用户名: 密码: 验证码:
沥青路面面层双层一体摊铺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面双层一体摊铺技术是将两层沥青混合料同时摊铺,一体完成碾压的新型施工技术,与传统的单层铺筑相比,该技术具有改善层间粘状况、减少摊铺过程中温度散失、节省施工时间、优化路面结构、节约建设费用等优点。同时也应看到,国内外关于该技术的研究较少,对于双层摊铺层间粘结强度、温度散失速率、合理压实以及平整度控制等方面问题缺乏系统研究,这些都制约了该技术在我国的推广应用。
     针对上述问题本文主要开展了以下研究工作:(1)系统研究了双层摊铺层间粘结强度的影响因素,对100℃、120℃、140℃、160℃下层间粒料嵌入深度进行研究;(2)通过室内及现场试验,对比分析传统与双层摊铺层间粘结状况,与传统摊铺相比双层摊铺抗剪切强度提高31.7%~59.5%,抗拉拔强度提高26.7%~78.5%,并建立了基于脱层失效理论的有限元模型,对层间强度进行预估;(3)对比分析了不同施工工艺下路面2cm、5cm深度处温度散失规律,建立了双层摊铺温度散失预估模型,对不同外界温度下双层摊铺混合料降温过程进行仿真分析,并提出相应的有效压实时间;(4)室内进行不同温度、厚度的混合料压实试验,采用正交分析及多元非线性回归分析的方法得到混合料压实度与温度、厚度之间的关系,为双层摊铺合理压实提供依据;(5)通过现场检测获得双层摊铺路面平整度概率分布图,建立其平整度传递预估模型,对双层摊铺平整度传递规律进行研究,并提出了双层摊铺工艺下各结构层平整度控制指标;(6)铺筑了四种路面结构组合的双层摊铺试验路,对双层摊铺混合料拌合、运输、摊铺、碾压等工序的组织配合进行研究,并将本文研究成果进行实际工程检验。
     通过本文研究,解决了双层摊铺技术层间粘结强度、有效碾压时间、合理压实以及平整度控制等关键问题,为双层摊铺技术实际工程应用提供理论基础。
Double-layer paving technology is a new construction technique in asphaltpaving, in this technics two layer mixture were paved and compacted at one time.Compare to traditional crafts double-layer paving can improve layer cohesion station,reduce temperature loss, save construction time, optimize pavement structure andreduce construction costs. nowadays, the research about double-layer pavingtechnology were few, some questions about this technology for example cohesionstrength, temperature losing rate in paving process, reasonable compaction andpavement evenness control were short of systemic study and attention, these questionsrestrict the double-layer paving technology spreading in China.
     In response to above mentioned issues, this paper this paper mainly to carry outthe following studies:(1) system studied the effecting factors about shear bondstrength between the double-layer, research on the interlocked-denseness under100℃,120℃,140℃,160℃.(2) Through Indoor and scene shearing test, the shear bondstrength between traditional and double-layer were studied, the result show that:compare to traditional construction, double-layer paving technology can improvelayer shear strength31.7%~59.5%, pull strength26.7%~78.5%. This paper alsoestablish a finite element model based damage failure theory to predict the layerstrength.(3) Comparative analysis the2cm,5cm depth temperature losing disciplineunder different construction technology, a numerical model was established tosimulate the double-layer asphalt temperature loss under different ambienttemperature, at last the effective compacting time.(4) Mixture compacted test underdifferent temperature and thickness, orthogonal analysis and multiple regressionmethods were adapted to get the relation among compaction, thickness andtemperature, provide the basis for the double-layer paving reasonable compaction.(5)Double-layer paving pavement roughness probability distribution was obtainedthrough witnessed inspections in experimental road, establish roughness predictionmodel to study the double-layer paving technology smoothness delivering andProposed flatness control standard.(6) Four kinds of pavement structural grouping were paving under double-layer technology, in construction process asphalt mixturetransport paving and compaction working procedures were studied, the theoreticalresearch were application in actual project.
     In summary, the main question about double layer technology were saved, forexample bond strength between double layers, effective compacting time, reasonablecompaction time and roughness quality control. these research provide theoreticalbasis for the spreading of double layer technology.
引文
[1] Waser, Rainer; Weil, Konrad G.; Wiese, Harm. POTENTIAL DEPENDENCE AND TIMEEVOLUTION OF THE DOUBLE LAYER STRUCTURE AND TOPOGRAPHY OF SILVERELECTRODES. PART II: ROUGHENED SILVER FILMS [J]. Berichte derBunsengesellschaft/Physical Chemistry Chemical Physics, Dec1984:88(12):1177-1181.
