用户名: 密码: 验证码:
压水堆核电机组一回路系统建模与智能参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于核电站运行十分复杂,且核能应用中可控裂变反应本身具有一定的风险性,一旦由于设备、系统失效、操作失误等原因导致泄漏,将可能会带来毁灭性的灾难,而运行人员核电站仿真机的培训对保证核电机组的安全经济运行具有重大的实际效果。随着高精度实时仿真机的纵深发展,大型核电机组的建模仿真与智能参数优化的研究显得尤为重要。
     本文利用机理分析、神经网络、流体网络等建模方法,分别从压水反应堆建模、冷却剂系统建模、核电一回路整体建模与仿真、模型参数优化等四方面进行了研究。主要内容包括:
     (1)建立了神经网络与机理分析相结合的反应堆混合计算模型。针对反应性计算模块,提出了一种应用神经网络实现控制棒负反应性、多普勒效应、慢化剂温度效应、溶解硼产生的负反应性的估算的方法,测试结果表明测试输出与目标值符合良好;建立了采用差分瞬跳法的中子通量计算模型、堆芯热功率及堆芯热传递的计算模型等。
     (2)建立了反应堆冷却剂系统各组成设备的机理模型。通过机理分析,建立了立式U型管自然循环蒸汽发生器两相动态数学模型;通过分析稳压器运行特性,建立了两相动态非平衡稳压器机理模型;通过流体网络的方法建立了冷却剂泵的数学模型。
     (3)以某900MW压水堆核电机组为例,编制了压水堆核电机组一回路系统各组成设备的模型算法并进行仿真分析,结果表明各模型参数变化趋势符合理论分析,证明了所建各个子模块本身合理性。通过模块搭接的方法建立了核电机组一回路整体模型,仿真结果表明所建模型稳态误差较小,动态特性符合理论分析,验证了所建核电机组一回路整体模型的正确性。
     (4)为提高模型精度,采用智能优化算法对模型中较难确定的参数进行优化。为了提高QPSO算法的收敛速度和寻优精度,提出了一种高速收敛QPSO算法(HSCQPSO)。应用国际标准函数进行测试,结果表明:在多数函数优化问题中,本文算法的收敛速度和寻优精度均取得了良好的效果。利用本文提出的算法对两相动态稳压器机理模型进行了参数优化,有效提高了模型精度,效果显著。结合本文建立的稳压器机理模型的基础上,设计了稳压器压力控制系统,同时应用本文提出算法优化控制器参数,仿真结果表明了本文提出算法具有较好的效果。
     针对上述内容研究的过程中,取得了一定的创新性成果:
     (1)提出了一种应用神经网络实现控制棒负反应性、多普勒效应、慢化剂温度效应、溶解硼产生的负反应性的估算的方法并建立了神经网络与机理分析结合的反应堆混合计算模型。
     (2)基于MATLAB通用平台,建立了900MW级压水堆核电站一回路系统的简化仿真模型,仿真验证表明稳态误差较小,动态特性合理。
     (3)提出了一种高速收敛量子粒子群优化(HSCQPSO)算法,并应用于两相动态稳压器机理模型进行了参数优化,有效提高了模型精度,效果显著。
     (4)设计了内模-PID稳压器压力控制系统,并应用本文提出HSCQPSO算法优化控制器参数,仿真结果表明本文设计的稳压器压力控制系统具有较强的鲁棒性和较好的调节品质。
The devastating disaster will be happened because of leakage, which caused by the failure equipment or system and operating miss of nuclear power unit, because the nuclear power plant operation is very complex, and the application in fission reaction itself has some risk. However simulator training of operators has the serious practical effect of safety and economic operation of nuclear power plants. With the development of high precision real time simulation machine, it is very important for large-scale nuclear power generating units to research system modeling, simulation and intelligent parameters optimization. Pressure water reactor modeling, coolant system modeling, modeling and simulation of nuclear power plant primary loop, and model parameter optimization were researched in this paper, using mechanism analysis method, neural network method, fluid network modeling method and so on. The main innovative achievements are:
     (1) The reactor mixed calculation model based on the combination of neural network and mechanism analysis was set up. In the model of reactive module, we used neural network to realize the reactivity estimation of control rod negative reactivity, Doppler effect, moderator temperature effect, dissolved boron negative reaction. The test results indicated that the satisfactory effects are achieved. Though mechanism analysis, we built the reactor core thermal power calculation model, core heat transfer model and neutron flux by the method of divided instantaneous.
