用户名: 密码: 验证码:
基于含金属芯压电纤维与Lamb波的结构健康监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含金属芯压电纤维(MPF)是一种新型压电驱动器与传感器,其结构细小,粘贴在基体结构表面,不会对结构性能产生影响;易于埋入到复合材料中,而不会对基体材料产生影响。因此MPF非常适宜用作基于Lamb波的结构健康监测中的传感与驱动元件。本文提出采用MPF作为超声Lamb波传感器与驱动器,研究了MPF传感、激励Lamb波的机理,建立了MPF传感Lamb波模型;同时把MPF作为Lamb波传感器分别在一维、二维结构中进行了结构健康监测应用研究。本文的主要工作和创新点主要有:
     (1)建立了圆柱坐标系下MPF的压电方程。根据MPF的压电方程,推导了粘贴在结构表面的MPF的应变响应电压公式。并根据MPF的应变传感响应原理,推导了MPF对圆形压电片激励Lamb波的响应电压模型,并进行了实验验证;进行了MPF和圆形压电片分别传感Lamb波的对比实验研究,研究结果表明MPF可以用来传感超声Lamb波信号。
     (2)分别采用幅值和小波变换能量因子的方法对MPF传感超声Lamb波的方向性特性进行了研究。以A0模式Lamb波为例,推导了MPF对圆形压电片激励Lamb波的传感灵敏度系数随Lamb波入射角度变化的函数表达式。同时对推导结果进行了实验验证。研究结果表明MPF传感Lamb波具有很强的方向性,采用小波变换能量因子进行传感方向性表征更能体现出MPF对Lamb波的方向性传感特性。
     (3)研究了MPF激励Lamb波的机理,建立了基于MPF的激励、传感系统,并进行了实验研究,分析了MPF激励、传感单一模式Lamb波的可行性。同时,还分别基于幅值方法和小波变换能量因子的方法研究了MPF激励Lamb波的方向性。
     (4)研究了MPF传感的Lamb波信号在不同损伤形式(结构承受载荷,可移除污迹,结构通孔损伤)下的变化情况,进而研究了Lamb波对不同损伤形式的敏感性。同时采用BP神经网络对三种损伤状态及健康状态进行了辨识。
     (5)利用Gabor小波变换计算损伤反射信号到达时间延迟的原理,把MPF作为Lamb波传感器,在一维结构中进行了损伤定位研究,损伤定位精度较高。
     (6)采用类似应变花的原理,提出了一种基于MPF花形组合单元的二维结构损伤定位方法,该方法无需知道Lamb波在介质材料中的传播速度,只需要测量MPF响应Lamb波的幅值。分别在铝板中进行了二维结构被动监测实验(模拟声源定位实验)与主动监测实验(载荷定位实验和通孔定位实验),定位精度较高,验证了MPF花形组合单元定位方法在二维结构损伤定位中的可行性。
Metal-core piezoelectric fiber (MPF) is one of the new types of piezoelectric devices used for sensors and actuators. MPF has small size, and does not affect the performance of the structure when bonded on the surface or integrated with a host structure. Therefore, MPF has great potential to be used as actuators and sensors for structural health monitoring based on Lamb wave. Lamb wave sensing and generating using MPF is proposed, the principle of sensing and generating using MPF is researched, and the model of Lamb wave sensing is developed. Meanwhile, MPF using as a Lamb wave sensor is researched for structural health monitoring application in one-dimensional and two-dimensional stucture respectively. The major contributions and novel research results in this dissertation are summarized as follows:
     (1) The piezoelectric equation of MPF in cylindrical-coordinate system is developed. Based on the piezoelectric equation of MPF, the strain response formula of MPF boned on the surface of structure is derived. Then, the model of MPF’s response to Lamb waves excited by circular crested actuator is derived and verified by experiments; the comparative study of MPF and circular PZT’s response to Lamb wave is performed in the end, the results show that MPF has the capability of sensing Lamb waves.
