARAN T, ZHANG Z, et al. Size-dependent melting of silica-encapsulated gold nanoparticles [J]. J Am Chem Soc,2002,124(10):2312-7.
    [11]PANG Q, ZHAO L, CAIY, et al. CdSe nano-tetrapods:controllable synthesis, structure analysis, and electronic and optical properties [J]. Chem Mater,2005,17(21): 5263-7.
    [12]BRANNON-PEPPAS L, BLANCHETTE J O. Nanoparticle and targeted systems for cancer therapy [J]. Adv Drug Del Rev,2004,56(11):1649-59.
    [13]BUDHLALL B M, MARQUEZ M, VELEV O D. Microwave, Photo-and Thermally Responsive PNIPAm-Gold Nanoparticle Microgels [J]. Langmuir,2008, 24(20):11959-66.
    [14]SHEN G, CHEN Y, LIN C. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method [J]. Thin Solid Films,2005, 489(1-2):130-6.
    [15]WANG D, SHERIFF B A, HEATH J R. Complementary Symmetry Silicon Nanowire Logic:Power Efficient Inverters with Gain [J]. Small,2006,2(10):1153-8.
    [16]SHERIFF B A, WANG D, HEATH J R, et al. Complementary symmetry nanowire logic circuits:experimental demonstrations and in silico optimizations [J]. ACS nano,2008,2(9):1789-98.
    [17]WANG C, ZHANG J, RYU K, et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications [J]. Nano Lett,2009,9(12): 4285-91.
    [18]CUI W, FENG L, XU C, et al. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film [J]. Catal Commun,2004,5(9): 533-6.
    [19]FINE G, STOLPER E. Dissolved carbon dioxide in basaltic glasses: concentrations and speciation [J]. Earth Planet Sci Lett,1986,76(3-4):263-78.
    [20]RIEDEL R, KLEEBE H J, SCH NFELDER H, et al. A covalent micro/nano-composite resistant to high-temperature oxidation [J].1995,
    [21]LEE J G, HONG S M, PARK J J, et al. High energy ball-mill behavior of titania plus hydroxyapatite composite nano-powdcrs [J]. Mater Charact,2010,61(11): 1290-3.
    [22]TAKEI H, SHIMIZU N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres [J]. Langmuir,1997,13(7):1865-8.
    [23]WU J J, LIU S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Adv Mater,2002,14(3):215.
    [24]THOMPSON M W. ENERGY SPECTRUM OF EJECTED ATOMS DURING HIGH ENERGY SPUTTERING OF GOLD [J]. Philosophical Magazine,1968, 18(152):377-&.
    [25]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [26]MACK C A. Fundamental principles of optical lithography:the science of microfabrication [M]. Wiley-Interscience,2007.
    [27]CUMPSTON B H, ANANTHAVEL S P, BARLOW S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J]. Nature,1999,398(6722):51-4.
    [28]DICKMANN K, DEMMING F, JERSCH J. New etching procedure for silver scanning tunneling microscopy tips [J]. Rev Sci Instrum,1996,67(3):845-6.
    [29]CAMPBELL C J, KLAJN R, FIALKOWSKI M, et al. One-step multilevel microfabrication by reaction-diffusion [J]. Langmuir,2005,21(1):418-23.
    [30]MORALES A M, LIEBER C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science,1998,279(5348):208-11.
    [31]HUANG M H, WU Y Y, FETCK H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater,2001,13(2):113-6.
    [32]PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides [J]. Science,2001,291(5510):1947-9.
    [33]CUI Y, LIEBER C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science,2001,291(5505):851-3.
    [34]LI W, SEAL S, MEGAN E, et al. Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature [J]. J Appl Phys,2003,93(9553.
    [35]杨杰,刘兴钊.PZT压电纤维的制备及性能研究[J].压电与声光,2009,31(4):568-70.
    [36]HARFENIST S A, CAMBRON S D, NELSON E W, et al. Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers [J]. Nano Lett, 2004,4(10):1931-7.
    [37]POSSIN G E. A METHOD FOR FORMING VERY SMALL DIAMETER WIRES [J]. Rev Sci Instrum,1970,41(5):772-&.
    [38]GOWDA S R, REDDY A L M, SHAIJUMON M M, et al. Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications [J]. Nano Lett,2011,11(1):101-6.
    [39]SCHONENBERGER C, VANDERZANDE B M I, FOKKINK L G J, et al. Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology [J]. J Phys Chem B,1997,101(28):5497-505.
    [40]THAVASI V, SINGH G, RAMAKRISHNA S. Electrospun nanofibers in energy and environmental applications [J]. Energy Environ Sci,2008,1(2):205-21.
    [41]LI D, WANG Y, XIA Y. Elcctrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays [J]. Nano Lett,2003,3(8):1167-71.