    [2] Bruglachner, H; Jordan, S; Schmidt, M; Geissler, W.2; Schwake, A; Barthel, J; Conway, B.E; Gores, H.J.New electrolytes for electrochemical double layer capacitors I [J]. Journal of New Materials forElectrochemical Systems, July20069(3):209-220.
    [3] Das, Siddhartha; Hardt, Steffen. Electric-double-layer potential distribution in multiple-layerimmiscible electrolytes [J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,August23,201184(2).
    [4] Grossmann, S; Weyrauch, T; Saal, S; Haase, W. Internal electrical field distribution in double layerpolymer stacks as studied by electroabsorption [J]. Optical Materials, Jan1998,9(4):236-239.
    [5] Juanyu Liu, Stephan Saboundjian, Peng Li, Billy Connor. Laboratory Evaluation of Sasobit-ModifiedWarm-Mix Asphalt for Alaskan Conditions and Bruce Brunette [J]. Journal of Materials in CivilEngineering,16December2011,23(11):1498-1505.
    [6] MartinH.Sadd, QingliDai, Venkitanara nanparameswaran, ArunShukla. Microstructural Simulation ofAsPhalt Materials:Modeling and Experimental Studies[J]. Journal of Materials inCivil Engineering.2004,Vol.16(2):107-115.
    [7] Qingli Dai, MartinH.Sadd, VenkitParameswaran, ArunShukla. Prediction of DamageBehaviors in AsPhalt Materials Using a Micromechanieal Finite-Element-Model and ImageAllalysis [J]. Journal of Engineering Mechanices.2005, vol.131(7):668-677.
    [8] Ota J. Vacin, J. Stastna, L. Zanzotto. Creep Compliance of Polymer Modified Asphalt, Asphalt Masticand Hot Mix Asphalt[J]. Transportation Research Board,82nd Annual Meeting Washington,D.C,2003.
    [9] E. Ray Brown, John E. Haddock, Campbell Crawford. Investigation of stone matrix asphalt mortars[J].Transportation Research Record,1996,1530:95-102
    [10] Zia Zafir. Dynamic pavement strain histories from moving traffic load.J of Transp.Engrg,1994,120(5):821-842.
    [11] Majidzadeh K, L O Talbert,M Karakouzian. Development and Field Verification of A MechanisticStructural Design System in Ohio.Proceedings,Fourth International Conference Structural Design ofAsphalt Pavements,The University of Michigan, Ann Arbor, Michigan,1977:402-408.
    [12] Farouki O T,Rolt J,Laboratory study of the mechanical properties of sand/sulphur/bitumenmixes.Transport and Road Research Laboratory,1986.
    [13] Mushule N.Behavior of recycled asphalt pavements at low temperatures.Canadian Journal of CivilEngineering,1991,18(3):428-435
    [14] Noureldin A S.Influence of stress levels and seasonal variations on in situ pavement layerproperties.Transportation Research Record,1994,1448(10):16-24.
    [15] Epps A.Design and analysis system for thermal cracking in asphalt concrete.Journal of TransportationEngineering,2000,126(4):300-307.
    [16]冯师蓉,冯治安.沥青马蹄脂粘弹性特性的DSR试验研究.郑州大学硕士论文.2007.
    [17]侯金成.纤维沥青混凝土粘弹性能研究[D].大连海事大学,2007.
    [18] Huang Y H.Pavement Analysis and Design.New Jersey:Prentice Hall,1993.
    [19]周富杰.防治反射裂缝的措施及其分析.同济大学博士学位论文,1998
    [20]吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析.中国公路学报,1998,11(1):21-28.
    [21]周志刚,李宇峙.气温和交通荷载对低温缩裂的影响.长沙交通学院学报,1996,12(1):34-39.
    [22]王艳丽,张争奇,王秉纲.沥青混凝土路面双层摊铺技术及性能[J].中外公路,2007(6):66-70.
    [23]穆柯,王选仓.双层摊铺温度散失规律研究[J].筑路机械与施工机械化,2012,29(1):32-35.
    [24]艾长发,成猛,杨涛,邱延峻.含层间界面的沥青混合料复合小梁弯曲疲劳试验[J].公路交通科技,2011,28(12):27-31.
    [25]段小琦.永久性沥青路面疲劳性能的研究[D].西安:长安大学,2008.
    [26] Dynapac company.Dynapac′s COMPACT ASPHALT Technology for Laying compact and porousasphalt,2004.
    [27] Bossemeyer, H. R..Temperaturverlauf beim Einbau vonbitumin sem Mischgut.(Temperature PatternWhen Paving with Bituminous Mixture) Dissertation TU Darmstadt,1966.