     (2) The directivity of MPF’s response to Lamb waves is researched using amplitude and wavelet transformation factor respectively. Taking A0 mode Lamb wave as an example, the sensitivity factor function of MPF’s response to lamb wave excited by circular PZT is derived, and the result is verified by experiments. The result shows that MPF has high directivity to sense Lamb wave, the directivity characterized by wavelet transformation factor shows more clear in comparison with amplitude.
     (3) The principle of Lamb wave generation using MPF is researched, the Lamb wave generation and sensing system with MPF is then established, and verified by experiments. At the same time, the directivity of Lamb wave generation with MPF is researched by means of amptitude and wavelet transformation factor method respectively.
     (4) The changes of MPF’s response to Lamb wave in different damage type (load, removable putty damage, hole) is researched, and then the response sensivity of Lamb wave to different damage is researched. The BP NN is successfully applied to distinguish three damage type and the health type.
     (5) According to Gabor wavelet transform to calculate time delay of damage signal, MPF is used as Lamb wave sensors for damge localization in one-dimension structure, the accuracy of damge localization is very high.
     (6) According to the principle of resistance strain rosettes, a novel method for two-dimension structure damage localization based on MPF rosettes is proposed. This method doesn’t need the speed of Lamb wave in the medium, only need the amplitude of Lamb wave. The passive monitoring experiment (sound source localization) and active monitoring experiment (load localization and hole localization) are performed in two- dimensional Al plate, the accuracy of damge localization is very high, which confirms that the MPF rosettes method has the cability of damage localization in two-dimension structure.、
引文
[1]陶宝祺,熊克,袁慎芳等. 1996智能材料与结构.北京:国防工业出版社,.
    [2]袁慎芳.结构健康监控. 2007北京:国防工业出版社,.
    [3]袁梅,陈丽静等.结构健康监测技术在现代大型飞机中的应用中国航空学会2007年学术年会机载、航电专题32.
    [4] Steven D Glaser, Hui Li, Ming L Wang, Jinping Ou and Jerome Lynch, Sensor technology innovation for the advancement of structural health monitoring: a strategic program of US- China research for the next decade, Smart Structures and Systems, Vol.3, No.2(2007):221-244
    [5]王明,李庶林. 2007声发射技术在结构安全监测中的研究与应用概述[A].第六届全国工程结构安全防护学术会议论文集,。
    [6]彭鸽.基于2006 Lamb波的结构健康主动监测技术研究,[博士学位论文].南京:南京航空航天大学,.
    [7]应崇福等,1994超声在固体中的散射,北京,国防工业出版社。
    [8] Lamb H., Series A, 1917 Containing Papers of a Mathematical and Physical Character, Vol. 93(651): 293-312.
    [9] Lamb H., 1917 On Waves in an Elastic Plate, Proceedings of the Royal Society, A93,,114.
    [10] Rose J. L., 1999 Ultrasonic waves in solid media, Cambridge University Press.
    [11] Lee C.K., Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part 1: governing equations and reciprocal relationships. Journal of Acoustical Society of America 87 (1990), pp. 1144–1158.
    [12] Peng X.Q., Lam K.Y. and Liu G.R., Active vibration control of composite beams with piezoelectrics: a finite element model with third order theory. Journal of Sound and Vibration 209 (1998), pp. 635–650
    [13] Herman Van der Auweraer, Bart Peeters Sensors and systems for structural health monitoring Journal of Structural Control Volume 10, Issue 2, pages 117–125, April/June 2003
    [14] Herman Van der Auweraer International Research Projects on Structural Health Monitoring: An Overview Structural Health Monitoring December 2003 vol. 2 no. 4 341-358
    [15] Foote F. D., 2000 Structural health monitoring tales from Europe, F. K. Chang, Proceedings of the 2nd International Workshop on Structural Health Monitoring, Lancaster PA: Technomic Publishing Co., 24-35.
