用户名: 密码: 验证码:
多尺度下裂纹断裂过程区力学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以应力腐蚀破裂(SCC)为代表的环境致裂(EAC)问题是影响核电设备长期安全运行的关键问题,而裂纹尖端微观区域的力学状态是影响环境致裂裂纹扩展速率的重要因素之一。借助多尺度方法,本文对裂纹断裂过程区力学特性进行了分析和研究。
     主要完成研究内容和取得成果如下:
     (1)利用有限元软件计算出紧凑拉伸试样的裂纹尖端应力强度因子KI值,其结果与理论值一致,从而验证了利用ABAQUS计算裂纹尖端相关断裂参量的可行性;
     (2)在研究内聚应力等相关理论的基础上,推导出了研究尺度与材料弹性模量的近似关系,并确定了介观尺度上的弹性模量;
     (3)在宏观尺度上建立了全局有限元计算模型和子模型,得到了裂纹尖端应力应变场分布,结果表明利用子模型技术获得比较准确的裂纹尖端应力应变场分布是可行的;
     (4)在介观尺度上利用平均晶粒尺度的方式建立了裂纹沿晶扩展模型,得到了裂纹尖端断裂过程区的微观应力应变场;
     (5)当应力强度因子为30MPa.m~(1/2)时,分析了介观尺度上在裂纹沿晶扩展过程中裂纹长度对Mises应力、最大主应力和应变的影响,结果表明,裂纹扩展长度对试样整体应力应变分布影响不大,而对裂纹尖端区域有较大影响;
     (6)介观尺度上对比分析了弹性模量为210GPa和420GPa时在裂纹扩张过程中的裂纹尖端应力应变场,结果表明弹性模量对应力的影响较大而对应变的影响不明显。
     本文研究成果为进一步分析研究裂纹尖端断裂过程区的应力应变状况,以及EAC裂纹扩展定量预测研究奠定了一定的理论基础。
Environmentally assisted cracking (EAC), especially stress corrosion cracking (SCC), is a core issue in the long-term safety operation of the nuclear power equipments, and the mechanical state in crack tip is one of the important factors affecting the EAC growth rate. With multi-scale method, the mechanical properties in the fracture process zone were analyzed and researched in this study.
     The main research tasks and results are as follows:
     (1) Through comparing the stress intensity factor (KI) of compact tension specimen calculated by finite element software with the theoretical value, the feasibility of calculating fracture parameters of crack tip in ABAQUS software was verified.
     (2) The relationship between the elastic modulus (E) of the material and research scale was studied based on deriving the cohesive stress theory and other relevant theories. And the elastic modulus of the material on meso-scale was determined.
     (3) Global model and sub-model of the finite element were built in the macro-scale, and stress-strain field nearby the crack tip was analyzed, and the results show that the detailed stress-strain in the crack tip could be obtained by using the sub-model technique.
     (4) In meso-scale, the crack growth model was also established by assuming the crack propagating along the grain boundary, and the detailed stress-strain field in the crack tip was obtained.
     (5) The effect of crack length on Von Mises stress, and maximum principal stress and strain was analyzed in meso-scale when equivalent KI equals 30MPa.m~(1/2). And the results show that except for crack tip area, the stress-strain distribution in whole specimen is not affected.
     (6) The stress-strain in the crack tip was analyzed when the elastic modulus is 210GPa and 420GPa in meso-scale, respectively, and the results show that the elastic modulus has great influence on stress but little on strain.
     The conclusions provide a theoretical foundation for further analyzing the stress-strain in the fracture process zone and researching the stress corrosion cracking along the grain boundary.
引文
[1]杨卫.宏微观断裂力学.北京:国防工业出版社, 1995
    [2] P.L.Andresen, K.Gott and J.L.Nelson. Stress corrosion cracking of sensitized type 304 stainless steel in 288°C water: a five laboratory round bobbin, Proceedings of the 9th International Symposium on Environmental Degradation of Material in Nuclear Power Systems-Water Reactors, S. Bruemmer, et al eds., Newport Beach, California, 423-433, 1999
    [3]杨武.核电工程材料的应力腐蚀破裂研究.腐蚀科学与防护技术, 7(2), 87-92, 1995
    [4]卢建树,王保峰,张九渊.高温水中不锈钢和镍基合金应力腐蚀破裂研究进展.核动力工程, 22 (3), 259-263, 2001
    [5] http://www.ustb.edu.cn/esf/index.htm
    [6]褚武扬,谷飚.应力腐蚀机理研究的新进展.腐蚀科学与防护技术, 7(2), 97-101, 1995
    [7]沈长斌,陶晓杰,杨怀玉等.高温高压水环境下传热管失效形式及防腐措施研究进展.腐蚀科学与防护技术, 15(4), 223-227, 2003
    [8]陆永浩,褚武扬,高克玮等. 304L不锈钢在高温水中的应力腐蚀裂纹扩展.金属学报, 40(7), 763-767, 2004
    [9]蔡艳红.粘弹性材料动态扩展裂纹尖端场:[学位论文].哈尔滨工程大学,2003
    [10]J.Toribio, V.Kharin. Finite-deformation analysis of the crack-tip fields under cyclic loading. International Journal of Solids and Structures, 46(9), 1937-1952,2009
