用户名: 密码: 验证码:
核动力装置二回路蒸汽系统仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核动力装置二回路蒸汽系统仿真是核动力装置实时、全范围、全功能仿真机研制工作的重要组成部分。本文以二回路蒸汽系统为仿真对象,建立并验证了动态仿真数学模型。论文完成的主要工作及取得的成果如下:
     (1)大直径饱和蒸汽管道属于有源热工部件。管道工质由于有一定湿度存在,并且管道容积惯性较大,两相之间存在比较强烈的质量、能量交换,管内是非稳态热力过程。本文对这类部件建立了两相非平衡箱体数学模型。
     (2)小直径饱和蒸汽管道属于无源热工部件。由于管径小,工质流动速度快,可以不考虑管内两相工质间的相互作用。本文对这类部件建立了单相可压缩流体网络模型。
     (3)针对单相可压缩流体网络模型提出了饱和蒸汽网络节点散热修正方法,可以用于核电站等大型蒸汽管网的仿真计算。
     (4)分析了汽轮机中湿蒸汽的非平衡流动特性,提出湿蒸汽在叶栅中的流动可以看作为两个阶段:叶栅内的湿蒸汽非平衡流动和叶栅后穿越凝结冲波的流动。建立了由两相流体质量守恒方程、动量守恒方程、能量守恒方程,过热蒸汽关系式、压降关系式、激波前后关系式及其它两相流关系式组成的动态仿真数学模型,模型形式为非线性方程组。
     (5)建立了基于质量守恒和能量守恒的水膜闪蒸数学模型,可以用于仿真计算水膜厚度对汽轮机甩负荷的影响。
     文中分别以核动力船舶二回路蒸汽系统和核电站汽轮机为仿真对象计算了若干仿真算例,验证了模型在各种工况下的适应性。结果表明,模型实现了基于物理过程计算汽轮机级效率,两相工质的湿度、压力和温度,汽流运动方向及速度等参数;稳态工况下仿真值误差均达到了仿真机精度要求;动
Simulation on steam system of the secondary loop of nuclear power plant is an important part of research of real-time, whole range, whole functional simulation of nuclear power plant. Dynamic simulation mathematic models for steam system of the secondary loop were established and validated in this paper. The main work and production of the paper are as follows,
    (1) Long diameter saturated steam pipes belong to active thermodynamic objects. Because steam in the pipes has humidity and volume inertia of the pipes is great, so two-phase fluid has violent mass and energy exchange and no-equilibrium thermodynamic process can happen in the pipes. Two-phase no-equilibrium tank model was established in the paper.
    (2) Short diameter saturated steam pipes belong to passive thermodynamic objects. Because of short diameter and fast flow of fluid, effect between the two-phase fluids can be ignored. Single-phase compressible fluid network model for the objects was established in the paper.
    (3) Heat evolution correction method for node of the saturated steam network was put forward, which can be used for simulation for large-scale steam network of nuclear power plant.
    (4) After analyzing the no-equilibrium characteristic of wet steam in turbine, author put forward that flow in cascade can be divided into two steps: no-saturated steam flow in cascade run and flow through oblique shock after cascades. A dynamic simulation mathematic model consisted of conservation equations of mass, momentum, energy, superheat steam equation, pressure drop equation, two-phase flows equations and relations before and after oblique shock. The model is a non-linear coupled equation.
引文
[1] W.里西等著.张禄庆等译.核电厂.原子能出版社,1996.
    [2] 吕崇德,任挺进,蒋学智,程芳珍著.大型火电机组系统仿真与建模.北京:清华大学出版社,2002.
    [3] 吴重光编著.仿真技术.北京:化学工业出版社,2000.
    [4] 于明义.船舶核动力装置蒸汽轮机系统数模混合实时仿真.上海交通大学硕士学位论文.1993.
    [5] 唐世林编著.电站计算机仿真技术.北京:科学出版社,1996.
    [6] 侯小刚主编.热电站仿真机及运行.南京:东南大学出版社,2003.
    [7] 韩璞,刘长良,李长青编.火电站仿真机原理及应用.天津:天津科学技术出版社,1998.
    [8] 葛斌.可压缩流体网络技术在电站仿真系统中的应用.动力工程.2002(6):2119-2122页
    [9] 肖章权,高孝洪.轮机系统仿真中流体网络方法的研究.武汉交通科技大学学报.1998(6):597-601页
    [10] 倪维斗,苟建兵,孙忻.热动力系统流体网络及算法处理.系统仿真学报.1997(3):78-82页.