    [42]ZALUSKA A, ZALUSKI L, STR M-OLSEN J. Structure, catalysis and atomic reactions on the nano-scale:a systematic approach to metal hydrides for hydrogen storage [J]. Applied Physics A:Materials Science & Processing,2001,72(2):157-65.
    [43]VADDIRAJU S, GLEASON K K. Selective sensing of volatile organic compounds using novel conducting polymer-metal nanoparticle hybrids [J]. Nanotechnology,2010,21():125503.
    [44]VIRJI S, FOWLER J D, BAKER C O, et al. Polyaniline nanofiber composites with metal salts:Chemical sensors for hydrogen sulfide [J]. Small,2005,1(6):624-7.
    [45]GAO F, TANG L, DAI L, et al. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,67(2):517-21.
    [46]TEIXEIRA M F S, FATIBELLO-FILHO O, FERRAC1N L C, et al. A [lambda]-MnO2-based graphite-cpoxy electrode as lithium ion sensor [J]. Sensor Actuat B:Chem,2000,67(1-2):96-100.
    [47]KANUNGO M, KUMAR A, CONTRACTOR A. Microtubulc sensors and sensor array based on polyaniline synthesized in the presence of poly (styrene sulfonate) [J]. Anal Chem,2003,75(21):5673-9.
    [48]PARK S J, TATON T A, MIRKIN C A. Array-based electrical detection of DNA with nanoparticle probes [J]. Science,2002,295(5559):1503.
    [49]RAMANATHAN K, MANGESH A, YUN M, et al. Bioaffinity sensing using biologically functionalized conducting-polymer nanowire [J]. J Am Chem Soc,2005, 127(2):496-7.
    [50]YAN H, CHOE H S, NAM S W, et al. Programmable nanowire circuits for nanoprocessors [J]. Nature,2011,470(7333):240-4.
    [51]HUANG Y, DUAN X, CUI Y, et al. Logic gates and computation from assembled nanowire building blocks [J]. Science,2001,294(5545):1313.
    [52]BACHTOLD A, HADLEY P, NAKANISHI T, et al. Logic circuits with carbon nanotube transistors [J]. Science,2001,294(5545):1317.
    [53]YAO Z, POSTMA H W C, BALENTS L, et al. Carbon nanotube intramolecular junctions [J]. Nature,1999,402(6759):273-6.
    [54]WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science,2006,312(5771):242.
    [55]WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves [J]. Science,2007,316(5821):102.
    [56]PARKIN S S P, HAYASHI M, THOMAS L. Magnetic domain-wall racetrack memory [J]. Science,2008,320(5873):190.
    [57]YANG S, ZHU H, YU D, et al. Preparation and magnetic property of Fe nanowire array [J]. J Magn Magn Mater,2000,222(1-2):97-100.
    [58]GANGOPADHYAY R, DE A. Conducting polymer nanocomposites:a brief overview [J]. Chem Mater,2000,12(3):608-22.
    [59]WALTMAN R, BARGON J. Electrically conducting polymers:a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology [J]. Can J Chem,1986,64(1): 76-95.
    [60]GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloids Surf Physicochem Eng Aspects,2001,187(469-81.
    [6l]GAO K, HU X, DAI C, et al. Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells [J]. Materials Science and Engineering:B,2006,131(1-3):100-5.
    [62]LIU S J, KAU Y C, CHOU C Y, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing [J]. J Membr Sci,2010,355(1-2):53-9.
    [63]KENAWY E R, BOWLIN G L, MANSFIELD K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend [J]. J Controlled Release,2002,81(1-2):57-64.
    [64]HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos Sci Technol, 2003,63(15):2223-53.
    [65]MATTHEWS J A, WNEK G E, SIMPSON D G, et al. Electrospinning of collagen nanofibers [J]. Biomacromolecules,2002,3(2):232-8.
    [66]BORNAT A. Production of electrostatically spun products:US,4689186 [P/OL]. 1987-.
    [67]KAMEOKA J, CRAIGHEAD H. Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning [J]. Appl Phys Lett,2003,83(2):371-3.
    [68]THERON A, ZUSSMAN E, YARIN A. Electrostatic field-assisted alignment of electrospun nanofibres [J]. Nanotechnology,2001,12(2001):384-90.
    [69]LI D, WANG Y, XIA Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer by Layer Stacked Films [J]. Adv Mater,2004,16(4):361-6.
    [70]JAO P F, MACHADO M, CHENG X, et al. Fabrication of nanoporous membrane and its nonlithographic patterning using Electrospinning and Stamp-thru-mold (ESTM); proceedings of the MEMS 2011, Cancun, F 1,2011 [C]. IEEE.
    [71]YANG D, ZHANG J, NIE J. Aligned electrospun nanofibers induced by magnetic field [J]. J Appl Polym Sci,2008,110(6):3368-72.
