用户名: 密码: 验证码:
北京房山区黄院采石场松散堆积体生态修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态修复技术是治理矿业废弃地水土流失、快速恢复植被的关键技术。长期以来,无序开山采石造成的采石场山体破坏严重威胁着区域的生态安全,而采石场土壤条件差、水分渗漏严重、植被成活率低等问题也严重制约着该区植被恢复和水土流失治理研究的开展。尤其是开采后剩余的大量废弃渣土和粒径大小不一的砾石等松散堆积物随意倾倒并形成的裸露坡面等立地环境,是采石场水土流失治理及植被恢复的重点和难点。为此,本研究在北京山区(房山区黄院采石场)经过人工整地后的松散堆积体平台及坡面中,从土壤、水分和植被等因素的角度开展了生态修复技术野外试验,在昌平区,利用一定粒径大小的废弃渣土(取自房山区)开展了室内、盆栽及大田试验生态修复技术试验,并提出了北京山区采石场一系列的生态修复技术。主要研究结论如下:
     1)通过指标测定发现,黄院采石场松散堆积物(粒径小于2mm)的理化性能较差,重金属含量极低,松散堆积体坡面的坡度越大,水土流失现象越严重,高度相差越大,漏水现象越明显。
     2)通过盆栽、大田和野外压实试验得出:粒径小于40mm的细角砾土的最大干密度为1.95g/cm3,最优含水量为6.1%。随着压实度的增加,干密度逐渐增大,含水量逐渐减小,孔隙比逐渐减小,饱和度(持水度)呈上升趋势。压实技术能够提高约50%的土壤体积含水量,水坠处理和压实度为70%两种压实技术效果最优,且适宜生长的植物为:紫花苜蓿(Medicago sativa Linn.)、侧柏(Platycladus orientalis)和刺槐(Black Locust)。压实度相同的前提下,采用压实深度为1m-3m的压实工艺效果最优,适宜生长的植物为火炬树(Rhus typhina)和油松(Pinus tabulaeformis Carr.)。
     3)抗旱保水袋应用技术试验得出:抗旱保水袋具有良好的吸水和保水性能,应用抗旱保水袋能够显著增加松散堆积体的土壤体积含水量23.3%-48.5%,提高成活率25.6%-69.5%。选用不同规格及用量的保水袋进行造林,要针对该地区是否缺水严重及苗木规格进行选择。
     4)通过盆栽、大田和野外覆盖试验得出:局部覆盖条件下,地膜覆盖优于有机废弃物覆盖优于粗砾石覆盖;全部覆盖条件下,有机废弃物覆盖优于地膜覆盖优于粗砾石覆盖,能有效降低地表温度19.1%、减少土壤蒸发14.8%、能够提高8%-30%的土壤体积含水量,使华山松(Pinus armandii)的当年生长量增加22.8%,油松和火炬树的平均成活率和保存率提高20%左右,生长指标平均增加17.2%-20.3%。因此,宜采用有机废弃物覆盖+火炬树或油松、粗砾石覆盖+火炬树或油松以及地膜覆盖+火炬树或油松3种保水覆盖技术模式。
     5)松散堆积物资源化技术试验得出:种植土、矿化垃圾和风干污水污泥能够为松散堆积物提供必要的化学营养成分,有效调节松散堆积物的pH值。种植土含量为10%-40%时,对高羊茅(Festuca arundinacea)和侧柏的生长最有利;矿化垃圾和风干污水污泥含量越高,松散堆积物的土壤体积含水量越大,油松的成活率和保存率越高,生长量也越大;在采石场困难立地应用比例为30%-50%的矿化垃圾改良技术和比例为40%-60%的风干污水污泥改良技术可行而且效果显著。
     6)平铺生态袋绿化技术试验得出:生态袋技术减少松散体坡面径流和泥沙的效应均与平均雨强和坡度基本呈正相关,随着平均雨强和坡度的增大,生态袋防治水土流失的效应逐渐增强。其中当平均雨强为5.1mm/h和坡度为35°时,生态袋的减流效应最显著;当平均雨强为12.0mm/h和坡度为25°时,生态袋的减沙效应最显著。随着恢复时间的增长,径流量随着年降雨量的增加而增大,产沙量随着年降雨量的增加而减小。
     7)通过植物选择与配置试验得出:通过样方调查法研究发现,采石场植被的植物种数虽然较多,但种类比较单一,随着恢复时间的增长,植物种数差异不大,乔木和灌木稍有增加,草本植物稍有减少,生活型逐渐多样化,多年生植物逐渐占据优势,且有着逐渐向草灌层及乔灌层演变的趋势。通过综合优势比较法总结出适宜于采石场植被演替的2种主要群丛类型:火炬树-荆条(Vitex negundo Linn.)-狗尾草(Setaria viridis (Linn.) Beauv.)群丛;臭椿(Ailanthus altissima)-沙打旺(Astragalus adsurgens Pall.)-狗尾草(Setaria viridis(Linn.) Beauv.)群丛。通过成活率、生长高度和覆盖度的综合分析,筛选得出23种适生性强的优势植物。
     综上分析,本研究结论形成了一套较为完善的北京山区采石场生态修复技术。
Ecological restoration technology is important to the mining wasteland for soil erosion and water Loss control and fast revegatation. For many years, the destruction of the quarry mountain by disordered quarrying caused serious threat to the regional ecological security. The problem of barren soil, serious water drainage and low survival rate seriously restrict the study of vegetation construction and control of soil and water erosion in this area. In particular, the site environment of the mixture of large loose deposits with different particle diameter gravels by random dumping on the natural slope is the emphasis and difficulty to vegetation construction and control of soil and water erosion.