    [16] Kabashima S., Ozaki T. and Takeda N. 2001 Structural health monitoring using FBG sensorin space environment, Proceedings of SPIE, Vol 4332:78-87.
    [17] Takeda S., Okabe Y. and Takeda N. 2002 Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors, Composites Part A (Applied Science and Manufacturing), ,Vol.33A(7):971-980.
    [18]涂亚庆,刘兴长. 2005光纤智能结构.北京:高等教育出版社,.
    [19]袁慎芳,陶宝祺,石立华. 2000一种飞机结构结冰监测及自适应除冰的模拟试验.航空学报,Vol 21(6):575-577.
    [20]袁慎芳,陶宝祺,朱晓荣. 2001应用小波分析及主动监测技术的复合材料损伤监测.材料工程,Vol 46(2):43-44.
    [21]王磊,袁慎芳,朱安华,2002基于主动监测技术的蜂窝夹心结构损伤监测研究,仪器仪表学报,Vol.23(4): 422-425.
    [22] Lei Wang, Shengfang Yuan, 2003, Application of neural networks to active damage detection technique of composites, Proceedings of SPIE, Vol.5058: 569-575.
    [23] David Serrano, Frederick A. Just-Agosto, Basir Shafiq and Andres Cecchini The Use of Neural Networks to Detect Damage in Sandwich Composites Major Accomplishments in Composite Materials and Sandwich Structures 2009, III, 407-429, DOI: 10.1007/978-90-481-3141-9_16
    [24]徐颖娣,2004基于Lamb波主动监测技术的复合材料结构损伤定位研究,[硕士学位论文],南京,南京航空航天大学。
    [25]常伟杰,2010基于含金属芯压电纤维的结构损伤定位研究,[硕士学位论文],南京,南京航空航天大学,。
    [26] Song G., Gu H., Li H. 2004 Application of the piezoelectric Materials for Health Monitoring in Civil Engineering: An Overview. Proceedings of the Ninth Biennial ASCE Aerospace Division International Conference, Houston/ League City, Texas, USA, 680~687.
    [27]李宏男,赵晓燕. 2004压电智能传感结构在土木工程中的研究和应用.地震工程与工程振动,24(6):165~172.
    [28]徐玲芳. 2006 1-3型PZT5/epoxy resin压电复合材料的制备、结构与性能研究.武汉:武汉理工大学博士论文。
    [29]佟建华,2005压电双晶梁在微电机及微力传感器上的应用研究.大连:大连理工大学博士论文,.
    [30] Liu Zhiqiang, Li Hui, Chen Wenli and Ou Jinping, Study On Strain-sense Property of TiNi and TiNiCu Shape Memory Alloys, Advances in Structural Engineering, 8(6):637-643。
    [31]曹照平,王社良. 2001智能材料结构系统在土木工程中的应用.重庆建筑大学学报,,23(1):108~113.
    [32]左军,罗晓玉等. 2000磁流变-新型智能流体材料.机床与液压, (1):30~31.
    [33]冷劲松,刘彦菊等. 1996电流变体特性及电流变体应用器件的进展.复合材料学报,13(3):117~124.
    [34]余海湖,赵愚等. 2001智能材料与结构的研究及其应用.武汉理工大学学报,,23(11):37~41.
    [35]骆英. 2000正交异性压电复合材料功能元件的研究, [博士学位论文].南京:南京航空航天大学。
    [36]沈星,2003应用于智能材料结构的RAINBOW元件及其与SMA的集成研究, [博士学位论文].南京:南京航空航天大学。
    [37]万建国. 2000压电复合材料及其在复合材料中的应用, [博士学位论文].南京:南京航空航天大学。
    [38] Li Hui, Zhou Wensong and Ou Jinping, Study on electromechanical behavior of unidirectional carbon fibre sheet without epoxy resin matrix. Advances in Structural Engineering, vol.5, pp437-445, 2004
    [39] Mingqing Sun.Qingping Liu.Zhuoqiu Li.Yaozu Hu A study of piezoelectric properties of carbon fiber reinforced concrete and plain paste during dynamic loading 2000(10)
    [40] Shrouta T.R., Bowena L.J.and Schulzea W.A. Extruded PZT/polymer composites for electromechanical transducer applications Materials Research Bulletin Volume 15, Issue 10, October 1980, Pages 1371-1379
    [41] Bent A. A. 1997 Active Fiber Composites for structural Applications. Ph.D thesis, USA: Massachusetts Institute of Technology.
