用户名: 密码: 验证码:
高温发汗自润滑金属陶瓷的制备、表征及摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温发汗自润滑是基于生物体汗腺结构和发汗原理提出的一种新型自润滑技术,其材料是由汗腺式微孔金属陶瓷硬质相和多元润滑剂软质相组成的互穿网络结构复合体,其润滑机理是在高温摩擦热—应力作用下将复合体中的润滑剂沿着汗腺式有序孔通道扩散至摩擦界面实现自补偿润滑:该研究是在国家自然科学基金的资助下完成的。
     本文在回顾多孔材料、高温固体自润滑材料以及仿生结构材料的发展与研究现状基础上,基于人体汗腺结构与发汗机理,首次提出高温发汗自润滑的概念;并采用二次复合造孔法,在真空条件下制备出具有汗腺式微孔金属陶瓷基体;通过真空压力熔浸多元固体润滑剂,制备出了高温发汗自润滑复合材料;并对其设计理论、微观结构、摩擦学特性及自润滑机理进行了系统的研究。
     为实现汗腺式微孔表层分布的有序化和内胞孔的相互贯通化,文中基于高温扩散自润滑机理和人体汗腺结构特征,通过结构和功能仿生模拟,建立了汗腺式微孔结构特征模型;基于烧结过程中孔隙演化的分析,对该模型进行了统计数学分析,探讨了孔结构形态、尺寸、孔径分布及孔隙度的可控机理。
     为实现汗腺式烧结体的孔结构可控和强韧性可控的双重目的,论文在对材料基体组分进行摩擦学设计的同时,组合出一种能在烧结过程中逐级分解的复合造孔剂孔—TiH_2+CaCO_3复合体,并辅以Al_2O_3超细颗粒为弥散质点;创新出一种二次复合造孔的液-固相烧结新工艺,制备出了具有均匀开口于表层且内互贯通的有序孔汗腺式高强度基体。
     为实现汗腺式金属陶瓷的高温自润滑,论文基于软金属的成膜特点、湿润性和熔点差,组合出一种以Pb-Sn-Ag-RE为主体的复合固体润滑剂;并采用真空压浸工艺熔渗进汗腺式高强基体中,实现了发汗金属陶瓷的高温自润滑功能。
     文中以制备出的TiC-FeCrWMoV系高温发汗自润滑金属陶瓷为典型研究对象,微观分析了其孔隙结构特征、力学性能和摩擦学特性。实验和理论分析表明:所制备的金属陶瓷自润滑材料,其孔隙形态呈规则的圆形或方形,孔径分布均匀且服从瑞利分布规律,硬质相与润滑相互相贯穿成网络状;既具有高的压溃强度和耐磨性,又具有良好的高温自润滑性能(600℃时,平均摩擦系数为0.26~0.29,磨损率为6.3×10~(-6)~9.6×10~(-6)mm~3/Nm)。
     EDXA和XRD的磨损表面分析表明,该材料在摩擦磨损过程中,润滑组元可通过微孔通道扩散析出材料基体,在摩擦表面形成一层含有Pb、Sn、Ag、Cu等元素的复合润滑膜。文中基于SEM表面形貌分析,探讨了高温扩散自补偿润滑膜结构特征和成膜机理。
As a new self-lubricating technology,the high temperature sweating selflubrication is put forward based on human's sweat-gland structure and its sweating mechanisms.Its materials are composed of hard phase of metal ceramics with sweatgland structure and soft phase of multi-element solid lubricants.The mechanism of self-lubrication is that the lubricants deposited in the composites were diffused out to the friction interface through orderly pore channels of the composites with sweatgland structure.The research project has been supported financially by National Natural Science Foundation of P.R.China.
     Research status and developing trends of porous materials,high temperature solid self-lubrication composites and biomimetic structural materials were reviewed in this dissertation.A new concept of high temperature sweating self-lubrication was brought forward.Using a two-time pore-forming method,a metal ceramic preform with sweat-gland structure was fabricated by powder metallurgy method. Subsequently,a new type high temperature sweating self-lubrication metal ceramics was manufactured successfully through infiltrating molten solid lubricants into the preforms in vacuum.The design theories,micro structure,tribological characteristics and self-lubricating mechanisms were were analyzed systemtically.