    [11] 张帆,胡念苏.火电厂热系统通用建模技术研究.华中电力.2000(1):19-22页.
    [12] 朱伟,蒋滋康,程芳珍,赵建.汽轮机本体分段式通用模块化建模与仿真.热能动力工程.2000(3):278-280,293页
    [13] 胥建群,曹祖庆.汽轮机实时仿真数学模型.热能动力工程.1996(6):379-384页
    [14] 徐向东,朱为民,沈来宏,张宏光.600MW核电汽轮机数学模型及仿真.汽轮机技术.1991(5):6-12页[15] 于明义,黄善衡,翁史烈.核蒸汽轮机系统数模混合实时仿真.热能动力工程.1997(6):434-437页
    [16] 赵晓宇.秦山300MW核电机组全范围仿真机主蒸汽及给水系统仿真.核动力工程.1996(2):161-167页
    [17] 曹祖庆编著.汽轮机变工况特性.北京:水利电力出版社,1991.
    [18] 葛斌.电厂主蒸汽系统实时仿真数学模型.中国电力.2002(12):51-53页
    [19] 崔大龙,李政,江宁,倪维斗.核电汽轮机热力系统的主导因素变工况建模方法研究.核动力工程.2003(6):521-525页
    [20] 苏明.热力系统仿真中处理小容积环节的新方法.上海交通大学学报.1998(4):11-13页
    [21] 苏明,翁史烈.大型汽轮机的模块化仿真建模.系统仿真学报.1998(3):30-34页
    [22] 王扬,光卫编.现代火力发电机组仿真机技术.北京:科学出版社,1993.
    [23] 倪维斗,徐向东,李政编著.热动力系统建模与控制的若干问题.北京:科学出版社,1996.
    [24] 于明义,翁史烈.核蒸汽轮机再热器的动态模型.上海铁道大学学报.1998(5):1-6页
    [25] 华东六省一市电机工程(电力)学会编.汽轮机设备及其系统.北京:中国电力出版社,2000.
    [26] T.S. Kim, H.J. Park, S.T. Ro. Characteristics of transient operation of a dual-pressure bottoming system for the combined cycle power plant. Energy, 2001, 26(2): 905-918P.
    [27] 麻林巍,李政,倪维斗,高爱华.考虑水膜闪蒸的核电汽轮机甩负荷动态特性的研究.动力工程.2002(4):1668-1673页
    [28] 廖瑛,梁加红,姚新宇等编著.实时仿真理论与支撑技术.长沙:国??防科技大学出版社,2002.
    [29] 俞冀阳,贾宝山.反应堆热工水力学.北京:清华大学出版社,2002
    [30] 老大中,杨策,蒋滋康.火电厂仿真动态数学模型计算方法研究.热能动力工程.1999(5):208-211页
    [31] 老大中,蒋滋康,杨策,武晋辉.电站仿真动态数学模型解的动态因子方法.发电设备.1997(10):26-30页
    [32] 老大中,杨策,闫永军,王惠军,蒋滋康.动态数学模型算法研究.计算机仿真.2003(3):27-29页
    [33] 老大中,杨策,孙智杰,蒋滋康.系统仿真动态数学模型的算法研究.系统仿真学报.2003(1):104-112页
    [34] 于瑞侠,张志俭,贾斗南,张金玲编.核动力汽轮机.哈尔滨:哈尔滨工程大学出版社,2000.
    [35] 李庆阳,莫孜中,祁立群著.非线性方程组的数值解法.北京:科学出版社,1997.
    [36] 蔡颐年编著.蒸汽轮机.西安:西安交通大学出版社,1998.
    [37] 林宗虎等编著.气液两相流和沸腾传热.西安:西安交通大学出版社,2003.
    [38] 基里霍夫著.马宝珊,张卓澄译.透平机械原理.机械工业出版社,1982.
    [39] 王仲奇,秦仁编著.透平机械原理(修订版).北京:机械工业出版社,1991.
    [40] S.C.Kacker, U.Okapuu. A mean line prediction method for axial flow turbine efficiency. Journal of engineering for power. 1982,1: 104-111P
    [41] 刘顺隆编.船舶涡轮机原理.哈尔滨:哈尔滨船舶工程学院出版社,1990.
    [42] Ainley, D.G., Mathiesong, G. C.R.. A method of performance estimation for axial flow turbines. British ARC, R&M 2974,1951[43] J.Dunham, P.M.Came. Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction. Journal of Engineering for Power, 1970, 252-256P
    [44] Okapuu, U.. Some results from tests on a high work axial gas generator turbine. ASME Paper No. 74-GT-81, Apr. 1974
    [45] 翦天聪编著.汽轮机原理.北京:水利电力出版社,1990.
    [46] 沈士一编著.汽轮机原理.北京:中国电力出版社,1998.
    [47] Friedel L. Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. European two-phase flow group meeting, Ispra, Italy, 1979, E2
    [48] Joseph H. Keenan, Frederick G. Keys, Philip G. Hill, and Joan G. Moore, Steam tables, John Wiley and Sons, New York, N.Y., 1978.
    [49] 濮继龙编著.压水堆核电厂安全与事故对策.北京:原子能出版社,1995.
    [50] Thom. J. R. S. Int. J. Heat Mass Transfer. 1964, 709-724
    [51] 英国中央电业研究实验室,比利时冯·卡门流体力学研究所编;蔡颐年译.透平和分离中的双相流.北京:机械工业出版社,1983.
    [52] 张春发,崔映红,杨文滨,张德成,宋之平.汽轮机组临界状态判别定理及改进型Flugel公式.中国科学(E辑).2003(3):264-272页
    [53] 曹祖庆编著.汽轮机调节动态特性.南京:东南大学出版社,1991.