    [42] Rossetti, Jr., G., Pizzochero, A., and Bent, A..,“Recent Advances in Active Fiber Composites Technology,”Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, pp. 753-756, 2000.
    [43] Bent A. A, Hagood N. 1997 Piezoelectric fiber composites with interdigitated electrodes, Journal of Intelligent Material Systems and Structures, 8(11):903-919.
    [44] Viresh K Wickramasinghe and Nesbitt W Hagood Material characterization of active fiber composites for integral twist-actuated rotor blade application Smart Mater. Struct. 13 (2004) 1155–1165
    [45] A Kovalovs E. Barkanov S. Gluhihs Active control of structures using macro-fiber composite (MFC) Journal of Physics: Conference Series 93 (2007) 012034
    [46] Monkhouse R, Wilcox P, Lowe M, et a1. 2000 The rapid monitoring of structures using interdigital Lamb wave transducers. Smart Materials and Structures, 9: 304-309.
    [47] Han J.H., Rew K.H., Lee I. 1997 An experimental study of active vibration control of composite structures with a piezoceramic actuator and a piezo film sensor J. Intell. Mater.Syst. Struct. 6 549–58
    [48] Smith W, The role of piezocomposites in ultrasonic transducers Ultrasonics Symposium, 1989. Proceedings., IEEE 1989 Issue Date: 3-6 Oct 1989 vol.2 page: 755 - 766
    [49] Certon, D. Casula, O. Patat, F. Royer, D.Theoretical and experimental investigations of lateral modes in 1-3 piezocomposites, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions page(s): 643 - 651 , Volume: 44 Issue: 3, May 1997
    [50] Ahmad Safari, Victor F. Janas, Amit Bandyopadhyay Development of fine-scale piezoelectric composites for transducers. AIChE Journal Supplement: Special Ceramics Processing Issue Volume 43, Issue Supplement 11A, pages 2849–2856, 1997
    [51] Bowen C. R., Nelson L. J., Stevens R., Cain M. G. and Stewart M. Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites Journal of Electroceramics Volume 16, Number 4, 263-269
    [52] Chapelon J.Y., Cathignol D., Cain C., Ebbini E., Kluiwstra J.U., Sapozhikov O., Fleury G., Berriet R., Chupin L. and Guey J.L.,“New Piezoelectric Transducers for Therapeutic Ultrasound”, Ultrasound in Med. & Biol., pp. 153-159, 2000
    [53] Donald O. Thompson,Dale E. Chimenti Review of progress in quantitative nondestructive evaluation Plenum press, New York 1993
    [54] A. L. Kholkin , D. A. Kiselev , L. A. Kholkine , A. Safari , Kenji Uchino , Yukio Ito and Mahesh C. Bhardwaj. Smart Materials. CRC Press 2009
    [55] Wu H. D., Lin J. M, Gao H., Xue Q., Shui Y. A., "The optimal structure of composite transducer for the wide bandwidth, high frequency and low lateral coupling", PROGRESS IN NATURAL SCIENCE, Vol. 11 Supplement, 2001, S40-S44
    [56]耿学仓,李明轩,1991检测超声换能器用1-3型压电PZT/环氧复合材料及换能器的研究。应用声学。10(5):10-14.