     For achieving ordering array of the micropores on the surface and the inner interpenetration of sweat gland structure micro pores,a micro-pore model describing the characteristics of the sweat gland structural micro pores was established through structural and functional imitation of human' sweat-gland structure.Based on the study of pore evolution during the powder metallurgy sintering process,the model was statistical approach analyzed.Subsequently,mechanisms for controlling poreshape, pore-structure and pore-size distribution were developed.
     To control both the pore structure and the toughness of sweat-gland structural sinteres,besides the tribological design of the composition of composite matrix,a compound pore-forming agent,TiH_2 and CaCO_3,which can decompose sequentially was made.Fine Al_2O_3 particles were included as dispersion.A new solid-liquid sintering technology through two-time pore forming method was innovated.As a result,strong sinters with a sweat gland structure and interconnected and uniformly opened micro-pores on the surface were fabricated.
     For achieving high temperature self-lubrication properties of metal ceramics with sweat gland structure,a compound solid lubricants composed of lead,tin,silver and rare earth elements was created based on the characteristics of self-lubrication film forming process,difference in the melting points and wettability of soft metal solid lubricants.The compound solid lubricants were infiltrated into high intensity sinters with sweat gland structure using high pressure infiltrating method in vacuum. Metal ceramic composites fabricated through this method possess good high temperature self-lubrication properties.
     Using TiC-FeCrWMoV high temperature self-lubrication metal ceramics with sweat gland structure as the representative objective,the characteristics of the pore structure,mechanical properties and tribological properties were investigated microscopically.The experimental studies and the theoretical analysis reveal that the metal ceramics have homogeneous regular pores as well as a narrower pore size distribution and high pore connectivity.The pore size distribution was approximately fitted by the Rayleigh distribution curve.These materials where both solid lubricant phase and matrix phase were interpenetrating throughout the microstructure possessed high intensity,fine wear resistance and a good self-lubrication properties (at 600℃,the average friction coefficient ranging from 0.26 to 0.29 and the wear rate ranging from 6.3×10~(-6)~9.6×10~(-6)mm~3/Nm).
     By means of energy dispersive X-ray analysis(EDX)and X-ray diffraction (XRD),it was found that the lubricating elements were diffused or squeezed out of the matrix,forming a thin lubricating film consisting of lead,tin,silver,copper et al on the friction surface.A model for describing the forming process of solid lubricating film was established based on the analysis of SEM topography.The mechanism of self-lubrication of the high temperature sweating self-lubrication composites with sweat gland structure was studied.
引文
[1]石森森.固体润滑材料.北京:化学工业出版社,2000.1-16
    [2]Ibrahim A.Particulate reinforced metal matrix composites-a review.J Mater Sci,1991.26(1):137-151
    [3]Liu Y B,Lim S C,Lu L.Recent development in the fabrication of metal matrix-particulate composites using powser metallurgy techaniqus.J Mater Sci,1994.29(1):1999-2007
    [4]Dellacorte C,Sliney H E,Bogdanski M S.Tribologial and mechanical comparison od sintered and hipped PM212:High Temperature Self-lubricating Composites.Lubr Eng,1992.48:877-885
    [5]Sliney H E.Wide temperature spectrum self-lubricating coatings prepared by plasma a spraying.Thin Solid Films,1979.64:217-221
    [6]Paulean Y,Marechal N.Sputter-deposited lubricat thin films for high-temperature applications.Luubr Eng,1996.52:481-487
    [7]阚存一,刘近朱,张国威等.一种镍-铬-硫合金的研制与摩擦学特性.摩擦学学报,1994.14(3):193-204
    [8]薛群基,吕晋军.高温固体润滑研究的现状及发展趋势.摩擦学学报,1999,19(1):91-96
    [9]欧阳锦林,牛淑琴,阮虎生等.镍合金基自润滑材料的研究.摩擦学学报,1993.13(1):33-47
    [10]王庆年,随忠祥,张明喆等.国外某些金属基自润滑复合材料的开发与进展.摩擦学学报,1997.17(1):89-96
    [11]李诗卓,姜晓霞,尹付成等.Ni-Cu-Re高温自润滑合金的研究.Materials science progress,1989.3(6):481-486
    [12]姜晓霞,李诗卓,Peterson M B,et al.Ni-Cu-Re高温自润滑合金的研究.Materials science progress,1989.3(6):487-493
    [13]李诗卓,姜晓霞,Peterson M B,et al.Ni-Cu-Re合金自生氧化膜的减摩机理.Materials science progress,1990.44(1):1-7
    [14]李溪滨,龚雪冰,刘如铁等.添加CaF的Ni-Cr-Cu基固体自润滑材料的研究.润滑与密封,2003.1:30-32.