    [28] Dainess, M. E..Cooling of Bituminous Layers and Time Available for Their Compaction. Transportand Road Research Laboratory Report4, Department of Transport,1985
    [29] JTG F40-2004公路沥青路面施工技术规范[S].
    [30] A.C. Collop, M.H. Sutanto, G.D. Airey, Richard C. Elliott. Development of an automatic torque test tomeasure the shear bond strength between asphalt[J]. Construction and Building Materials,2011,25(2)623-629.
    [31]皮育晖,张久鹏,黄晓明.沥青混合料劈裂试验数值模拟[J].公路交通科技,2007,24(8):1-6.
    [32] Huang Chien-Wei, Abu Al-Rub, Rashid K, Masad Eyad A, Little Dallas N. Three-DimensionalSimulations of Asphalt Pavement Permanent Deformation Using a Nonlinear Viscoelastic andViscoplastic Model[J]. Journal of Materials in Civil Engineering,2011,23(1):56-68.
    [33] Osman, Norhaslinda Y, McManus Kerry J, Tran Huu D, Krezel Zbigniew A. The prediction of damagecondition in regards to damage factor influence of light structures on expansive soils in Victoria[J].Computer Assisted Mechanics and Engineering Sciences,2007,14(2),331-343.
    [34]李峰,孙立军.沥青路面Top-Down开裂成因的有限元分析[J].公路交通科技,2006.6,23(6):2-4.
    [35]陆辉,孙立军.轮载作用下沥青路面三维非线性有限元分析[J].土木工程报,2004,37(7):62~6.
    [36]邓学钧,黄晓明.路面设计原理与方法.北京:人民交通出版社,2001.60~90.
    [37]王正文.沥青路面基面层粘结材料与性能研究[D].西安:长安大学,2006.
    [38]张争奇,张卫平,李平.沥青混合料粉胶比[J].长安大学学报:自然科学版,2004,24(5):710.
    [39]黄宝涛,廖公云,张静芳.半刚性基层沥青路面层间接触临界状态值的计算方法[J].东南大学学报:自然科学版,2007,37(4):666-670.
    [40]赵延庆,杨建新,叶勤.温度和频率对沥青模量的综合影响[J].石油沥青,2006,20(6):14-16.
    [41] Li Xue, Marasteanu, Mihai O. Cohesive modeling of fracture in asphalt mixtures at lowtemperatures[J]. International Journal of Fracture,2005, v136, n1-4, p285-308.
    [42] Donnaharmelink Extent. Extent of Top-Down Cracking in Colorado [R]. CDOT-DTD-R-2003-7,2003.
    [43] Al-Qadi, Imad L, Wang Hao. Dynamic analysis and in situ validation of perpetual pavement responseto vehicular loading[J]. Transportation Research Record,2008,2087:29-39.
    [44] Zhang Dong, HuangXiaoming, ZhaoYongli. Simulation of indirect tension test of asphalt mixturesbased on cohesive zonemodel[J]. Journal of Southeast Univercity (Natural Science Edition,2010,40(6):1276-1281.
    [45]张东.基于内聚力模型的沥青路面断裂研究[D].南京:东南大学交通学院,2010.
    [46]邱延峻,闫常赫,艾长发.非均质沥青混合料劈裂试验全过程数值模拟[J].交通运输工程学报,2009,9(2):12-16.
    [47] DugdaleD. Yielding of steel sheets containing slits[J]. Journal ofMechanics and Physics ofSolids,1960,8(2):100-104.
    [48] Paulino G H, Song S H, ButtlarW G. Cohesive zone modeling of fracture in asphalt concrete[C]//Proceedings of the Fifth International RILEM Conference on Cracking in Pavements: M itigation,Risk Assessment and Prevention. Limoges, France,2004:63-70.
    [49]刘丽,郝培文,肖庆一,汪海年.沥青胶浆高温性能及评价方法[J].长安大学学报(自然科学版),2007,27(5):30-34.
    [50]赵可,卢永贵,魏如喜. SMA高温稳定性研究[J].中国公路学报,2004,17(2):1117.
    [51]叶永,杨新华等.沥青砂粘弹性模型参数的试验研究[J].中外公路.2009(4).
    [52]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2006.
    [53]丁和平,何杰,赵池航,陈一锴.非均布动载荷下沥青路面粘弹性有限元分析[J].武汉理工大学学报,2011.2,33(2).
    [54] Suo Lijun, Tong Huaifeng, Wang Binggang, Zheng Chuanchao. Thermal stress and temperature fieldfor asphalt pavement of porous concrete base[J]. ICTE2011-Proceedings of the3rd InternationalConference on Transportation Engineering, Chengdu,2011,1678-1683.