    [54] 潘文全编著.工程流体力学.北京:清华大学出版社,1987.
    [55] 康松,杨建明,胥建群编著.汽轮机原理.北京:中国电力出版社,2000.
    [56] 翁史烈主编.数模混合仿真及其应用.上海:上海科学技术出版社,1991.
    [57] 鲁钟琪编著.两相流与沸腾传热.北京:清华大学出版社,2002.
    [58] 陈国军,曾凡明编著.现代舰船轮机工程.长沙:国防科技大学出版社,2000.[59] 刘德贵,费景高,于永江,李广源编.FORTRAN算法汇编.长沙:国防科技大学出版社,1980.
    [60] 葛斌.压水堆核电机组全仿真系统建模与分析.东南大学学报.1999(4):144-148页
    [61] 葛斌,吴毅.压水堆机组二回路热力系统实时仿真研究.中国电机工程学报.2002(6):142-145页.
    [62] 陈捷.秦山核电站300MW机组全范围仿真机.中国电力.1998(4):22-25页
    [63] 郑燕.汽轮机压力-流量通道动态数学模型的建立.发电设备.2003(3):11-13页
    [64] 李运泽,杨献勇.汽轮机的长期动态模型与仿真.清华大学学报(自然科学版).2003(2):281-284页
    [65] 于达仁,阎志刚,楼安平.核电站汽轮机数学模型.核动力工程.1999(1):76-78页
    [66] 于达仁,赵宏,武国贤.600MW汽轮发电机组甩负荷计算.汽轮机技术.1996(2):99-102页
    [67] 张荻,孙弼,李思奇.不平衡流动效应对透平叶栅的湿蒸汽绕流特性的影响.汽轮机技术.1997(3):289-292页
    [68] 刘伟,陈跃庭.非平衡湿蒸汽流动的透平级计算.汽轮机技术.1992(5):46-55页
    [69] 张冬阳,蔡虎,蒋洪德.蒸汽凝结对透平流动和几何参数的影响.汽轮机技术.1999(6):339-341页
    [70] Dwarakanath.M.H, Dembart.B, Erisman.A.M. A generalized methodology for modeling system components in power system dynamics simulation. IEEE Trans on Power Apparatus and systems, 1982, 101(1): 136-146P.
    [71] S.P. Mavromatisl, A.C. Kokossis. A logic based model for the analysis and optimisation of steam turbine networks. Computers in Industry. 1998,36:??165-179P
    [72] Takanobu Watanabe, Goung Jin Lee, Takashi Iseki, Mamoru Ishii. A mechanistic model for the analysis of flashing phenomena. Ann. Nucl. Energy, 1996,23(10): 801-811P
    [73] Wageeh Sidrak Bassel, Arivaldo Vicente Gomes. A metastable wet steam turbine stage model. Nuclear Engineering and Design. 2002, 216:113-119P
    [74] Paul von Heiroth, Jan-Olof Gustafsson, Torbjorn Lindquist. A model of an evaporative cycle for heat and power production. Energy Conversion & Management. 1999(40): 1701-1711 P
    [75] C. Tribbe, H.M. Muller-Steinhagen. An evaluation of the performance of phenomenological models for predicting pressure gradient during gas-liquid fow in horizontal pipelines. International Journal of Multiphase Flow 2000(26): 1019-1036P
    [76] Jeong Seob Shin, Moo Hwan Kim. An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique. International Journal of Multiphase Flow 2004(30): 311-325P
    [77] J.Y. Shin, Y.J. Jeon, D.J. Maeng, J.S. Kim, S.T. Ro. Analysis of the dynamic characteristics of a combined-cycle power plant. Energy. 2002, 27: 1085-1098P
    [78] Vindod Krishina, P.B.Sharma, A study of transients in turbine heat rate of a thermal power plant. Energy Convers,1990,30(2): 187-202P
    [79] St.Korner, L.Friedel. Assessment of the maximum possible liquid superheat during flashing leak flow. J. Loss Process ind. 1997,10(5-6):345-350P
    [80] E.C. Verkerk , J.F. Kikstra. Comparison of two models for a high temperature reactor coupled to a gas turbine. Nuclear Engineering and Design. 2003, 220: 51-65 P
    [81] G.P. Greyvenstein, P.G. Rousseau. Design of a physical model of thePBMR with the aid of Flownet. Nuclear Engineering and Design 222 (2003) 203-213P
    