    [72]SUN D, CHANG C, LI S, et al. Near-field electrospinning [J]. Nano Lett,2006, 6(4):839-42.
    [73]FONG H, LIU W, WANG C S, et al. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite [J]. Polymer,2002,43(3):775-80.
    [74]TAYLOR G. Electrically driven jets [J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1969,313(1515):453.
    [75]LARRONDO L, ST JOHN MANLEY R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties [J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(6):909-20.
    [76]YARIN A, KOOMBHONGSE S, RENEKER D. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers [J]. J Appl Phys,2001,90(4836.
    [77]HOHMAN M M, SHIN M, RUTLEDGE G, et al. Electrospinning and electrically forced jets. I. Stability theory [J]. Phys Fluids,2001,13(2201.
    [78]YARIN A, KOOMBHONGSE S, RENEKER D. Bending instability in electrospinning of nanofibers [J]. J Appl Phys,2001,89(3018.
    [79]DE VRIEZE S, VAN CAMP T, NELVIG A, et al. The effect of temperature and humidity on electrospinning [J]. Journal of materials science,2009,44(5):1357-62.
    [80]TRIPATANASUWAN S, ZHONG Z, RENEKER D H. Effect of evaporation and solidification of the charged jet in electrospinning of poly (ethylene oxide) aqueous solution [J]. Polymer,2007,48(19):5742-6.
    [81]JAFFE B. Jaffc, Cook and Jaffe (1971) Piezoelectric ceramics [M]. Academic Press (London and New York),1971.
    [82]LEFEUVRE E, BADEL A, RICHARD C, et al. A comparison between several vibration-powered piezoelectric generators for standalone systems [J]. Sensors and Actuators A:Physical,2006,126(2):405-16.
    [83]CHOI S W, KIM J R, AHN Y R, et al. Characterization of electrospun PVdF fiber-based polymer electrolytes [J]. Chem Mater,2007,19(1):104-15.
    [84]KIM J R, CHOI S W, JO S M, et al. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries [J]. Electrochim Acta,2004,50(1): 69-75.
    [85]LEE B, WOO W, PARK H, et al. Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofibcr/PVDF [J]. Journal of materials science,2002,37(9):1839-43.
    [86]CHANACHAI A, MEKSUP K, JIRARATANANON R. Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process [J]. Sep Purif Technol,2010,72(2):217-24.
    [87]BERLINCOURT D A, CURRAN D R, JAFFE H. Piezoelectric and piezomagnetic materials and their function in transducers [J]. Physical acoustics,1964, 1 (Part A):169-270.
    [88]SAFARI A, AKDO AN E K. Piezoelectric and acoustic materials for transducer applications [M]. Springer Verlag,2008.
    [89]GREGORIO R, UENO E. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF) [J]. Journal of materials science,1999,34(18):4489-500.
    [90]CHEN N, HONG L. Surface phase morphology and composition of the casting films of PVDF-PVP blend [J]. Polymer,2002,43(4):1429-36.
    [91]SALIMI A, YOUSEFI A. Conformational changes and phase transformation mechanisms in PVDF solution cast films [J]. J Polym Sci, Part B:Polym Phys,2004, 42(18):3487-95.
    [92]ROH Y, VARADAN V V, VARADAN V K. Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2002,49(6): 836-47.
    [93]WEGENER M, GERHARD-MULTHAUPT R. Electric poling and electromechanical characterization of 0.1-mm-thick sensor films and 0.2-mm-thick cable layers from piezoelectric poly (vinylidene fluoride-trifluoroethylene) [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2003,50(7):921-31.
    [94]GREGORIO JR R, CESTARI M. Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride) [J]. J Polym Sci, Part B:Polym Phys,1994,32(5):859-70.
    [95]RANJAN V, YU L, NARDELLI M B, et al. Phase equilibria in high energy density PVDF-based polymers [J]. Phys Rev Lett,2007,99(4):47801.
    [96]NASIR M, MATSUMOTO H, MINAGAWA M, et al. Formation of-Phase Crystalline Structure of PVDF Nanofiber by Electrospray Deposition:Additive Effect of Ionic Fluorinated Surfactant [J]. Polym J,2007,39(7):670-4.
    [97]ZHU G D, XU J, YAN X J, et al. Molecular simulation study on the effect of trapped charges on ferroelectric switching in [beta]-phase PVDF crystals [J]. Computational materials science,2006,37(4):512-6.
    [98]张福学,王丽坤.现代压电学[M].北京:科学出版社,2001.
    [99]ZHANG Z, CHUNG T C M. Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss [J]. Macromolecules, 2007,40(4):783-5.
    [100]HUANG J, KANER R B. The intrinsic nanofibrillar morphology of polyaniline [J]. Chem Commun,2005,4):367-76.