     (2) All the components mechanism models of the reactor coolant system were established. Through mechanism analysis, the dynamic mathematical model of two-phase natural circulation steam generator with vertical U-shaped tubes were built; by analyzing the characteristics of pressurizer, a two-phase dynamic non equilibrium pressurizer model was built; finally mathematical model of coolant pump was set up by using the method of fluid network.
     (3) All the component models of primary loop system of PWR nuclear power unit, such as reactor, steam generator, reactor coolant pump and pressurizer, were programmed into algorithms and simulated, taking a900MW PWR nuclear power unit as an example. The simulation results indicated that the trend of model parameters accords with the theoretical analysis, so the rationality of each sub module itself was proved. Depending on those models discussed above, the integral model of primary loop in nuclear power unit was finally established by module overlap method; the correctness of which was verified though analyzing the steady-state and dynamic characteristics.
     (4) To improve the accuracy of the model, the parameters which were difficult to determine were optimized with intelligent optimization algorithms. In order to improve the convergence speed and the optimization accuracy of QPSO algorithm, a new improved high speed convergence QPSO algorithm (HSCQPSO) was set up. The test results of international standard function indicated that:the convergence speed and the optimization accuracy of this algorithm were satisfied in most function optimization problems. The HSCQPSO algorithm was applied to optimize the parameters of two-phase dynamic pressurizer mechanism model, and improved the model accuracy effectively. Depending on the accurate model established in this paper, we designed pressure control system of pressurizer, and optimized the controller parameters using HSCQPSO algorithm in addition. The simulation results show that the proposed algorithm has better effect.
     Some innovative achievements are obtained, there are:
     (1) A method for realizing the reactivity estimation of control rod negative reactivity, Doppler effect, moderator temperature effect, dissolved boron negative reaction used neural network was realized, and calculation model combined mechanism analysis with reactor was proposed.
     (2) The integral model of primary loop in nuclear power unit was established based on Matlab, it has small steady-state error and reasonable dynamic characteristics.
     (3) A new improved high speed convergence QPSO algorithm (HSCQPSO) was set up, and was applied to parameters optimization of pressurizer.
     (4) An IMC-PID controller pressure was designed for pressure system of pressurizer, and optimized the controller parameters using HSCQPSO algorithm. The simulation results show that the proposed algorithm has better effect.
引文
[1]Tong L S, Weisman J.Thermal Analysis of Pressurized Water Reactors. ANS, 1979:1-5.
    [2]苏林森,杨玉辉等.900MW压水堆核电站系统与设备[M].北京:原子能出版社,1989:3-7.
    [3]张锐平,张雪,张禄庆.世界核电主要堆型技术沿革[J].中国核电,2009,2(1):85-89.
    [4]张禄庆.第三代核电技术在中国核电发展中的作用[J].国防科技工业,2007,1(5):35-37.
    [5]臧希年.核电厂系统及设备[M].北京,清华大学出版社,2010:1-4.
    [6]沈文权.中国核电工业可持续发展的战略思考[J].中国能源,2005,27(7):5-79.
    [7]马进,王兵树,马永光.核能发电原理[M].北京:中国电力出版社,2007:1-5.
    [8]肖新建,高世宪,韩文科.我国核电实现跨越式发展的优势、挑战和建议[J].中国能源,2009,31(3):5-9.
    [9]孔诏育等译.核电厂培训教程[M].北京:原子能出版社,1992.
    [10]国家核安全局.用于沸水堆、压水堆和压力管式反应堆得安全功能和部件分级[M].北京:原子能出版社,1996:5-9.