    [15]Peterson M B,Calabrese S T,Li S Z,et al.Friction of alloys at high temperature.Mater Sci Technol,1994,10(5):313
    [16]Quinn T Fj,Sullivan J L.Origins and developments of oxidational wear at loe ambient temperature.Wear,1984.94:175
    [17]桑可正,金志皓.高温自润滑陶瓷复合材料研究进展.硅酸盐通报(Bull Chin Ceram Soc),1998.5:27-32
    [18]魏建军,薛群基.陶瓷摩擦学研究的发展现状.摩擦学学报,1993.13(7):268-275
    [19]Semonv A P.Tribology at high temperature.Tribology International,1995.28(1):45-50
    [20]陈小虎.陶瓷及其复合材料高温自润滑的研究现状.陶瓷学报,2001,22(1):53-56
    [21]赵志强,王永兰,金志浩.Al_2O_3+GaF_2+15Glass自润滑复合材料摩擦磨损的研究.硅酸盐通报,1998.17(2):14-17
    [22]Nishiyama K,Sagawa S,Kojima T,et al.Friction and wear of SiC,Si_3N_4,B_4C-TiB_2 and Al_2O_3.J Jpn Soc Powder Metall,1993.40(1):49-52
    [23]Senda T,Yamarnoto Y,Ochi Y.Friction and wear test of titanium boride ceramics at elevated temperatures.J Ceram Soc Japan,1993.101(4):461-465
    [24]Carrapiehano J M,Gomes J R,Silva R F.Tribological behaviour of Si3N4-BN ceramic materials for dry sliding applications.Wear,2002.253(9-10):1070-1076
    [25]Sliney H.E.The use of silver in self-lubricating coatings for ex-treme temperatures.ASLE Trans,1986.29:370-376
    [26]DellaCorte C,Sliney H.E.Composition optimization of self-lubri-cating chromiumcarbide-based composite coating for use to 760 ℃.ASLE Trans,1987.30:77-83
    [27]Sliney H.E.A new chromium carbide-based tribological coating for use to 900 ℃ with particular reference to the Stirling Engine.J Vac Sci Tech A,1986.4:2629-2632
    [28]Michael S,Sliney H E,DellaCorte C.The effect of processing and compositional changes on the tribology of PM212 in air.Lubr Eng,1995.51:657-4583
    [29]王静波,孟秀坤,黄业中等.钨酸铅高温润滑特性的研究.摩擦学学报,1992.12(1):81-87
    [30]查家宁,王静波,黄业中等.Ni-WC-PbO高温自润滑金属陶瓷材料的研究.固体润滑,1991.11(1):28-34
    [31]蒋阳,夏永红,程继贵.石墨/ZAT自润滑陶瓷基复合材料摩擦学特性的研究.粉末冶金技术,1999.17(4)273-276
    [32]Liu Y B,Rohatg P K,Ray S.Tribological Characteristics of Aluminum-50%Graphite Composites.Metal Trans,1993.24A:151-155
    [33]钦征骑.新型陶瓷材料手册.南京:江苏科学技术出版社,1995.12
    [34]郭绍义,毛志远,丽剑等.AT30金属陶瓷的相变增韧及其对磨粒磨损性能研究.浙江大学学报,1995.29(4):484-458
    [35]沈以赴,陈继忠,冯钟潮等.稀土在激光熔覆涂层中的分布和行为.中国稀土学报,1997.15(4):344-349
    [36]李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990.23
    [37]Hamid Mostaghaci.The preparation of A2O3-TiC-Ni composites,Journal of Canadian Ceramic Society,1998.57:60
    [38]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程,1997.26(1):1-6
    [39]刘培生,黄林国.多空金属材料制备方法.功能材料,2002.33(1):5-9
    [40]Jibson L.G.,Ashby M.F..Cellular Solids(2nd Edition).Cambridge:Cambridge University Press.1997
    [41]刘富得,陈森风,张书政.多孔陶瓷材料的发展状况.材料导报,2000,14(6):33-35
    [42]刘树信,霍冀川,李炜罡.多孔材料合成制备进展.化工新型材料,2004.32(4):13-17
    [43]白青龙,张春花,王冀敏.多孔材料的研究进展.内蒙古民族大学学报(自然科学版),2004.19(5):529-231
    [44]马祖礼.生物与仿生.天津:天津科学技术出版社,1984.13