     So, based on the artificial preparation condition of the platform and slope of loose accumulation, the author did the field experiment of ecological technology system from the degree of soil, water and revegatation factor in southwest mountain of Fangshan region; and developed the laboratory, pot and farmland experiment research of the ecological technology in Changping region by loose deposits of Fangshan region; and put forward a series of ecological technologies. The results are as follows:
     1) Through the study, the author found the basic physical and chemical properties of loose deposits were bad, the heavy metal content was very low. By the steeper slope, the condition of soil and water loss was more serious. By the bigger difference in elevation, the phenomenon of water leakage was more obvious.
     2) The author did a pot, farmland and field experiment to conclude that the maximum dry density was1.95g/cm3and the optimum moisture content was6.1%. With increasing compaction degree, dry density was increased; the water content and the porosity ratio were decreased gradually; the soil saturation (water retention) was an upward trend. The compaction technology could increase the volumetric soil and water content of50%; the two treatments of hydraulic fill of water and the compaction degree of70%were better; the suitable plants were Medicago sativa Linn., Platycladus orientalis and Black Locust. In the same compaction degree of70%, the author proposed the best compaction process of the compaction depth of1-3meters which could grow two plants of Pinus tabulaeformis Carr. and Rhus typhina Nutt.
     3) The author concluded that the drought resisting water retention bag had the best water absorption and water retention capability. The technology could increase the volumetric soil and water content of23.3%-48.5%, and improving the survival rate of25.6%-69.5%. The author suggested choosing different kinds of resisting water retention bags according to the water condition of the region.
     4) The author did a pot, farmland and field experiment to conclude that the plastic film mulching was better than the organic waste and gravel mulching treatments in the part mulching condition. With the complete mulching condition, the effect of the organic waste mulching was best. Using the mulching technology could decrease the surface temperature of19.1%, and reducing the soil evaporation of14.8%, and increasing the volumetric soil moisture content of8%-30%, and increasing Pimts armandii biomass of22.8%. The survival rate and the growth index were increased about20%and17.2%-20.3%of Pinus tabulaeformis Carr. and Rhus typhina Nutt, In all, there were there mulching technologies: organic waste mulching+Rhus typhina or Pinus tabulaeformis, gravel mulching+Rhus typhina or Pinus tabulaeformis. and plastic film mulching+Rhus typhina or Pinus tabulaeformis.