    [11]马进.基于遗传算法和神经网络的锅炉汽水系统模型参数优化[D].保定:华北电力大学博士学位论文,2010.
    [12]Li Xiong, Dichen Liu, Bo Wang, Ping Wu, Jie Zhao, Xi Shi. Dynamic characteristics analyse of pressurized water reactor Nuclear Power plant based on PSASP. Industrial Electronics and Applications,2009,13(2):3629-3634.
    [13]郑斌,石俊英.机组从100%满功率甩负荷到厂用电运行的核电站瞬态分析[J].核动力工程,2001,22(5):385-389.
    [14]黄宇.基于量子计算的热工过程辨识研究及应用[D].保定:华北电力大学博士学位论文,2012.
    [15]傅龙舟.核反应堆控制[M].北京:原子能出版社,1995.
    [16]肖红,王侃.求解点堆动态方程的IGear方法[J].核科学与工程.2008,28:107-119.
    [17]黄祖洽.核反应堆动力学基础[M].北京:原子能出版社,1983.
    [18]黎浩峰,陈文振.用高阶泰勒多项式积分方法求解点堆中子动力学方程[J].原子能科学技术.2008,42:162-168.
    [19]Aboanber A E. On Pad6 Approximations to the Exponential Function and Application to the Point Kinetics Equations [J]. Progress in Nuclear Energy, 2004,44(4):347-368.
    [20]Aboanber, A.E., Nahla, A.A.,2004. On Pade approximations to the exponential function and application to the point kinetics equations. Prog. Nucl. Energy 44(4):347-368.
    [21]蔡章生.核动力反应堆中子动力学[M].北京:国防工业出版社,2005.
    [22]谢仲生,张育曼.核反应堆物理数值计算[M].北京:原子能出版社,1997.
    [23]Singer Company. Final Design Specification (RCS).1973.
    [24]Benaissa B, William RM. Transient Analysis of the Three Mile Island Unit 2 Pressurizer System. Nuclear Technology,1983,62(2):159.
    [25]MA Jin, LI Yongling, Huang Yu, WANG Bingshu, Chan Afang. Mechanism Model and Simulation of Pressurizer in the Pressurized Water Reactor Nuclear Power Plant. Proceedings of the 30th Chinese Control Conference(CCC2011), 1538-1543.
    [26]AbdaUah M. ABDALLAH, Ahmed H. MARIY, Mohammad A. RABiE. PRESSURIZER TRANSIF2qTS DYNAMIC MODEL, Nuclear engineering and design,1982,73:4147-453.
    [27]Nahavandi AN, Makkenchery S. An Improved Pressurizer Model with Bubble Rise and Condensate Drop Dynamics. Nuclear Engineering and Design, 1970,12:135.
    [28]崔震华,贾斗南,陈学俊.U型管蒸汽发生器模型化与动态仿真[J].核科学与工程,1992,12(3):213-220
    [29]王伟伟,苏光辉等.基于多区非平衡模型的稳压器动态仿真与验证[J],原子能科学技术,2012,46(3):310-315.
    [30]袁建东,夏国青,付明玉.一体化压水堆动态特性的仿真研究[J],核动力工程,2005,26(1):35-50.
    [31]杨晨,唐胜利,何祖威等.一种两相流动态数学模型的建模方法及应用[J],发电设备,1990,3:11-15.
    [32]Irving E, Miossec C, Tassart J. Toward Efficient Full Aromatic Operation of the PWR Steam Generator with Water Level Adaptive Control[C]. Proc.2nd Int. Conf. Boiler Dynamics and Control in Nuclear Power Stations 2, Bournemouth, Oct.1979:309-329.
    [33]张贵勤,单建强.整体式预热器U型管蒸汽发生器数学模型及动态模拟[J].核动力工程,1995,16(2):172-176.
    [34]展锦程.核电厂立式自然循环蒸汽发生器数学模型的建立[J].广东电力,2000,13(6):7-9.