    [45]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展,2004.17(4):337-344
    [46]张青,戴起勋,赵玉涛等.仿生材料设计与制备的研究进展.江苏大学学报(自然科学版),2003.24(6):55-60
    [47]张建华,陶德华.仿生润滑技术研究及其应用探讨.润滑与密封,2004.166(6):99-110
    [48]岑海堂,汪苏,陈五一.结构仿生新进展.机械设计,2003.20(11):1-4
    [49]黄志斌,汪宜.高新技术仿生化发展的态势分析.自然辩证法研究,2001.17(10):38-40
    [50]邓宝清,任露泉,苏岩等.模拟活塞缸套摩擦副的仿生非光滑表面的摩擦学研究.吉林大学学报(工学版),2004.34(1):79-84
    [51]金卓仁,程继贵,夏永红.梯度自润滑滑动轴承的研制.机械工程学报,2001.37(3):81-84.
    [52]张建华,陶德华,付尚发等.新型人工关节仿生润滑系统设计及滑液摩擦学特性研究.摩擦学学报,2003.23(6):500-503
    [53]Chen J.X.,Dai G.A.,Xu Y.L.et.al.Optimal composite structures in the forewings of beetles.Composite Structures,2007.81(3):432-437
    [54]温诗铸.纳米摩擦学研究进展.机械工程学报,2007.43(10):1-8
    [55]雷源忠,黎明.21世纪的制造科学.中国机械工程,1999.10(6):689-691
    [56]翁立军,刘维民,孙嘉奕等.空间摩擦学的机遇和挑战.摩擦学学报,2005.25(1):92-95
    [57]顾秀娟,王齐华,王金清.多孔氧化铝陶瓷储油材料的摩擦学性能研究.摩擦学学报,2004.24(2):123-127
    [58]Gangopadhyay A,Jahanmir S,Peterson M B.Friction and Wear of Ceramics.New York:Marcel Dekker,1994.163-197
    [59]桑可正,金志浩,刘林.一种新型减摩复合陶瓷的研究.摩擦学学报(增刊),2002.22(4):251-254
    [60]Sang K Z,Lu Z L,Jin Z H.A Study of the SiC Composite Ceramics for Self-Lubrication.Wear,2002.253(11-12):1188-1193
    [61]Liu Z M,Childs T.H.C.The influence of TiC,CaF_2 and MnS additives on frication and lubrication of sintered high speed at elevated temperature.Wear,1996.193:31-37
    [62]孙晓丽,刘勇兵,陆有等.粉末冶金高温金属基固体自润滑材料.粉末冶金技术,2001.19(2):86-92
    [63]刘佐民,高万振,萧汉梁等.摩擦学在湖北的研究与工业应用.第二届工业摩擦学大会会议论文集.福州:中国机械工程学会摩擦学分会,2004.9-14
    [64]E.Ryshkewitch.Compression strength of porous sintered alumina and zirconia.Journal of the American Ceramic Society.1953.36(2):65-68
    [65]Duckworth W.Discussion of Ryshkewitch paper by Winston Duckworth.Journal of the American Ceramic Society,1953.36(2):68
    [66]李溪滨,刘如铁,程时和等.烧结材料中孔隙度对摩擦学特性的影响.润滑与密封,2002.1:34-35
    [67]韩凤麟.美国MPIF标准“粉末冶金自润滑轴承材料标准”1998年修订简介.粉末冶金工业,2000.10(3):36-46
    [68]郭仁炳.规则球粒堆积体的孔隙度.中国地质大学学报,1994.19(4):503-508
    [69]金霁.微积分学(第四册).石家庄:河北教育出版社,1987.1-72
    [70]Φ·艾真科尔勃著,韩凤麟译.粉末冶金.北京:中国工业出版社,1963.83-85[71]М·Ю·巴利新著,韩凤麟译.粉末金属学.北京:中国机械工业出版社,1065.76-90
    [72]Manjunath Subbanna,P.C.Kaput,Pradip and S.G.Malghan.Population balance model for solid state sintering:I.Pore shrinkage and densification.Ceramics International,2001.27(1):57-62
    [73]宝鸡有色金属研究所编著.粉末冶金多孔材料(上).北京:冶金工业出版社,1978.105-106
    [74]金志浩,高记强,升冠军编著.工程陶瓷材料.西安:西安交通大学出版社,2000.99-120
    [75]Kuczynski G C.Sintering and Related Phenomena.Materials Science Research.1973.6:217
    [76]Zener C.Imperfeetions in Nearly Perfect Crystals.New York:John Wiley and Sons Inc.,1952.289-290
    [77]催国文编著.缺陷、扩散与相变.北京:清华大学出版社,1990.182-188
    [78]施剑林.固相烧结Ⅱ-粗化与致密化关系及物质传输途径.硅酸盐学报,1997.25(6):657-667
    [79]果世驹编著.粉末烧结理论.北京:冶金工业出版社,1998.248-256