    [101]BAI H, SHI G. Gas sensors based on conducting polymers [J]. Sensors,2007, 7(3):267-307.
    [102]HOLLAND E, POMFRET S, ADAMS P, et al. Conductivity studies of polyaniline doped with CSA [J]. J Phys:Condens Matter,1996,8(2991.
    [103]黄惠,郭忠诚.导电聚苯胺的制备及应用[M].北京:科学出版社,2010.
    [104]EPSTEIN A, GINDER J, ZUO F, et al. Insulator-to-metal transition in polyaniline [J]. Synth Met,1987,18(1-3):303-9.
    [105]CRUZ G, MORALES J, CASTILLO-ORTEGA M, et al. Synthesis of polyaniline films by plasma polymerization [J]. Synth Met,1997,88(3):213-8.
    [106]LIAO C, GU M. Electroless deposition of polyaniline film via autocatalytic polymerization of aniline [J]. Thin Solid Films,2002,408(1-2):37-42.
    [107]NICOLAS-DEBARNOT D, PONCIN-EPAILLARD F. Polyaniline as a new sensitive layer for gas sensors [J]. Anal Chim Acta,2003,475(1-2):1-15.
    [108]CAO Y, SMITH P, HEEGER A J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers [J]. Synth Met,1992,48(1):91-7.
    [109]LI W, WAN M. Stability of polyaniline synthesized by a doping-dedoping-redoping method [J]. J Appl Polym Sci,1999,71(4):615-21.
    [110]MACDIARMID A, EPSTEIN A J. The concept of secondary doping as applied to polyaniline [J]. Synth Met,1994,65(2-3):103-16.
    [111]MACDIARMID A G, EPSTEIN A J. Secondary doping in polyaniline [J]. Synth Met,1995,69(1-3):85-92.
    [112]DAHMAN S J. The effect of co dopants on the processability of intrinsically conducting polymers [J]. Polymer Engineering & Science,1999,39(11):2181-8.
    [113]CHRISTIE S, SCORSONE E, PERSAUD K, et al. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline [J]. Sensor Actuat B:Chem,2003,90(1-3):163-9.
    [114]ZHANG T, MUBEEN S, YOO B, et al. A gas nanosensor unaffected by humidity [J]. Nanotechnology,2009,20(255501.
    [115]VARGHESE O K, GONG D, DRESCHEL W R, et al. Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors [J]. Sensor Actuat B:Chem,2003,94(1):27-35.
    [116]WANG R, LI H, PAN M, et al. A carbon nanotube gas sensor fabricated by dielectrophoresis and its application for NH3 detection; proceedings of the Proc EMBC 2009, Minneapolis, United states, F,2009 [C]. IEEE Computer Society.
    [117]ARSAT R, YU X, LI Y, et al. Hydrogen gas sensor based on highly ordered polyaniline nanofibers [J]. Sensor Actuat B:Chem,2009,137(2):529-32.
    [118]TABIB-AZAR M, SUTAPUN B, PETRICK R, et al. Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions [J]. Sensor Actuat B:Chem,1999,56(1-2):158-63.
    [119]ROY S, BASU S. Improved zinc oxide film for gas sensor applications [J]. Bull Mater Sci,2002,25(6):513-5.
    [120]SRINIVASAN S, RATNADURAI R, NIEMANN M, et al. Reversible hydrogen storage in electrospun polyaniline fibers [J]. Int J Hydrogen Energy,2010, 35(1):225-30.
    [121]SADEK A, WLODARSKI W, KALANTAR-ZADEH K, et al. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors [J]. Sensors and Actuators A:Physical,2007,139(1-2):53-7.
    [122]PANDEY P, SRIVASTAVA J, MISHRA V, et al. Pd gate MOS sensor for hydrogen detection [J]. Solid State Sciences,2009,11(8):1370-4.
    [123]KONG J, CHAPLINE M G, DAI H. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv Mater,2001,13(18):1384-6.
    [124]LIM W, WRIGHT J, GILA B, ct al. Selective-hydrogen sensing at room temperature with Pt-coated InN nanobelts [J]. Appl Phys Lett,2008,93(202109.
    [125]FAVIER F, WALTER E C, ZACH M P, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays [J]. Science,2001,293(5538): 2227.
    [126]RAMANATHAN M, SKUDLAREK G, WANG H, et al. Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films [J]. Nanotechnology, 2010,21(125501.
    [127]YANG F, TAGGART D K, PENNER R M. Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture [J]. Nano Lett,2009, 9(5):2177-82.
    [128]CRANK J. The mathematics of diffusion [M]. Oxford university press,1983.
    [129]ZOU J, HUBBLE L J, IYER K S, et al. Bare palladium nano-rosettes for real-time high-performance and facile hydrogen sensing [J]. Sensor Actuat B:Chem, 2010,150(1):291-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700