    [35]杨晨, 唐胜利, 何祖威.U型管蒸汽发生器数学模型的建立及其仿真研究[J].系统仿真学报,1999,11(3):168-171.
    [36]张龙飞, 张大发.U型管蒸汽发生器模型及动态仿真[J].锅炉技术,2006,37(4):9-11.
    [37]宋京凯, 郭海红, 姚祺峰等.蒸汽发生器工作过程建模及仿真分析[J].核科学与工程,2007,27(1):27-31.
    [38]周世梁, 刘玉燕, 段锋.蒸汽发生器水位控制器的多目标GA和静态H。。回路成形优化设计[J].动力工程学报,2013,33(2):123-129.
    [39]师学明,吴宏春,孙寿华等.遗传算法在高通量工程试验堆燃料管理优化中的应用[J], 核动力工程,2003,24(4):317-322.
    [40]姜兴伟.遗传神经网络在蒸汽发生器故障诊断中的应用研究[D].哈尔滨:哈尔滨工程大学,2004.
    [41]丁国良, 张春路, 李灏等.制冷空调装置智能仿真方法研究初探.制冷学报,1998,(2),10-14.
    [42]黄宇,韩璞,刘长良.改进量子粒子群算法及其在系统辨识中的应用[J],中国电机工程学报,2011,31(20):114-120.
    [43]Fengqi Si, Carlos E. Romero, Zheng Yao, etc. Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms.Fuel,2009,88(5):806-816.
    [44]白泉,李政,倪维斗等.计算机代数在热动力系统建模与仿真中的应用[J],动力工程,2001,21(5):1469-1473.
    [45]白泉,李政,倪维斗.气化炉自动建模系统研究[J],动力工程,2002,22(6):2088-2092.
    [46]王耀南, 宋明.复杂工业系统的广义知识模型与智能建模[J],中南工业大学学报(自然科学版),2003,23(4):335-340.
    [47]Ali Chaibakhsh, Ali Ghaffari, S. Ali A. Moosavian. A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms.Simulation Modeling Practice and Theory,2007,15(9): 1029-1051.
    [48]Ali Chaibakhsh, Ali Ghaffari. Steam turbine model. Simulation Modeling Practice and Theory,2008,16(9):1145-1162.
    [49]Yasser A. Hussein, Samir M. E1-Ghazaly. Modeling and Optimization of Microwave Devices and Loops Using Genetic Algorithms. IEEE Transactions on Microwave Theory and Techniques,2004,52(1):329-336.
    [50]Valceres V.R. Silva, Wael Khatib, Peter J. Fleming. Performance optimization of gas turbine engine. Engineering Applications of Artificial Intelligence,2005, 18(5):575-583.
    [51]L. Elliott, D.B. Ingham, A.G. Kyne, etc. Genetic algorithms for optimization of chemical kinetics reaction mechanisms. Progress in Energy and Combustion Science,2004,30(3):297-328.
    [52]Mustafa Golcu. Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade. Energy Conversion and Management,2006,47(18-19):3333-3343.
    [53]A. Garg, P.S. Sastry, M. Pandey, etc. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor. Nuclear Engineering and Design,2007,237(3):230-239.
    [54]Chin-chia Hsua, Chih-hung Wub, Shih-chien Chenc, etc. Dynamically Optimizing Parameters in Support Vector Regression:An Application of Electricity Load Forecasting. Proceedings of the 39th Hawaii Conference on System Sciences,2006, (2):300-309.
    [55]M.Marseguerra, E.Zio, F. Cadini. Genetic algorithm optimization of a model-free fuzzy control system. Annals of Nuclear Energy,2005,32(7): 712-728.
    [56]濮继龙.900MW压水堆核电站培训系列教材高级运行(上册)[M].深圳:大亚湾核电站培训中心,1998.
    [57]范军丽.结合神经网络的核电站一回路机理模型的研究[D].保定:华北电力大学硕士学位论文,2012.
    [58]广东核电培训中心.900MW压水堆核电站系统与设备(上册)[M].北京:原子能出版社,2004:48-52.
