用户名: 密码: 验证码:
钢安全壳在压力和地震作用下的动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电已成为人类使用的重要能源之一。我国核电建设目前正处于快速发展时期,但我国同时也是一个地震灾害多发的国家,因此对作为核岛安全最后一道屏障的安全壳的抗震性能研究具有极其重要的意义。本文以我国最新引进的非能动核电厂AP1000的钢安全壳为参考,使用ANSYS软件建立其三维有限元模型,并分析了钢安全壳在压力和地震作用下的受力性能及动力响应,主要研究内容和结果大致如下:
     首先,计算了钢安全壳在压力作用时的等效应力理论值,并用ANSYS软件进行数值模拟分析,将二者结果进行对比,误差较少。结果表明,在设计压力作用下,钢安全壳的等效应力在上、下封头和筒体相接处较大,但其最大等效应力小于材料的屈服应力,变形较小,结构处于弹性状态,具有充分的安全储备。
     然后,对钢安全壳进行了模态分析,分别考虑无压力作用时和有压力作用时的影响,得出其各工况下的自振频率和振型,作为动力分析的基础。从模态分析结果可以看出,钢安全壳的自振频率和振型均呈对称状出现,内压的增大会使钢安全壳自振频率增大,负压的增大会使其自振频率减少。
     其次,用时程法分析钢安全壳在地震作用下的结构动力响应,采用两条实际地震波和一条人工地震波进行激励,得出相应的位移时程和加速度时程结果,以及对应的最大等效应力。结果表明,钢安全壳的地震动力响应较小,具有较充分的抗震安全裕度,满足我国相关抗震规范要求。
     最后,考虑压力和地震共同作用时的时程分析,并与仅有地震作用下的时程分析结果对比。分析结果表明,在压力和地震共同作用下,其结构受力性能的主要影响因素来自压力作用,但钢安全壳仍处于弹性状态,抗震性能良好。
Nuclear power has become an important energy sources for human use. The development of nuclear power construction in China is very rapid now, but China is also one of earthquake-prone countries, so the research on the seismic performance of the nuclear containment vessel which is the last safeguard of nuclear island is extremely important. As one of the most advanced nuclear power plant, advanced passive-safety 1000MW nuclear power plant (AP1000) is be introduced into China recently. In this paper, based on ANSYS software, the three dimensional finite element model refer to the steel containment vessel of AP1000 is established and the seismic performance and dynamic response of it when under pressure and earthquake action is analyzed. The main research contents and results as follows:
     Firstly, when steel containment vessel is under pressure, the equivalent stress value of theoretical calculations and numerical simulation analysis is worked out separately with ANSYS software. Compared with the two results above, the error is less. According to these results, they display that under design pressure, although the equivalent stress at the junction of upper head and cylinder body as same as lower head and cylinder body is large, the maximum value is less than the material yield stress, so the structure is in the elastic state with sufficient emergency capacity. In addition, the deformation of structure is small.
     Secondly, consider whether or not the steel containment is under pressure, the modal analysis is carry out. And its natural frequencies and modes which are from modal analysis under different situations are as the basis for dynamic analysis. The results demonstrate that natural frequencies exist always in pairs and mode shapes show symmetrical. Besides, the natural frequencies increase as the internal pressure increase, whereas the natural frequencies reduce as the external pressure increase.
     Thirdly, based on time-history analysis methods, this paper studies the dynamic response of steel containment structure motivated only by earthquake. Stimulated separately with one actual seismic wave and two different artificial seismic waves, this article found the corresponding displacement and acceleration time history results and the corresponding maximum equivalent stress. The results show that the response to seismic motivation is less and the structure has sufficient seismic margin, meeting the requirements of relevant specifications.
     At last, in order to contrast with the dynamic response results which only consider the action of earthquake, time-history analysis methods are used to analyze the dynamic response of steel containment structure considering the action of both pressure and earthquake action. It turned out that the main factor affected the mechanical performance is pressure, but the entire structure is in elastic state and the steel containment vessel has good anti-seismic performance.