    [57] Safari, Ahmad Janas, Victor F. Method for making piezoelectric composites Patent. 5539965 Issued on July 30, 1996
    [58] Nakaya, Chitose Takeuchi, Hiroshi Katakura, Kageyoshi Ultrasonic transducer using piezoelectric composite Patent. 4658176 Issued on April 14, 1987
    [59] Nelson, L. J. Smart piezoelectric Fibre composites. Materials Science and Technology, Volume 18, Number 11, November 2002 , pp. 1245-1256(12)
    [60] Chan, H.L.W. Unsworth, J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications Ultrasonics, Ferroelectrics and Frequency Control,IEEE Transactions on 1989 Volume: 36 (4) : 434 - 441
    [61] Andreas S., 2008 Piezoelectric and Acoustic Materials for Transducer Applications, Springer US, 261-287.
    [62] Mills, D.M. Smith, S.W. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on On page(s): 961 - 971 , Volume: 46 Issue: 4, Jul 1999
    [63] Shoko Yoshikawa, Ulagaraj Selvaraj, Paul Moses, John Withams, Richard Meyer, Thomas, Shrout Pb(Zr,Ti)O3 [PZT] Fibers-Fabrication and Measurement Methods. Journal of Intelligent Material Systems and Structures March 1995 vol. 6 no. 2: 152-158
    [64]赵寿根,程伟. 2002 1-3型压电复合材料及其研究进展.力学进展,32(1):57-68.
    [65] Brunner A. J. Barbezat M., Huber Ch. and Flüeler P. H. The potential of active fiber composites made from piezoelectric fibers for actuating and sensing applications in structural health monitoring. Materials and Structures Volume 38, Number 5, 561-567
    [66] Park G., Kim M. and Inman D.J., Integration of smart materials into dynamics and control of inflatable space structures. Journal of Intelligent Material Systems and Structures 12 6 (2001), pp. 423–433
    [67] Melnykowycz M, Kornmann X, Huber C, Barbezat M, and Brunner A J. Performance of integrated active fiber composites in fiber reinforced epoxy laminates. Smart Mater. Struct. 15 (2006) 204–212
    [68] Wilkie W, High J and Bockman J. 2002 Reliability testing of NASA piezocomposite actuators Proceedings of 8th International Conference on new Actuators Bremen Germany, June: 10-12.
    [69] Andreas J, Marcel B, Mark M, et al. 2009 Piezoelectric fiber composites as sensor elements for structural health monitoring and adaptive material systems, Journal of Intelligent Material Systems and Structures, 20:1045-1055.
    [70] Matt H M, Lanza di Scalea F. 2007 Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures, Smart Materials and Structures, 16:1489-1499.
    [71] Barbezat M, Brunner A, Huber C, et a1. 2004 Integrated active fiber composite elements: characterization for acoustic emission and acoustic-ultrasonic Proc. 15thInternational Conference on Adaptive Structure and Technologies. Bar Harbor, October, 24-27.
    [72] Wait J R, Park G, Sohn H, et a1. 2004 Plate damage identification using active wave propagation and impedance methods Proc. SPIE, 5394: 53-65.
    [73] Qiu J., Tani J., Yamada N., et al. 2003 Fabrication of piezoelectric fibers with metal core[C].Proc. Of SPIE’s 10th International Symposium on Smart Structures and Materials, Active Materials: Behavior and Mechanics, D. C. Lagoudas, Ed., San Diedo, CA. 555053: 475-483.
    [74] Sato H., Shimojo Y., Sekiya T., 2003 Fabrication and vibration suppression behavior of metal core-piezoelectric fibers in CFRP composite. Proc. Of TRansducing Materials and Devices, Brugge, Belgium, , 4946:80-87.
    [75]边义祥. 2009含金属芯压电纤维的驱动和传感特性研究, [博士学位论文].南京,南京航空航天大学.
    [76] Qiu J., Majung P, Daisuke H, et al. 2004 The research of the development of the air flow sensor using the piezoelectric fiber with Pt core. Proceedings of 13th conference on Electromagnetic Phenomena and Dynamics, Sendai, Japan, 299-3036.