    [80]Matthew B.Dickerson,Robert L.Snyder.Low-Temperature Fabrication of Dense、NearNet-Shaped Tungsten/ Zirconium Carbide Composites with Tailored Phase Content by the PRIMA-DCP Process.Ceramic Engineering and Science Proceedings,2001.22(1):97-108
    [81]李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990.158
    [82]Fllinn B.,Ruchle M.,Evans A G.Improvement of Interface Wettability of Cermet.Acta Metall,1989.37:3001-3009
    [83]李详明,刘得浚等.金属陶瓷摩擦材料中的润湿性问题.机械工程材料,1999.23(1):36-38
    [84]周泽华,丁培道.Ti(C,N)基金属陶瓷中添加成分的研究现状.材料导报,2000.14(4):21-22
    [85]Nomur N.Dracture toughness improvement of TiC by Nb and Mo precipitates.Journal of Materials Science Letters,2000.19(21):1879-1881
    [86]Manmohan Singh,Rai K.N.Sintered porous cermets based on TiB2-TiC-Mo2C.Materials Chemistry and Physics,2001.67(1-3):226-233
    [87]李晨辉,余立新,熊惟皓.硬质相颗粒对金属陶瓷断裂韧性的影响.复合材料学报,2003.20(1):1-6
    [88]李鹏,胡耀波,熊惟皓等.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响.硬质合金,2000.17(2):65-68
    [89]山本登,多孔材料的性能与应用[J].化学工业,1978,(9):114-117
    [90]Guo-Jun Zhang,Jian-Feng Yang.Fabrication of Porous Ceramics with Unidirectionally Aligned Continuous Pores.Journal of the American Ceramic Society,2001.84(6):E34-E34
    [91]Tuan W H.,Wu H H.,Yang T J.The preparation of A2O3/Ni composites by a powder coating technique.J Am Ceram Sci,1995.(30):855-859
    [92]郭绍义,居毅.金属陶瓷复合粉体的制备及应用.浙江工程学院学报,2002.19(4):251-253
    [93]Zhang H L,Li J F,Zhang B P.Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents.Acta Materialia,2007.55(1):171-181
    [94]Tsyurupa M.P.,Davankov V.A.Porous structure of hypercrosslinked polystyrene:Stateof-the-art mini-review.Reactive and Functional Polymers,2006.66(7):768-779
    [95]Gain A.K.,Song H.Y.,Lee B.T.Microstructure and mechanical properties of porous yttria stabilized zirconia ceramic using poly methyl methacrylate powder.Scripta Materialia,2006.54(12):2081-2085
    [96]Chen C.H.,Satoshi Isiguro,Sawao Honda et al.Homogenous alumina tube with controlled pore morphology.Materials Science and Engineering:A,2005.407(1-2):167-17
    [97]贺奉嘉.烧结含油轴承多孔特性的统计分析.润滑与密封,1996.4:17-20
    [98]宝鸡有色金属研究所.粉末冶金多孔材料.北京:冶金工业出版社,1978.176-193
    [99]张锐.SiC多孔陶瓷的气孔率和强度.金刚石与磨料磨具工程,2000.4(118):38-40
    [100]Hyuk Kim,Calvin Da Rosa.Fabrication of Highly Porous Yttria-Stabilized Zirconia by Acid Leaching Nickel from a Nickel-Yttria-Stabilized Zirconia Cerme.Journal of the American Ceramic Socity,2002.85(6):21-22
    [101]Ringuede A,Bronine D.Nil-xCox/YSZ Cermet anodes for solid fuel cells.Electrochimica acta,2002.48(4):437-442
    [102]Nomura N.Fracture toughness improvement of TiC by Nb and Mo precipitates.Journal of Materials Science Letters,2001.19(21):1879-1881
    [103]吕维洁,张小农,张狄等.颗粒增强钛基复合材料研究进展.材料导报,1999.13(6):15-18