    [82] Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies. Dynamic models for fossil fueled steam units in power system studies. IEEE Trans on Power Systems, 1991, 6(2): 753-761P.
    
    [83] IEEE Committee. Dynamic models for steam and hydro turbines in power system studies. IEEE Trans on Power Apparatus and Systems, 1973, 92(6): 1904-1914P.
    
    [84] Lu.S, Hogg.B. Dynamic nonlinear modeling of power plant by physical principles and neural net works. Electrical Power and Energy Systems, 2000, 22(1): 67-78P.
    
    [85] L. Belle, P. Downar-Zapolski, J. France, J.M. Seynhaeve. Experimental and theoretical analysis of flashing water flow through a safety valve. Journal of Hazardous Materials. 1996(46): 105-116P.
    [86] Gursel Cinar, Bekir Sami Yilbas. Experimental study into droplet formation in steam flows. Applied Scientific Research. 1998, 59: 1-9P
    [87] K.A. Triplett, S.M. Ghiasian, S.I. Abdel-Khalik, A. LeMouel, B.N. McCord. Gas-liquid two-phase flow in microchanels Part II: void fraction and pressure drop. International Journal of Multiphase Flow. 1999, 25: 395-410P
    
    [88] L. Friedel, N.-J. Kranz, T. Lenzing and F. Westphal. Impact of the reproduction accuracy of the fluid properties on formulations of the homogeneous equilibrium critical mass flow rate model. J. Loss Prev. Process Ind. 1997,10(1): 43-53P
    
    [89] Okapuu, U.. Limit load and supersonic drag rise of transonic turbine cascade. Pratt & Whitney Aircraft of Canade, Internal Memo, July, 1974
    [90] Craig.H.R.M., Cox.H.J.A.. Performance estimate of axial flow turbine. Proceedings of the Institution of Mechanical Engineers, 1971, 185 (32): 407-424P
    [91] Vani.K, Anjan.B, Paul.M. Power plant models for operator training simulations. IEEE Trans on Power Systems, 1989,4(2): 559-565P.
    
    [92] M. Fossa, G. Guglielmini. Pressure drop and void fraction profiles during horizontal flow through thin and thick orifices. Experimental Thermal and Fluid Science. 2002(26): 513-523P.
    
    [93] C.V. Kameswara Rao, K. Eswaran. Pressure transients in incompressible fluid pipeline networks. Nuclear Engineering and Design. 1999(188): 1-11P.
    [94] D.GGregory-Smith. Secondary Flows and Losses in Axial Flow Turbines. Journal of Engineering for Power, 1982,104:819-822P
    
    [95] J.H.Choi, M.Y.Ohn, N.H.Lee, S.T.Hwang, S.K.Lee. The effect of steam separator efficiency on transient following a steam line break. Ann. Nucl. Energy. 1996,23(15): 1209-1218P
    
    [96] Alejandro Zaleta-Aguilar, Luis F.Vega, Armando Gallegos-Munoz, Abel Hernandez-Gyerrero. Thermodynamic characterization of the power loss factor in steam turbines. Energy Conversion and Management, 2001.
    [97] Robert Latorre, Zisimos Mourelatos, Efstrations Nikolaidis, Theory and Application of Stage-by-stage Evaluation for Steam Turbine State-Line. Journal of Ship Research, 1984,28(4):240-260P
    
    [98] J. Schmidt, L. Friedel. Two-phase pressure drop across sudden contractions in duct areas. Int. J. Multiphase Flow. 1997, 23(2): 283-299P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700