     5) The experiment of loose deposits improvement resource concluded that farmland soil, aged refused humus soil and sewage sludge could provide the necessary chemical nutrients, and adjust the pH of the loose debris effectively. They could improve the volumetric soil and water content, the survival rate and the growth of Platycladus orientalis, Festuca arundinacea and Pinus tabulaeformis. In all, there were the ratio accounted for10%-40%,30%-50%and40%-60%of farmland soil, aged refused humus soil and sewage sludge improving technologies.
     6) It was found that it could reduce water losses and soil erosion observably with ecological bag technology, and there had good correlation basically with the good effect of reducing runoff and sediment yield and the rainfall intensity and slope. With the increase of rainfall intensity and slope, the values of runoff and sediment with ecological bag technology were lower than the contrast. The effect of reducing runoff was notable with the rainfall intensity of5.1mm/h and the slope of35°. The effect of reducing sediment yield was notable with the rainfall intensity of12.0mm/h and the slope of25°.The value of runoff was higher and the sediment yield was lower by the increasing annual rainfall by using the ecological bag technology.
     7) The experiment of selection and configuration of the plants concluded that the species numbers were more but little kinds. By the restoration years increased, there were no difference in the species numbers, but had some arbor and shrubs increased. The herb reduced slightly, and the life form diversify, and the perennials plants take advantage gradually. The plants would success from herb layer to herb and shrub layer and arbor, shrub layer. The author summarized two primary plant communities by the method of summed dominance ratio:Rhus typhina-Vitex negundo Linn.-Setaria viridis (Linn.) Beauw; Ailanthus altissima-Astragalus adsurgens Pall.-Setaria viridis (Linn.) Beauv. By the comprehensive analysis of the survival rate and the growth height and coverage, the author screened23strong adaptability dominant plants.
     By analysis, the conclusions of this study formed a set of perfect ecological restoration technologies in deserted quarry in the mountain of Beijing.
引文
[1]北京市气象局气象资料室.北京气候志[M].北京:北京出版社,1987.
    [2]蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报.1998(2):4-11.
    [3]柴亚凡,周波,刘敏,等.人工模拟降雨法在隧道弃渣坡面水土流失规律研究中的应用[J].中国水土保持.2012(10):33-35.
    [4]陈传娟,裴丽珍,苏燕春,等.钦南区发展辣椒冬种地膜覆盖技术及效益分析[J].农业研究与应用.2012(4):60-62.
    [5]陈奇.矿山环境治理技术与治理模式研究[D].中国矿业大学(北京),2009.
    [6]陈晓燕,叶建春,陆桂华,等.全国土壤田间持水量分布探讨[J].水利水电技术.2004(9):113-116.
    [7]陈学平,张洪江,张翔,等.沪蓉西高速公路宜昌—长阳段混播护坡植物筛选[J].中国水土保持科学.2011(1):61-67.
    [8]陈跃升.复杂岩溶矿区降水开采条件下的地表水渗漏定量评价[J].金属矿山.2008(12):83-86.
    [9]迟仁立,左淑珍,夏平,等.不同程度压实对土壤理化性状及作物生育产量的影响[J].农业工程学报.2001(6):39-43.
    [10]崔运峰,董洁,邹皆明.秸秆覆盖节水保墒效应的研究进展[J].农技服务.2011(8):1228-1230.
    [11]丁国建,蔡茂来.高等级公路植被护坡工程技术发展初探[J].浙江林业科技.2004(4):64-67.
    [12]董世魁.恢复生态[Z].北京:高等教育出版社,2009.