    [59]Shan Jiang, Christopher C Pain, Jonathan N Carter, Ahmet K Ziver, Matthew D Eaton, Anthony J H Goddard, Simon J Franklin, Heather J Phillips. Based on feed-forward artificial neural network to estimate reactivity of the nuclear reactor [J], Foreign Nuclear Power, No.6,2009:23-28.
    [60]J.L.Tyran, Saillard, J.P.Grelier.神经网络在压水堆控制棒刻度及轴向功率分布预测中的应用[J].国外核动力,1997,(2):24-29.
    [61]李凤宇,张大发,陆古兵,杨仕本.基于神经网络的反应堆物理启动中的反 应性辨识[J].核技术,2007,30(1):78-80.
    [62]宋梅村,蔡琦.基于BP神经网络的反应堆功率预测[J].原子能科学技术,2011,45(10):1242-1246.
    [63]Lv Lixia, Fan Junli. Realization of BP Neural Network Based on Matlab Toolbox[C]. The 4th International Workshop on Intelligent Information Management Systems and Technology (IIMST2011),2011,7(6):719-723
    [64]Saleem A. Ansari, Development of on-line reactivity meter for nuclear reactors[C], IEEE Transactions on Nuclear Science,1991,38(4):946-952
    [65]高明明.结合神经网络的压水堆堆芯动态模型的研究[D].保定:华北电力大学硕士学位论文,2012.
    [66]张建民.核反应堆控制[M].西安:西安交通大学出版社,2002:67-75.
    [67]彭钢,李冬生.一体化先进压水堆小型核电站堆芯燃料管理设计.核动力工程,2008,29(2):39-42.
    [68]臧希年.核电厂系统及设备[M].北京:清华大学出版社,2010:25-27.
    [69]蒸汽发生器编写组.蒸汽发生器[M].北京:原子能出版社,1982.
    [70]Juhani Hyvarinen. Heat Transfer Characteristics of Horizontal Steam Genera-tor Steam Generators under Natural Circulation Conditions[J], Nuclear Eng-ineering and design 166,1996:191-223.
    [71]广东核电培训中心.900MW压水堆核电站系统与设备(上册)[M].北京:原子能出版社,2004:87-97.
    [72]臧希年,郭跃武.核电厂模拟器稳压器数学模型的研究[J],原子能科学技术,1993,27(5):55-61.
    [73]缠阿芳.压水堆核电站U型管蒸汽发生器建模与仿真[D].保定:华北电力大学,2012:19-33.
    [74]华北电力大学仿控所.过程算法.华北电力大学仿控所,1993:169-171.
    [75]广东核电培训中心.900MW压水堆核电站系统与设备(上册)[M].北京:原子能出版社,2004:98-106.
    [76]常喜茂,于荣生,高建强等.STAR-90仿真支撑系统流体网络仿真模型的自动生成[J].现代电力,1999,16(2):48-54.
    [77]葛斌.可压缩流体网络技术在电站仿真系统中的应用[J].动力工程,2002,22(06):2119-2122.
    [78]崔凝,赵文升,张聪师等.基于流体网络技术的汽轮机级组动态模型的研究与应用[J].汽轮机技术,2006,48(03):203-205.
    [79]蔡瑞忠,王威,吕崇德.基于流体网络模块的模块化建模方法[J].清华大学学报(自然科学版),1999,39(12):62-64.
    [80]蔡瑞忠,高琪瑞,谢茂清.流体网络模块化图形建模软件FLOWNET在600MW仿真机中的应用[J].系统仿真学报.1997(6):106-110.
    [81]广东核电培训中心.900MW压水堆核电站系统与设备(上册)[M].北京:原子能出版社,2004:109-117.
    [82]朱继洲主编.压水堆核电厂的运行[M].北京:原子能出版社,2008:47-51
    [83]任德曦王成孝.核工业经济导论[M].北京:原子能出版社,1992.
    [84]刘全印.核电站稳压器电热元件与套管焊接技术[J].压力容器,2009,26(1):53-56.