    [104]费多尔钦科 N.M.著.现代摩擦材料.徐润泽等译.北京:冶金工业出版社,1983.70-78
    [105]方玉诚,王浩,周勇等.粉末冶金多孔材料新型制备与应用技术的探讨.稀有金属,2005.29(5):791-796
    [106]松山芳治,三谷裕康,铃木.粉末冶金学.北京:科学出版社,1978.38-45
    [107]Oliveira M M,Bolton J D.Sintering of M3/2 high speed steel modified by additions of phodphide and based ceramic compounds.Powder Metallurgy,1995.38(2):131-140
    [108]张湘伟.结构分析中的概率方法.北京:科学出版社,2000.9-67
    [109]李惕碚.实验的数学处理.北京:科学出版社,1983.117-175
    [110]Ding H D.Sintering model about expansion and shrinkage.The Transactions of Nonferrous Metals Society of China,2001.11(1):45-50
    [111]Ding H D,Test of Huadong Sintering Model.The transactions of Nonferrous Metals Society of China,2001.11(2):192-195
    [112]薛明俊,刘智恩,沈凯.钛酸铝多孔陶瓷的研制.中国陶瓷,1995.31(2):17-20
    [113]Sliney H E.The use of silver in self-lubricating coatings for extreme temperatures.ASLE Trans,1986.29(3):370-376
    [114]DellaCorte C.,Sliney H.E.Composition optimization of self-lubricating chromiumcarbide-based composite coating for use to 760 ℃.ASLE Trans,1987.30(1):77-83
    [115]Deng J X,Cao T K,Yang X E et al.Self-lubrication of sintered ceramic tools with CaF2additions in dry cutting.International Journal of Machine Tools & Manufacture,2006.46(9):957-963
    [116]Steiner D.,Wierse M.,Groll M.Development and Investigation of Thermal Energy Storage Systems for the Media Temperature Range[A].in:Proeeedings 30th IECEC Meeting,New York:D.Yogi Goswami Landis Kannberg,1995.193-198
    [117]Shi X.F.,Sitharaman B.L.,Pham Q.P.et al.Fabrication of porous ultra-short singlewalled carbon nanotube nanocomposite scaffolds for bone tissue engineering.Biomaterials,2007.28(28):4078-4090
    [118]A.Daoud.Wear performance of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration.Materials Letters.2004,58(25):3206-3213
    [119]Michaud V.,Mortensen A.Infiltration processing of fibre reinforced composites:governing phenomena Composites Part A.Applied Science and Manufacturing,2001.32(8):981-996
    [120]Michalski J.,Wejrzanowski T.,Gierlotka S.et al.The preparation and structural characterization of Al203/Ni-P composites with an interpenetrating network.Journal of the European Ceramic Society,2007.27(2-3):831-836
    [121]Mattern A.,Huchler B.,Staudenecker D.et al.Preparation of interpenetrating ceramicmetal composites.Journal of the European Ceramic Society,2004.24(12):3399-3408
    [122]Ching Z.H.,Brown Ian W.M.,Zhang D.L.Microstructure development and properties of alumina-Ti aluminide interpenetrating composites.Current Applied Physics,2006.6(3):444-447
    [123]Miao X.,Lim W.K.,Huang X.et al.Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites.Materials Letters,2005.59(29-30):4000-4005
    [124]Konopka K.,Olszówka-Myalska A.,Szafran M.Ceramic-metal composites with an interpenetrating network.Materials Chemistry and Physics,2003.81(2-3):329-332