    [13]杜太生,康绍忠,魏华.保水剂在节水农业中的应用研究现状与展望[J].农业现代化研究.2000(5):317-320.
    [14]段永红,庞亨辉,王景华.阳泉煤矸石山矸石风化物剖面水分变化特征初探[J].山西农业大学学报.2001(2):125-127.
    [15]范志平,曾德慧,余新晓.生态工程理论基础与构建技术[M].北京:化学工业出版社,2006.
    [16]付燕利,王立安.太行山裸露地生态系统恢复植物种类选择[J].绿色科技.2010(8):94-96.
    [17]高福军,马文贵,林军,等.花岗片麻岩低山丘陵区不同植物径流小区水土流失规律研究[J].亚热带水土保持.2008(3):15-17.
    [18]高建民,阿拉坦其其格,邢丽萍,等.地被植物及其在园林绿化中的生态应用[J].华北农学报.2004:171-174.
    [19]高丽霞,孔旭晖,曹震.广东采石场植被生态恢复技术及存在的问题[J].仲恺农业技术学院学报.2005(3):51-53.
    [20]高晓晶.北京市房山区土壤质量评价研究[D].首都师范大学,2007.
    [21]郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报.2003(8):1470-1476.
    [22]郝耀锋,樊丙玉,吴开华,等.叶山林场次生阔叶林乔木树种多样性及种间关联分析[J].安徽农业大学学报.2012(6):915-919.
    [23]何娜,王立海.压实对土壤理化特性及土壤呼吸的影响研究进展[J].森林工程.2010(1):7-11.
    [24]何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化[J].山地学报.2003(2):149-156.
    [25]贺志坚,卫正新,郭玉记,等.梯田起垄覆膜微集流耕作措施土壤水分动态研究[J].山西水土保持科技.2000(3):12-15.
    [26]洪淑惠.房山县山区植被及其利用[J].北京师院学报(自然科学版).1984(2):90-100.
    [27]胡明芳,田长彦.新疆棉田地膜覆盖耕层土壤温度效应研究[J].中国生态农业学报.2003(3):134-136.
    [28]胡振琪,杨秀红,鲍艳,等.论矿区生态环境修复[J].科技导报.2005(1):38-41.
    [29]黄栋学,张华,赵廷宁,等.客土喷播基质材料配比试验研究:全国工程绿化技术交流研讨会[Z].中国贵州贵阳:200870-75.
    [30]黄毓明.福建省矿山环境现状及区划研究[J].福建地质.2006(4):209-214.
    [31]黄占斌,张国桢,李秧秧,等.保水剂特性测定及其在农业中的应用[J].农业工程学报.2002(1):22-26.
    [32]霍亚贞.北京自然地理[M].北京:北京师范学院出版社,1989.
    [33]姜建军,刘建伟,张进德,等.我国矿产资源开发的环境问题及对策探析[J].国土资源情报.2005(8):22-26.
    [34]金属非金属矿山安全规程[S].2006.
    [35]寇权.黄土高塬沟壑区典型小流域水土流失规律分析研究[D].西安理工大学,2007.
    [36]郐晓寒.论城市垃圾的处理处置[J].哈尔滨师范大学自然科学学报.2003(2):105-108.
    [37]李博.生态学[M].北京:高等教育出版社,2000.
    [38]李德平,张玉梅,方继臣,等.矸石山水土流失规律与防治措施的研究[J].水?土保持研究.2001(3):22-25.[9]李桂清.一、自然环境状况北京房山年鉴[M].2010.
    [40]李金海,魏军,张国祯.北京山区关停废弃矿山生态恢复现状及对策初探:全国水土保持与荒漠化防治及生态修复交流研讨会[Z].中国陕西西安:20094-9.
    [41]李景生,黄韵珠.土壤保水剂的吸水保水性能研究动态[J].中国沙漠.1996(1):86-91.