引文
[1]叶奇蓁.坚持自主创新——推进核电可持续发展.电器工业.2009(2):31页,32页,30页
    [2]R.克拉夫,J.彭津著.王光远等译.结构动力学.第二版.北京:高等教育出版社,2006:431页
    [3]胡聿贤.地震工程学.第二版.北京:地震出版社,2006:11-12页,451-452页
    [4]陆新征,叶利平,缪志伟等.建筑抗震弹塑性分析——原理、模型与在ABAQUS, MSC.MARC和SAP2000上的实践.北京:中国建筑工业出版社.2009:1页,37-38,56-57页
    [5]李英民,赖明.工程地震动模型化研究综述及展望(Ⅰ)——概述与地震学模型.重庆建筑大学学报.1998,20(2):73-75页
    [6]蒋溥,梁小华,雷军.工程地震动时程合成与模拟.北京:地震出版社,1991:33-36
    [7]牛荻涛.基于弹塑性随机动力分析的抗震结构概率设计理论与方法.哈尔滨:哈尔滨建筑大学,1991:1-30页
    [8]Freeman S A, Nicoletti J P, Tyrell J V. Evaluation of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard, Bremerton, Washington, Proc.1st U.S. National Conf. Earthquake Engng, EERI, Berkeley,1975:113-122P
    [9]朱江杰,吕西林,容柏生.复杂体系高层结构的推覆分析方法和应用.地震工程与工程振动,2003,23(2):26-36页
    [10]Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Sructural Dynamics,2002,31(3): 561-582P
    [11]Chopra A K, Goel R K. Chintanapakdee C. Evaluation of a modified MPA procedure as suming higher modes as elastic to estimate seismic demands. Earthquake Spectra,2004, 20(3):757-778P
    [12]Chopra A K, Goel R K. A model pushover analysis procedure to estimate seismic demands for unsympathetic-plan buildings. Earthquake Engineering & Sructural Dynamics,2004,33(8):903-927P
    [13]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究。土木 工程学报,2003,36(11):44-49页
    [14]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型的影响.地震工程与振动,2004,24(3):89-97页
    [15]Gupta A, Krawinkler H. Estimation of seismic drift demands for frame structures. Earthquake Engineering & Sructural Dynamics,2000,29(9):1287-1305P
    [16]Gupta B, Kunnath S K. Adaptive Spectra-based pushover procedure for seismic evalution of structures. Earthquake Spectra,2000,16(2):367-391P
    [17]李洪训.对日本柏崎·刈羽核电厂地震事故的思考.核安全.2008(1):11页
    [18]张亚军,李怀萱,何树延,崔彬.200M核供热堆二次安全壳的设计.清华大学学报.1998,38(7):18-20页
    [19]汤搏.若干新型核电厂的比较分析和我国核电的近期选择.全国放射性流出物质和环境监测与评价研讨会论文汇编
    [20]秦忠.中国一体化反应堆核电厂创新安全壳设计研究.核动力工程.2006年,27(6):91页
    [21]张心斌,林松涛,陈增元等.先进核电厂安全壳结构模型试验研究.工业建筑.2002,32(5):33-35页
    [22]张心斌,林松涛,王永焕.巴基斯坦哈希玛核电站安全壳结构试验与吻合分析.工业建筑.2002,32(5):45页
    [23]夏祖讽,王明弹等.百万千瓦级核电厂安全壳结构设计与试验研究.预应力技术,2005,6:9-14页
    [24]王明弹,凌云,王晓雯,夏祖讽.先进核电厂半球顶安全壳的抗震分析.原子能科学技术.2008,42(1):401-406页
    [25]沈小白,于洁勤,杨明学.安全壳模型的振动台地震模拟试验.同济大学学报.1991,22(4):523-528页