    [85]崔震华,贾斗南,俞尔俊.稳压器的模型化与仿真[J].核动力工程,1993,14(3):205-212.
    [86]Redfield J A. Pressurizer Performance During Loss of Load Test at Shippingport. Analysis and Test[J]. Nuclear Application,1986,4:173.
    [87]Baron R.C. Digital Simulation of a Nuclear Pressurizer [J]. Nuclear Science and Engineering,1982,73:447.
    [88]Seung Min Baek, Hee Cheon. No. A Nonequilibrium Three-Region Model for Transient Analysis of pressurized Water Pressurizer [J]. Nuclear Technology,1986,74:260.
    [89]尤洪君,崔震华,程轶平.核动力稳压器多区非平衡模型[J].核动力工程,2001,22(4):133-137.
    [90]马进,刘长良,李淑娜.稳压器压力水位控制系统建模与仿真[J].核科学与工程,2010,30(01):9-14.
    [91]秦树人,尹爱军,刘小峰.现代虚拟仪器[M],北京:机械工业出版社,2011:132-135.
    [92]晏政,刘泽军,程玉强.航天器推进系统模块化建模方法[J],国防科技大学学报,2012,34(4):28-32.
    [93]周枫,肖民.基于Matlab/Simulink的柴油机系统模块化建模与仿真[J],船海工程,2012,41(1):52-56.
    [94]徐立,李庆民,李华.智能水雷引信模块化建模研究[J],水雷战与舰船防护,2012,20(2):1-6.
    [95]卢金盈.新型高性能电工材料应用特性建模的模块化设计[J],无线互联科技,2012(2):58-59.
    [96]朱建国.水轮发电机组的模块化建模与仿真[J],计算机仿真,2011,28(12):318-322.
    [97]肖灵机,戴爱明.复杂产品模块化与供应链协同研究[M],北京:人民出版社出版,2010:54-64.
    [98]孙喜龙.汽车被动安全性的模块化建模方法与多目标优化研究[D],吉林大学, 车辆工程,2013, 博士:41-42.
    [99]罗毅,曹华军,李洪丞等.基于GRNN网络的C02气体保护焊工艺碳排放建模与参数优化[J],中国机械工程,2013,24(17):2398-2402.
    [100]王秀英,柴天佑,郑秉霖.炼钢一连铸调度模型参数优化设定方法[J],系统工程学报,2011,26(4):531-537.
    [101]张天.活性污泥过程生物除磷模型参数的可识别性及优化估计[D].重庆:重庆大学博士学位论文,2011:86-98.
    [102]武海巍,于海业,张蕾.基于参数优化支持向量机的林下参净光合速率预测模型[J], 光谱学与光谱分析,2011,31(5):1414-1418.
    [103]孙纪伟.电路设计中组合模拟以及器件模型参数优化提取技术的研究[D],西安:西安电子科技大学博士学位论文,2010:11-39.
    [104]郝富昌.基于多物理场耦合的瓦斯抽采参数优化研究[D],北京:中国矿业大学博士学位论文,2012:62-80.
    [105]田华,张水昌,柳少波等.致密储层孔隙度测定参数优化[J],石油实验地质,2012,34(3):334-339.
    [106]项倩雯,孙玉坤,张新华.磁悬浮开关磁阻电机建模与参数优化设计[J],电机与控制学报,2011,15(4):74-79.
    [107]李少刚.地下互通立交隧道设计参数优化及施工技术研究[D],北京:北京交通大学博士学位论文,2011:93-134.
    [108]沈佳宁,孙俊,须文波.运用QPSO算法进行系统辨识的研究[J].计算机工程与应用,2009,45(9):67-70.
    [109]Zhang Zhi sheng. Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system [J]. Expert Systems with Applications, 2008,4(1):1800-1803.
    [110]李丽香,彭海朋,王向东,杨义先.基于混沌蚂蚁群算法的PID控制器的参数整定[J].仪器仪表学报,2006,27(9):1104-1106.