    [42]李立成,戈振扬,于英杰,等.土壤压实影响扦插植物根系生长的模拟实验方法探讨[A].中国农业工程学会2011年学术年会论文集[C].中国农业工程学会,2011:558-561.
    [43]李青丰,徐军,董天明.对吸水剂抗旱作用机理一些问题的探讨[J].干旱区资源与环境.2001(2):86-89.
    [44]李亚龙,张平仓,王一峰,等.不同下垫面裸露开挖边坡水土流失规律试验研究——以南水北调中线干线工程石家庄段为例[J].人民长江.2011(17):76-79.
    [45]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报.2004(1):95-100.
    [46]李志洪,赵兰坡,窦森.土壤学[M].北京:化学工业出版社,2005:100-103.
    [47]林春野,戴荣彩,董克虞,等.污泥农用对土壤及作物的影响[J].农业环境保护.1994(1):23-25.
    [48]林大仪.土壤学[M].北京:中国林业出版社,2002:120-150.
    [49]林海.矿业环境工程[M].长沙:中南大学出版社,2010.
    [50]刘培娟.鲁中南中低山丘陵典型侵蚀区水土流失规律研究[D].山东农业大学,2008.
    [51]吕爱霞,马良.土石山区径流小区水土流失规律分析[J].山东水利.2012(1):23-25.
    [52]吕恒林,黄建恩,常江,等.徐州九里矿区地表水环境状况与治理策略[J].矿业安全与环保. 2011(2):72-75.
    [53]马天新,庞中存,陆秀珍.土壤保水剂在我省旱作农业上的应用展望[J].甘肃农业科技.1997(12):31-32.
    [54]马险锋,耿宝军,黄继民.矿物肥料对露天矿排土场土壤水分入渗的影响[J].辽宁工程技术大学学报(自然科学版).2009(4):664-667.
    [55]马友华,宋法龙,张承祥,等.岩质边坡生态防护绿化基质[P].中国.发明专利:200910116210.6,[2009-02-18]:
    [56]门旗,李毅,冯广平.地膜覆盖对土壤棵间蒸发影响的研究[J].灌溉排水学报.2003(2):17-20.
    [57]莫测辉,吴启堂,蔡全英,等.论城市污泥农用资源化与可持续发展[J].应用生态学报.2000(1):158-161.
    [58]牛一乐,刘云国,路培,等.中国矿山生态破坏现状及治理技术研究进展[J].环境科学与管理.2005(5):59-60.
    [59]彭超,刘颖卓.论生态袋理化性能与生态护坡工程质量的内在关系[J].中国建材科技.2010(S2):237-241.
    [60]彭少麟.南亚热带退化生态系统恢复和重建的生态学理论和应用[J].热带亚热带植物学报.1996(3):36-44.
    [61]秦百顺,李斌斌.不同砾石覆盖保持土壤水分有效性研究[J].中国水土保持.2012(6):46-47.
    [62]秦高远,周跃,郭广军,等.矿山生态恢复研究进展[J].云南环境科学.2006(4):19-21.
    [63]秦建桥,汪永红,李朝晖,等.韶关矿产资源开采地区土壤生态系统的微生物生态效应研究[J].生态环境学报.2012(5):942-946.
    [64]秦耀东.土壤物理学[M].北京:高等教育出版社,2003.
    [65]任宏英.北京市城市污水厂污泥利用途径的研究[D].北京工业大学,2003.
    [66]邵海林.城市生活垃圾和污泥的土壤和作物效应[D].山西农业大学,2004.
    [67]沈继芳,于青春,章胡.矿床水文地质学[M].北京:中国地质大学,1992.
    [68]沈烈风.破损山体生态修复工程[M].北京:中国林业出版社,2012.
    [69]水建国,叶元林,王建红,等.中国红壤丘陵区水土流失规律与土壤允许侵蚀量的研究[J].中国农业科学.2003,36(2):179-183.
    [70]宋亚彬,马文超,高影.浅谈城市垃圾的危害和处理方法[J].中国环境管理.2003(5):52-53.