    [77] Sebald G., Qiu J., Guyomar D., et al. 2005 Modeling and Characterization of Piezoelectric Fibers with Metal Core. Japanese Journal of Applied Physics, 44(8):6156-6163.
    [78] Sebald G., Qiu J., Guyomar D., 2005 Modeling the lateral resonance mode of piezoelectric fibers with metal core. Journal of Physics D: Applied Physics, 38(19):3733-3740.
    [79] Sebald G., Benayad A., Qiu J., 2006 Electromechanical characterization of 0.55Pb (Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3 fibers with Pt core. Journal of Physics D: Applied Physics. 100(5):0514106-1~6.
    [80] Sato H., Shimojo Y., Sekiya T., 2003 Development of Metal Core- Assisted Piezoelectric Complex Fibers and Application to the Smart Board.日本机械学会论文集(A编)69卷684号(2003-8):1305~1310.
    [81] Sato H., Shimojo Y., Sekiya T., 2003 Development of the Smart Board Using Metal Core Piezoelectric Complex Fibers. The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, USA June 8-12 2003:512~515.
    [82] Sato H., Shimojo Y., Sekiya T., 2004 Design of the metal-core piezoelectric fiber. Smart Structures and Materials 2004, Proceedings of SPIE, 5383:97~103.
    [83] Sato H., Shimojo Y., Sekiya T., 2007 Smart system using new piezoelectric fiber with metal core. Journal of solid mechanics and materials engineering. 1(6):728~733.
    [84] Sato H., Nagamine M., 2005 Mechanical properties of metal-core piezoelectric fiber. Smart Structures and Materials 2005, Proceedings of SPIE, , 5764:623~629
    [85] Takagi K., Sato H., Saigo M., 2004 Robust vibration control of the metal-core assisted piezoelectric fiber embedded in CFRP composite. Smart Structures and Materials, Proceedings of SPIE, 2004, 5383:376~385.
    [86] Guo D, Qiu J, Piao M. Identification of impact force on a smart board using coredpiezoelectric fibers[C]. Japan: Dynamics & Design Conference, 2005.
    [87] Davood A., Hiroshi A., Mehrdad N., et al. 2006 A Comparative Study on Macro-Fiber Composites and Active Fiber Composites with Metal-Core Piezoelectric Actruators/Sensors. Proc. Of SPIE, Smart Structures and Materials, 6170:1-12.
    [88] Hajjaji A., Benayad A., Sebald G., et al. 2008 Synthesis and characterization of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 fibers with Pt core, Materials Research Bulletin, 43(3):493~501.
    [89] Bian Y., Qiu J., Wang X., 2009 The constitutive equations of half coated metal core piezoelectric fiber. International Journal of Applied Electromagnetics and Mechanics, Vol.29 (1): 47~64.
    [90] Bian Y., Qiu J., Wang X., 2008 The constitutive equations of metal core piezoelectric fiber,Transactions of Nanjing University of Aeronautics and Astronautics, Vol.25 (3):169~175.
    [91]边义祥,裘进浩,王鑫伟,等。2009半电极含金属芯压电纤维的驱动性能.光学精密工程,Vol.17(1):107~117.
    [92]边义祥,裘进浩,王鑫伟,等。2008含金属芯压电纤维的应变传感实验研究,压电与声光,Vol.30(6):734~37.
    [93] Grzegorz K. and Stephen J. 2002 Rosette piezotransducers for damage Detection. Smart Mater. Struct, 11: 196–201.
    [94] Francesco Lanza di Scalea, Howard Matt, and Ivan Bartoli. 2007 The response of rectangular piezoelectric sensors to Rayleigh and Lamb ultrasonic waves. J. Acoust. Soc. Am, No. 1, January: Vol. 121.
    [95] Birchmeier M. et al. 2008 Active fiber composites for the generation of Lamb waves. Ultrasonics
    [96] Howard M Matt and Francesco Lanza di Scalea. 2007 Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater. Struct, 16: 1489–1499.
    [97]钟维烈铁电体物理学科学出版社1996:415-417.