    [26]庄萌,王宗纲,钱稼茹.CNP1000安全壳1:10模型的模态分析.河北工程大学学报.2007,24(3):7-11页
    [27]陈勤,钱稼茹.内压荷载下安全壳1:10模型结构非线性有限元分析.工程力学.2002,19(6):73-77页
    [28]江近仁,赵衍刚,等.核电厂混凝土安全壳的地震可靠性分析.地震工程与工程振动.1995,15(1):26-35页
    [29]李忠诚,杨孟嘉.AP1000抗震分析与设计特点研究.世界地震工程.2008(3): 137-141页
    [30]李忠诚.AP1000厂址包络特征及其对中国潜在厂址的适应性分析.国际电力.2005(5):43-45页
    [31]宁冬,包章根,姚伟达.AP1000先进核电厂钢安全壳容器的材料设计要求.核动力工程.2006(10):304-306页
    [32]林诚格,郁祖盛.非能动安全先进核电厂AP1000.北京:原子能出版社,2008:190-193页,208-210页
    [33]魏俊明,刘琼,孙坤.第三代压水堆核电机组AP1000的模块化施工分析.电力建设.2008,29(4):63-64页
    [34]The American Society of Mechanical Engineers. AS ME Boiler & Pressure Vessel CodeⅢ-NE分卷.2007
    [35]练章华.现代CAE技术与应用教程.北京:石油工业出版社,2004:2页,247页
    [36]李围,叶裕明,刘春山等.ANSYS土木工程应用实例.第二版.北京:中国水利水电出版社.2007:7页
    [37]ASCE 4-68, Seismic analysis of safety-related nuclear structures and commentary on standard for seismic analysis of safety-related nuclear structures
    [38]国家地震局.《核电厂抗震设计规范》GB 50267-97.北京:建设部标准定额研究所,1997
    [39]李忠诚.AP1000厂址包络特征及其对中国潜在厂址的适应性分析.国际电力.2005,9(5):43-45页
    [40]宋玉普.预应力混凝土特种结构.北京:机械工业出版社,2008:211-212页
    [41]王新敏.ANSYS工程结构数值分析.北京:人民交通出版社,2007:19页
    [42]翁智远,钱江,鲁亮等.圆柱薄壳容器的振动与屈曲.上海:上海科学技术出版社,2007:6页
    [43]爱德华·L·威尔逊.结构静力与动力分析——强调地震工程学的物理方法.第四版.北京:中国建筑工业出版社,2006:96页
    [44]The American Society of Mechanical Engineers. ASME Boiler & Pressure Vessel Code Ⅱ Part A.2007:1324P
    [45]欧贵宝,朱加铭.材料力学.哈尔滨:哈尔滨工程大学出版社,1997:142-143页
    [46]阚前华,谭长建,张娟等.ANSYS高级工程应用实例分析与二次开发.北京:电子工业出版社,2006:87页
    [47]王焕定,章梓茂,景瑞.结构力学(Ⅱ).第二版.北京:高等教育出版社,2004:252页
    [48]王呼佳,陈洪军等.ANSYS工程分析进阶实例.北京:中国水利水电出版社,2006:154页
    [49]Anil K. Chopra著.谢礼立,吕大刚等译.结构动力学理论及其在地震工程中的应用.第二版.北京:高等教育出版社,2007:146页
    [50]刘晶波,杜修力.结构动力学.北京:机械工业出版社.2005:139-143页
    [51]方鄂华.高层建筑钢筋混凝土结构概念设计.北京:机械工业出版社,2004:147-149页
    [52]中华人民共和国建设部.《建筑抗震设计规范》(GB 50011-2001).北京:中国建筑工业出版社,2001
    [53]傅金华.建筑抗震设计实例及实例——建筑结构的设计及弹塑性反应分析.北京:中国建筑工业出版社,2008:3页
    [54]徐建.建筑结构设计常见及疑难问题解析.北京:中国建筑工业出版社.2007:70-71页
    [55]刘立.某核安全壳振动台试验数值模拟研究[硕士学位论文].哈尔滨:哈尔滨工程大学,2009:54页
    [56]ALWR Utility Requirement Document (URD), EPR1-URD,1996
    [57]姚伟达,张明,秦成军.先进轻水反应堆业主要求的文件(ALER-URD)中对抗震设计的要求.核安全.2004,3:30页
    [58]张波,盛和太.ANSYS有限元数值模拟分析原理与工程应用.北京:清华大学出版社,2005:221-222页
    [59]刘红石.Rayleigh阻尼比例系数的确定.噪声与振动控制,1996,6(12):21-22页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700