    [71]苏玥.滇东喀斯特石漠化地区不同植被模式下水土流失规律研究[D].西南大学,2008.
    [72]孙红,程典,米锋.煤矿废弃地生态植被恢复技术研究[J].价值工程.2012(23):92-93.
    [73]孙墨珑,肖生灵,杨学春,等.小兴安岭林区集材车辆通过林地次数对林地土壤物理性的影响[J].东北林业大学学报.1999(1):82-84.
    [74]唐春,李波.矿山地质灾害防治与土地复垦[J].中国水土保持.2007(2):25-27.
    [75]田佳.廊涿高速公路路域立地质量评价与绿化植物选配研究[D].北京林业大学,2010.
    [76]王斌瑞,贺康宁,史长青.保水剂在造林绿化中的应用[J].中国水土保持.2000(4):25-27.
    [77]王超,毕君.金属矿山废弃地类型划分与生态退化特征[J].环境保护科学.2012(1):41-44.
    [78]王昊.浅谈地被植物在道路绿化中的应用[J].北京园林.2012(2):59-62.
    [79]王婧静.金属矿山废弃地生态修复与可持续发展研究[J].安徽农业科学.2010(15):8082-8084.
    [80]王雷,宋效刚,徐燕英,等.煤矿废弃地生态修复研究[J].安徽农学通报(上半月刊).2012(5):110-112.
    [81]王丽,梦丽,张金池,等.不同植被恢复模式下矿区废弃地土壤水分物理性质研究[J].中国水土保持.2010(3):54-58.
    [82]王琼.华东地区采石场自然恢复特征及人工生态恢复研究[D].北京林业大学,2009.
    [83]王铁桥.边坡绿化技术及其施工方法选择[J].中国水土保持科学.2006:148-149.
    [84]王夕刚,赵廷宁,袁彬鸿.一种煤矸石粉碎物生态恢复绿化基质及应用方法[P].中国专利:200810247466.6,[2008-12-31]:
    [85]王小燕,李朝霞,徐勤学,等.砾石覆盖对土壤水蚀过程影响的研究进展[J].中国水土保持科学.2011(1):115-120.
    [86]王秀珍.生活污泥和矿化垃圾对植物生长效应及环境影响的研究[D].华中农业大学,2007.
    [87]王砚田,华孟,赵小雯,等.高吸水性树脂对土壤物理性状的影响[J].北京农业大学学报.181-187.
    [88]韦冠俊.矿山环境保护[M].冶金工业出版社,1990.
    [89]吴欢,周兴.矿山废弃地生态恢复研究进展:广西生态学学会2003年学术年会[Z].2003,97-101.
    [90]吴永波,刘爽.土壤压实对土壤性质及植物生长的影响[J].林业科技开发.2010(1):15-17.
    [91]夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报.2002(11):1471-1477.
    [92]肖均,全孝,马涛.榆神高速公路风积沙路基压实工艺研究[J].路基工程.2010(5):126-128.
    [93]徐斌,陈林波.冲击压实技术在粉性土河堤路基中的应用[J].山东交通科技.:49-51.
    [94]徐永杰,李桂花,周忠伟.路堤填土坡面的压实技术[J].路基工程.2005(3):89-91.
    [95]许建新,吴彩琼,周琼,等.黄石市岩质边坡生态修复植物筛选应用研究[J].亚热带水土保持.2011(4):22-27.
    f96]薛澄泽张天红.西安市污水污泥林地施用效果的研究[J].西北农业大学学报.1994(2):67-71.
    [97]薛喜成,韩昀.秦岭安河矿区地表水、沉积物重金属污染研究[J].环境保护科学.2013(1):1-5.
    [98]闫双堆.城市污泥垃圾复混肥的土壤和作物效应研究[D].山西农业大学,2005.