    [98]许煜寰铁电与压电材料科学出版社1978:35-38.
    [99] Worlton D C. Experimental confirmation of Lamb waves at megacycle frequencies, Journal of Applied Physics, 1961, Vol.32:967-971.
    [100] Raghavan A and Cesnik C E S 2007 Review of guided wave structural health monitoring Shock Vib. Dig. 39 91–114
    [101] Wilcox P. D. Lowe M. J. S Cawley P. Mode and Transducer Selection for Long Range Lamb Wave Inspection Journal of Intelligent Material Systems and Structures August 2001vol. 12 no. 8 553-565
    [102] Rokhlin S. I., Diffraction of Lamb waves by a finite crack in an elastic layer,J. Acoust. Soc. Am. 67, 1157–1165 ~1980
    [103] Kessler S, Spearing S M and Constantinos S. 2002 Damage Detection in Composite Materials Using Lamb wave Methods. Smart materials and Structures, , 11:269~278.
    [104] Hosten B. Castaings M., Transfer matrix of multilayered absorbing and anisotropic media. Measurements and simulations of ultrasonic wave propagation through composite materials, J. Acoust. Soc. Am. 94, 1488–1495 ~1993
    [105] Mindlin R, 1960 Waves and vibrations in isotropic, elastic plates, Structural Mechanics, Goodier JN, Hoff NJ, New York: Pergamon Press,:199-232.
    [106] Lin X, Yuan F G. 2001 Diagnostic Lamb waves in an integrated piezoelectric sensor/actuator plate: analytical and experimental studies. Smart Materials and Structures, 10:1-7.
    [107] Takuro I, 1996 Fundamental of Piezoelectricity, Ohmsha, Ltd., New Youk, Tokyo, 15-17.
    [108] Tzou H S 1993 Piezoelectric Shells: Distributed and Control of Continua (Kluwer Academic, Dordrecht)
    [109] Crawley E F and de Luis J 1987 Use of piezoelectric actuators as elements of intelligent structures AIAA J. 25 1373-85.
    [110] Raghavan A and Cesnik C E, Modeling of piezoelectric-based Lamb-wave generation and sensing for structural health monitoring, Proceedings of the SPIE Smart Structures Conference, San Diego, 5391(2004) 419-430.
    [111] Ip K H, Tse P W, Tam H Y. Extraction of patch-induced Lamb waves using a wavelet transforms [J]. Smart Materials and Structures, 2004, 13:861-872.
    [112] S. K. Datta, Y. Al-Nassar, and A. H. Shah,‘‘Lamb wave scattering by a surface-breaking crack in a plate,’’in Review of Progress in Quantitative NDE, edited by D. O. Thompson and D. E. Chimenti ~Plenum, New York, 1991, Vol. 10A, pp. 97–104.
    [113] Raghavan A and Cesnik C., 2005 Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart materials and Structures, 14:1448~1461.
    [114] Raghavan A and Cesnik C E, 3-D elasticity-based modeling of anisotropic piezocomposite transducers for guided wave structural health monitoring. Journal of Vibration and Acoustics. 2007,129:739-751.
    [115]余振华,面向航空结构的主动Lamb波健康监测技术研究,[硕士学位论文],南京,南京航空航天大学,2007.
    [116] http://www.uow.edu.au/~craigmc/henderson.html
    [117] LabVIEW Help. 371361E-01, TSA moving Average VI, June 2008。
    [118] Lastari W and Qiao P, Experimental investigation of damage detection on composite plates using wave analysis, Proc. SPIE 5767, 81-9(2005).
    [119] Lemistre M and Balageas D, Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing, Smart Mater. Struct. 10,504-11(2001)。
    [120] Betz D.C., Thursby G., Culshaw B and Staszewski W. J., Lamb wave detection and source location using fiber Bragg grating rosettes, Presented at Smart Structures and Materials: Sensory Phenomena and Measurement Instumentation for Smart Structures and Materials, San Diego, CA, USA. (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700