    [111]王银年.基于3PM交叉算子的退火遗传算法及应用研究[D].无锡:江南大学硕士士学位论文,2009:4-11
    [112]Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning[M]. NJ:Addison Wesley,1989:105-110.
    [113]Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of the IEEE international conference on neural networks, Perth, Australia,1995,4: 1942-1948.
    [114]田野.粒子群优化算法及其应用研究[D].吉林:吉林大学博士学位论文, 2010:12-14.
    [115]付海滨.粒子群算法的改进及其在自抗扰控制器参数优化中的应用[D].长沙:湖南大学硕士学位论文,2012:19-25.
    [116]迟玉红,孙富春,王维军等.基于空间缩放和吸引子的粒子群优化算法[J].计算机学报,2011,34(1):115-129.
    [117]吴昌友,王福林,董志贵,等.改进粒子群优化算法在电力负荷组合预测模型中的应用[J].电网技术,2009,33(2):27-30.
    [118]张旭辉,张礼勇,梁宵.基于改进粒子群优化算法的电力线通信多径传输模型参数辨识[J].电网技术,2009,33(1):75-79.
    [119]黄泽霞,俞攸红,黄德才.惯性权自适应调整的量子粒子群优化算法[J].上海交通大学学报,2012,46(2):228-232.
    [120]刘自发,张伟,王泽黎.基于量子粒子群优化算法的城市电动汽车充电站优化布局[J].中国电机工程学报,2012,32(22):39-45.
    [121]吕强,陈如清,俞金寿.量子连续粒子群优化算法及其应用[J].系统工程理论与实践,2008,24(5):122-130.
    [122]张智晟,董存,吴新振.基于量子粒子群优化算法的水电系统经济运行[J].电网技术,2009,33(18):68-72.
    [123]李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报,2007,24(5):569-574.
    [124]Bipul Luitel, Ganesh Kumar Venayagamoorthy. Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems [J]. Neural Networks,2010,23 (5):583-586.
    [125]王子杰,黄宇,韩璞,王东风.循环流化床汽温系统自抗扰控制器优化设计[J].动力工程学报,2010,30(1):31-35.
    [126]肖健梅,李军军,王锡淮.梯度微粒群优化算法及其收敛性分析[J].控制与决策,2009,24(4):560-564.
    [127]Norman N, Iba H. Acceleration differential evolution using an adaptive local search. IEEE Trans. On Evolutionary Compution,2008,12(1):107-125.
    [128]Fan S K S, Zahara E. A hybrid simplex sedrch and particle swarm optimization for unconstrained optimization. European J of Operational Research,2007, 181(2):527-548.
    [129]王凌,钱斌.混合差分进化与调度算法[M].北京:清华大学出版社,2012,65-75.
    [130]李永玲,马进,黄宇等.基于遗传算法的压水堆核电一回路稳压器机理建模与仿真[J].核科学与工程,2012,32(3):212-218.
    [131]张光新.稳压器压力控制系统功能要求[M].上海核工程研究设计院,2010:1-2.
    [132]于涛,张卫东.稳压器压力调节控制器动态特性的微机仿真[J].核电子学与探测技术,2002,22(6):527-529.
    [133]周法清,张琴舜.稳压器压力调节系统动态特性研究及PID参数整定[J].核动力工程,1993,14(4):355-360.
    [134]瞿小龙,张乃尧,贾宝山,崔震华.采用典型模糊控制器实现压水堆稳压器的综合控制[J].核动力工程,2005,26(2):163-166.
    [135]郑明光.稳压器压力控制系统动态仿真[J].核动力工程,1995,16(5):424-431.
    [136]黄宇,韩璞,李永玲.主汽温系统模糊自适应内模控制[J].中国电机工程学报,2008,28(23):93-98.
    [137]陆平,赵捷,郭鹏.模糊内模PID控制及应用[J].自动化仪表,2012,33(3):50-52.
    [138]李永玲,黄宇,马进,王兵树.核电稳压器内模PID优化控制[J].动力工程学报,2013,33(11):858-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700