    [99]杨建英,赵廷宁,赵方莹,等.矿业废弃地生态恢复材料与应用技术研究[M].北京:科学出版社,2011.
    [100]杨金玲,张甘霖,赵玉国,等.城市土壤压实对土壤水分特征的影响——以南京市为例[J].土壤学报.2006(1):33-38.
    [101]姚敏娟.黑岱沟露天矿排土场不同植被配置对土壤养分和土壤水分影响研究[D].内蒙古农业大学,2007.
    [102]叶林春,朱雪梅,邵继荣.矿山开采水土流失现状与治理措施[J].中国水土保持科学.2008:88-89.
    [103]尹国平,农韧钢,刘革宁.高吸水剂在我国林业上的应用研究进展[J].世界林业研究.2001(2):50-54.
    [104]于长青,张玉虎,宋百敏,等.废弃采矿场(包括石灰矿、大理石矿、页腊石矿等)生态环境调查评价与修复规划及技术方案(D0605046040191.102)课题研究报告.2007.
    [105]余海龙,黄菊莹.砂田砾石覆盖对土壤大孔隙特征及其土壤水文过程的影响研究进展[J].水土保持研究.2012(4):284-288.
    [106]喻定芳,戴全厚,王庆海,等.北京地区等高草篱防治坡耕地水土流失效果[J].农业工程学报.2010(12):89-96.
    [107]袁东海.红壤小流域水土流失规律及防治措施的研究[D].浙江大学,2002.
    [108]袁剑刚,周先叶,陈彦,等.采石场悬崖生态系统自然演替初期土壤和植被特征[J].生态学报.2005(6):1517-1522.
    [109]袁雯,张琪,方海兰,等.矿化垃圾混配种植介质的盆栽实验研究[J].环境污染与防治.2008(01):52-56.
    [110]扎西次仁,拉琼,次增卓玛,等.西藏扎其阿嘎矿区植被调查及其恢复技术探讨[J].西藏大学学报(自然科学版).2012(2):1-5.
    [111]张德奇,廖允成,贾志宽.旱区地膜覆盖技术的研究进展及发展前景[J].干旱地区农业研究.2005(1):208-213.
    [112]张富仓,康绍忠.BP保水剂及其对土壤与作物的效应[J].农业工程学报.1999(2):80-84.
    [113]张华,赵廷宁,杨建英,等.一种采石场废弃渣土的绿化基质及其制备方法和应用:CN 102584456 B, CN201210045597.2[P]. [2013.3.6].
    [114]张华.北京地区裸露边坡喷播绿化基质试验研究[D].北京林业大学,2008.
    [115]张建武.地膜覆盖与保水剂在荒山造林中的应用及效果分析[J].甘肃林业科技.2006(3):53-54.
    [116]张伟民,谭立海,张克存,等.不同砾石覆盖度床面蚀积过程的野外风洞实验研究[J].地理科学.2012(11):1370-1376.
    [117]张旭异,薛天柱,马灿,等.雨强和植被覆盖度对典型坡面产流产沙的影响[J].干旱区资源与环境.2012(6):66-70.
    [118]张玉平,祝于华,付美兰,等.信九高速公路边坡植物防护技术及施工验收要求[J].公路.2003(3):120-124.
    [119]张运超,蒋进,宋春武,等.4种剂型保水剂吸水和保水特性研究[J].水土保持通报.2011(6):99-103.
    [120]张增强,薛澄泽.污泥堆肥对几种花卉的生长响应研究[J].环境污染与防治.1996(5):1-4.
    [121]赵方莹,孙保平,张洪江等.矿山生态植被恢复技术[Z].北京:中国林业出版社,2009.
    [122]赵锡如.火炬树抗旱对比试验[J].河北农业大学学报.1984(2):10-14.
    [123]赵志进.目前国内外研究水土流失规律的动态[J].水土保持科技情报.1983(3):46-47.