    [55] MARIANA R K, ANDREW C C, NICHOLAS HT. Properties of Asphalt Concrete Layer Interfaces [J].Journal of Materials in Civil Engineering,2006,18(3):467-471.
    [56]柳浩,谭忆秋,宋宪辉,赵立东.沥青路面基面层间结合状态对路面应力响应的影响分析[J].公路交通科技,2009,26(3):2-6.
    [57] Davis, Gao, Impact damage prediction in carbon composite structures, Int.J.impact Engng.1995,16:149-170.
    [58] Park D H,Hong SY. Hybrid power flow analysis using coupling loss factor of SEA for low dampingsystem Part I: Formulation of1D and2D cases[J]. Journal of Sound and Vibration,2007,299:484-503.
    [59]侯曙光.基于动态蠕变试验的沥青混合料黏弹性分析[J].南京工业大学学报:自然科学版,2010,32(1):34-36.
    [60]田小革,郑健龙,张起森.老化对沥青结合料粘弹性的影响[J].交通运输工程学报,2004,4(1):36.
    [61]中华人民共和国行业标准.JTG D50—2006公路沥青路面设计规范[S].北京:人民交通出版社,2006.
    [62]李立寒,曹林涛,殷治宁等.沥青路面施工温度分布特征及其对压实质量的影响[J].公路交通科技,2006(3):63-65.
    [63]中华人民共和国行业标准.地面气象观测规范[S].北京:中国气象局,2003.
    [64]黄厚诚,王秋良.热传导问题的有限元分析[M].北京:科学出版社,2010.5.
    [65]陶文铨.传热学[M].西安:西北工业大学出版社.2006.12.
    [66]秦健,孙立军.沥青路面温度场的分布规律[J].公路交通科技,2006,23(8):18-21.
    [67]杨学良,刘伯莹.沥青路面温度场与结构耦合的有限元分析[J].公路交通科技,2006,23(11):1-9.
    [68]李波,岳永和,窦晖等.温拌沥青混合料施工中温度场的时空特性[J].武汉理工大学学报,2011,33(4):61-64.
    [69]马骉,胡浩,汪海年.考虑温度非均匀性的沥青路面温度应力分析[J].长安大学学报,2011,31(1):1-5.
    [70]贾璐.沥青路面高温温度场数值分析和实验研究[D].湖南大学硕士学位论文,2004.
    [71] Hermansson Ake·Simulation Model for Calculating pavement Temperature Including MaximumTemperature [J]·Transportation Research Record,2000,1699:134-141.
    [72]冯德成,胡伟超,于飞,曹鹏,张鑫.沥青路面材料热物性参数对温度场的影响及敏感性分析[J].公路交通科技,2011.11,28(11):12-18.
    [73]王辉,李雪连,张起森.高温重载作用下沥青路面车辙研究[J].土木工程学报,2009,42(5):139-144.
    [74]严作人.层状路面体系的温度场分析[J].同济大学学报,1984,16(3):76-85.
    [75]秦健,沥青路面温度场预估方法[D].上海:同济大学道路与机场工程系,2003.
    [76]张占军,水泥混凝土桥面沥青混凝土铺装结构研究[D].西安:长安大学,2000.
    [77]金晓宏.斜拉桥承台大体积混凝土温度场仿真分析[J].公路,2010.(12)
    [78] MRAWIRA D M, LUCA J. Thermal Properties and Transient Temperature Response of Full depthAsphalt Pavements[J]. Transportation Research Record,2002,1809:160-171.
    [79] HIMENO K, WATANABLE T, MARUYAMA T. Temperature Distributions in Asphalt Pavements[C].Proceedings of Paving in Cold Areas,Canada/Japan Science and Technology Agreement MiniWorkshop.1987:243-254.
    [80] GUI J, PHELAN P E, KALOUSH K E. Impact of Pavement Thermophysical Properties on SurfaceTemperatures[J]. Journal of Materials in Civil Engineering,2007,19(8):683-690.
    [81]中华人民共和国行业标准.JTG D50—2006沥青路面施工技术规范[S].北京:人民交通出版社,2006.
    [82]陈魁.试验设计与分析(第二版)[M].北京:清华大学出版社,2007.5.
    [83]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [84] HERMANSSON A.A Mathematical Model for Calculating Pavement Temperatures, Comparisonsbetween Calculated and Measured Temperatures[J]. Transportation ResearchRecord,2001,1764:180-188.