    [125]Zhang D.,Xie X.Q.,T Fan.X.Microstructure and properties of ecoceramics/metal composites with interpenetrating networks.Materials Science and Engineering A,2003.351(1-2):109-116
    [126]Xie X.Q.,Zhang D.,Fan T.X.et al.The fabrication of composites with interpenetrating networks based on wood ceramics.Materials Letters,2002.56(1-2):102-107
    [127]Wegner L.D.,Gibson L.J..The mechanical behaviour of interpenetrating phase composites - Ⅲ:resin-impregnated porous stainless steel.International Journal of Mechanical Sciences,2001.43(4):1061-1072
    [128]徐志锋,余欢,蔡长春等.真空变压力浸渗法制备高体积分数SiCp/Al复合材料.中国有色金属学报,2006.16(9):1551-1556
    [129]顾惕人,朱涉瑶,李外郎等.表面化学.北京:科学出版社,1994.1-33
    [130]黄金.融盐自发浸渗过程与微米级多孔陶瓷基复合相变储能材料研究:[博士学位论文].广州:广东工业大学材料与能源学院,2005
    [131]梁淑华,范志康.触头材料液相熔渗过程分析与控制.西安理工大学学报,2000.16(2):175-178
    [132]方洪渊.简明钎焊工手册.北京:机械工业出版社,2001.51-65
    [133]Shulda R.K.,Dubey A.N.,Piyush Awasthi.Excess surface tension and molecular interactions of Pb-Sn molten mixture at elevated temperatures.Journal of Molecular Liquids,2007.135(1-3):1-4
    [134]叶润清,罗乐.Sn62Pb36Ag2焊料的微结构粗化.功能材料与器件学报,1999.5(4):327-331
    [135]Wang L.,Yu D.Q.,Zhao J.et al.Improvement of wettability and tensile property in Sn-Ag-RE lead-free solder alloy.Materials Letters,2002.56(6):1039-1042
    [136]Yu D.Q.,Zhao J.,Wang L.Improvement on the microstructure stability,mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements.Journal of Alloys and Compounds,2004.376(1-2):170-175
    [137]Mattern A.,Huchler B.,Staudenecker D.et al.Preparation of interpenetrating ceramicmetal composites.Journal of the European Ceramic Society,2004.24(12):3399-3408
    [138]Honig R.E.,Kramer D.A.Vapour Pressure Data for the Solid and Liquid Elements.Reaction kinetics and catalysis letters,1969.30:285-305
    [139]Margrave J.The Characterization of High-Temperature Vapors.New York:John Wiley and Sons.Inc.,1967.115-129
    [140]Shuaib M.,Davies T.J.Wear behaviour ofa REFEL SiC containing fluorides up to 900℃.Wear,2001.249(1-2):20-30
    [141]Rapoport L.,Leshchinsky V.,Lvovsky M.et al.Superior tribological properties of powder materials with solid lubricant nanoparticles.Wear,2003.255(7-12):794-800.
    [142]Alexeyev N.,Jahanmir S.Mechanics of friction in self-lubricating composite materials Ⅰ:Mechanics of second-phase deformation and motion.Wear,1993.166(1):41-48
    [143]Bowden F.P.,Tabor D.The frication and Lubrication of Solids.Oxford:Oxford University Press,1954.5-41
    [144]温诗铸.摩擦学原理.北京:清华大学出版社,1990.372-296
    [145]尹延国.铜基石墨自润滑材料及其摩擦学研究:[博士学位论文].合肥:合肥工业大学材料学专业,2006
    [146]曹同坤.自润滑陶瓷刀具的设计开及其自润滑机理研究:[博士学位论文].济南:山东大学机械制造及自动化专业,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700