    [124]William J. Mitsch, Sven Erik Jorgensen著,陈淑珍译.生态工程与生态系统重建[D].台北:六合出版社,2005.
    [125]周立祥,胡霭堂,戈乃玢,等.城市污泥土地利用研究[J].生态学报.1999a(2):43-51.
    [126]周连碧,王琼,代宏文.矿山废弃地生态修复研究与实践[D].北京:中国环境科学出版社,2010.
    [127]B G, C L, A1 P M E. Monitoring of abandoned quarries by remote sensing and in situ surveying[J]. Ecological Modeling.2003,23(8):1470-1476.
    [128]Bradshaw A D, Huttl RF.2001. Future minesite restoration involves a broader approach. Ecol Eng,17:87-90.
    [129]Clemente A S, C W, Maguas C E A. Restoration of a limestone quarry:effect of soil amendments on the establishment of native Mediterranean Sclerophyllous shrubs[J]. Restoration Ecology.2004,12(1):20-28.
    [130]Cullen W L Wheater C P D P J. Establishment of species-rich vegetation on reclaimed limestone quarry faces in Derbyshire Biological Conservation[Z].1998:84,25-33.
    [131]Enright NJ, Lamount BB. Survival, growth and water relations of Banksia seedlings on a sand mine rehabilitation site and adjacent scrub heath sites. J Appl Ecol,1992,29:663-671
    [132]Fanta, J. Forest ecosystem development on degraded and reclaimed sites[J]. Ecological Engineering,1994,3:1-3.
    [133]Gunn J, Bailey D. Limestone quarrying and quarry reclamation in Britain. Environmental Geology,1993,21:167-172.
    [134]Hu:ttl, R. F. and A. B. Brawshaw, eds. Ecology of post mining landscapes. Special issue. Ecological Engineering,2001.17:87-330.
    [135]Huang C, Bradford J M. Por Tab. Laser scanner for measuring soil surface roughness [J]. Soil Sci. Soc. Am. J.1990,54:1402-1406.
    [136]JordanD, Ponder F, HubbardV C. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity[J]. Applied Soil Ecology,2003,23 (1):33-41.
    [137]K C, M A, M J. Spontaneous vegetation dynamics and restoration prospects for limestone quarries in Lebanon[J]. Applied Vegetation Science.2003b,170(2-3):213-218.
    [138]Kilian, W and Fanta, eds. Degradation and restoration of forests. Special issue. Ecological Engineering,1998,10:1-106.
    [139]Lue-Hing C, et al. Metropolitan water reclamation district of greater Chicago's experience on beneficial use of sewage sludge-awwessing the impacts upon water. Soil and crops [A].In:Proc. Of 15th world congress of soil science symp[C].Mexico:International society of soil science and mexical society of soil science,1994,12(2):13.
    [140]Mitsch, W. J. and U. Mander, eds.1997. Ecological Engineering in central and eastern Europe: remediation of ecosystems damaged by environmental contamination. Special issue. Ecological Engineering 8:247-346.
    [141]N J, K M. Proximity of valuable habitats affects succession patterns in abandoned quarries[J]. Ecological Engineering.2006,64(2):113-122.
    [142]Poesen J, Lavee H. Rock fragments in top soils significance and processes [J]. Catena,1994, 23(1-2):1-28
    [143]Seip, H. M., Pawlowski, and T. J. Sullivan. Environmental degration due to heavy metals and acidifying deposition:a Polish-Scandinavian workshop. Special issue. Ecological Engineering, 1994,3:205-312.
    [144]TubeilehA, Groleau-R enaud V, P lantureux S, et al. Effect of soil compaction on photosyn thesis and carbon partitioning with in a maize soil system[J]. Soil& Tillage Research,2003,71: 151-161.
    [145]Wali, M. K.,1999. Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant and Soil 213:195-220.
    [146]Wali, M. K., ed.1992. Environmental Rehabilitation:Preamble to Sustainable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700