    [85] LUKANEN E O, STUBSTAD R BRIGGS R, et al. Temperature Predictions and Adjustment Factorsfor Asphalt Pavement[R]. Washington, D.C. Federal Highway Administration,2000.
    [86]谭冬莲,肖汝诚.基于Levenberg-Marquardt算法的桥梁结构静力参数识别[J].交通运输工程学报,2005,5(3):56-59.
    [87]李桂苓,万剑华,陶华学.基于改进Marquart法的非线性测量数据处理[J].测绘学院学报,2001,18(3):167-169.
    [88]刘志明,往钟羡.基于Levenberg-Marquart算法的应力集中预测[J].江苏理工大学学报(自然科学版),2001,22(6):84-87.
    [89] SANAYEI M, SALETNIKE MJ·Parameter estimation of structure from static train measurements I:Formulation[J] Journal of Structural Engineering,1996,122(5):253-257.
    [90]绕红颜.数理统计在道路工程中的应用.北京:人民交通出版社.
    [91] Chien-Ta Chen, Ching-Tsung Hung, Chien-Cheng Chou,Ziping Chiang, Jyh-Dong Lin.ThePredictedModel of International Roughness Index for Drainage Asphalt Pavement[D].Advanced IntelligentComputing Theories and Applications.With Aspects of Theoretical andMethodological Issues.2008.
    [92]胡朋,张婧竼,张建娟.基于快速傅里叶逆变换的路面平整度仿真分析[J].山东交通学院学报.2009,17(3):45-47.
    [93]中华人民共和国交通运输部.JTG H20-2007公路技术状况评定标准[S].北京:人民交通出版社,2007.
    [94]吴庆雄,陈宝春,奚灵智.路面平整度PSD和IRI评价方法比较[J].交通运输工程学报.2008,8(1):36-41.
    [95]石福周.沥青路面双层连续摊铺技术研究[D].长安大学硕士论文.2010.
    [96]杨怡,陈梦成,雷茂锦.沥青路面平整度传递模型在工程中的应用[J].施工机械与施工技术,2011.2.
    [97]王晖光,陆键.道路平整度指数值时空动态变形模型与预报方法[J].公路交通科技.2006,23(8):62-71.
    [98]周晓青,孙立军.国际平整度指数与行驶车速的关系[J].同济大学学报(自然科学版).2005,33(10):1323-1327.
    [99]王晖光,陆键.道路平整度指数值时空动态变形模型与预报方法[J].公路交通科技.2006,23(8):62-71.
    [100]中华人民共和国交通运输部.JTG B01-2003公路工程技术标准[S].北京:人民交通出版社,2004.
    [101]和松,常成利等.高速公路路面自动化检测技术与评价方法研究[R].交通部公路科学研究院,2004.
    [102] Sweatman,P.F.A Study on Dynamic Wheel Forces in Axle Group Suspensions of Heavy Vehicles[R].Special Rept.No.27,Australian Road Research Board, June1983.
    [103] Gillespie,T.D.,M.W.Sayers,and L.Segal.Calibration of Response-Type Road Roughness MeasuringSystem[R].NCHRP Report Number228.Washington,DC.Transportation Research Board,1980.
    [104] Gillespie, T.D, M.W.Sayers. Methodology for Road Roughness Profiling and Rut DepthMeasurement[D].FHWA/RD-87-042.Washington,DC.Federal Highway Administration,1987.
    [105]赵兵沥青混凝土摊铺运输与碾压.市政技术.2002.2.
    [106] AASHTO Standards. Superpave Volumetric Mix Design(AASHTO Designtion [M].2004.
    [107] Boussad N. Predication of Mix Modulus and Fatigue Law from Binder Rheology Properties [J].AAPT,1996,65(1):4058.
    [108] Todd V S. Rheological Characteristics of Bitumen inContact with Mineral Aggregate[J].AAPT,1996,65(1):357377.
    [109]余叔藩. SMA路面设计与施工[M].北京:人民交通出版社,2002.
    [110]邸俊峰,高景莉,郑成波.振荡压实技术在SMA沥青面层压实中的应用[J].筑路机械与施工机械化,2008,25(2):44-45.
    [111]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1998.
    [112]但淑英.路面拌和料运输费用的动态模型[J].公路交通技术,2004.4,99(2).
    [113]陈雪飞.江西省高等级公路管理局设备及材料采购管理办法[J].筑路机械与施工机械化.2004.1.
    [114]刘黎.路面机械的施工配置与成本分析[J].公路交通技术.2005(03).
    [115]陈楚宣,刘涛,但淑英.电湛高速公路路面工程机械化施工拌和机配置方案分析[J].重庆交通学院学报.2000(01).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700