    [11]X.K.Zhu, G.T.Liu and Y.J.Chao. Three-dimensional stress and displacement fields near an elliptical crack front. International Journal of Fracture, 383-401,2001
    [12]W.J. Chang, M.Kim and J.Pan, Quasi-statically growing crack-tip fields in elastic perfectly plastic pressure-sensitive materials under plane strain conditions. International Journal of Fracture, 84(3),1997
    [13]麻文军,唐立强.压力敏感性材料准静态扩展裂纹尖端场.哈尔滨工程大学学报, 30(1), 116-120,2009
    [14]吴国辉,唐立强,杨勇.粘弹性材料中动态扩展裂纹尖端场的分析.哈尔滨工程大学学报, 28(10), 1089-1094,2007
    [15]李俊林,张少琴,杨维阳.正交异性双材料界面裂纹尖端应力场.应用数学和力学, 29(8), 947-953,2008
    [16]李永东,张丙喜.压剪载荷作用下界面裂纹尖端场的研究.力学学报, 35(1),85-89, 2003
    [17] S.Saxena and N.Ramakrishnan. A comparison of micro, meso and macro scale FEM analysis of ductile fracture in a CT specimen (mode I). Computational Materials Science, 39, 1-7, 2007
    [18] S.P.Xiao and T.Belytschko. A bridging domain method for coupling continua with molecular dynamics.Computer Methods in Applied mechanics and Engineering, 193, 1645-1669, 2004
    [19] S.Dumoulin, E.P.Busso and N.P.O’Dowd. A multiscale approach for coupled phenomena in FCC materials at high temperatures. Philosophical Magazine, 83(31-34), 3895-3916, 2003
    [20] A.P.Jivkov, N.P.C.Stevens and T.J.Marrow. A three-dimensional computational model for intergranular cracking. Computational Materials Science, 38(2), 442-453, 2006
    [21] M.Kova? and L.Cizelj. Mesoscopic approach to modeling elastic-plastic polycrystalline material behavior. Proceedings of International Conference of Nuclear Energy in Central Europe, Portoro?, Slovenia, 2001
    [22] M.Dao and M.Li. A micromechanics study on strain-localization-induced fracture initiation in bending using crystal plasticity models. Philosophical Magazine A, 81(8), 1997-2020, 2001
    [23] Y.W.Kwon. Multi-scale modeling of mechanical behavior of polycrystalline materials. Journal of Computer Aided Materials Design, 11, 43–57, 2004
    [24] R.Ding, Z.X.Guo and M.Qian. Coupled mesoscopic constitutive modeling and finite element simulation for plastic flow and microstructure of two-phase alloys. Computational Materials Science, 39, (To be published), 2007
    [25]中国力学学会.材料力学行为与微尺度效应-中国科协青年科学家论坛第108次活动纪要. http://www.cstam.org.cn
    [26]杨小彬,庄茁,庄传晶.富气输送管道裂纹动态扩展的数值模拟.清华大学学报(自然科学版), 48(8),1355-1358, 2008
    [27]温志勋,岳珠峰,于庆明等.镍基单晶合金CT试样裂纹尖端应力结构及晶体滑移特性.航空学报. 28(4),964-970, 2007
    [28]余天堂.含裂纹体的数值模拟.岩石力学与工程学报, 2005,24(24), 4434-4439
    [29]孟庆国,靳征谟. "材料损伤断裂机理和宏微观力学理论"研究硕果.中国科学基金, 12(4), 258-260,1998
    [30]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论.北京:清华大学出版社, 1999
    [31]郭雅芳,王崇愚.多尺度材料模型研究及应用.材料导报, 2001, 15(7)
    [32]李庆芬.断裂力学及其工程应用.哈尔滨工程大学出版社, 2004
    [33] Fracture Mechanics in Abaqus. http://www.simwe/forum
    [34]伍义生,陈一坚,曾春华.微观断裂力学.西北工业大学出版社, 1987.2
    [35]俞铭华,吴剑国.有限元法与C程序设计.科学出版社, 1998
    [36]张洪武,关振群等.有限元分析与CAE技术基础.清华大学出版社, 2004
    [37]庄茁,张帆,岑松等. ABAQUS非线性有限元分析与实例.北京:科学技术出版社, 2005
    [38]计算力学. http://www.xauat.edu.cn
    [39]石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社, 2006
    [40]中国仿真互动. http://www.simwe.com.cn
    [41]赵腾伦. ABAQUS 6.6在机械工程中的应用.北京:中国水利水电出版社, 2007
    [42]中国航空研究院.应力强度因子手册.北京:科学出版社, 1981
    [43]高庆.工程断裂力学.重庆:重庆大学出版社, 1996
    [44]陆毅中.工程断裂力学.西安:西安交通大学出版社, 1987
    [45] X.S.Gao, G.H. Zhang and T.S.Srivasan. A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. Materials science & engineering A,415, 264-272,2006
    [46] T.N.Euclydes, R.Claudio. Micromechanics characterization of constraint and ductile tearing effects in small scale yielding fracture. International Journal of Solids and Structures,38,2171-2187,2001
    [47] Jason P.Petti, Robert H.Dodds Jr. Ductile tearing and discrete void effects on cleavage fracture under small-scale yielding conditions. International Journal of Solids and Structures,42,3655-3676,2005
    [48] R.Claudio, X.S.Gao and Robert H.Dodds Jr. Transferability of elastic-plastic fracture toughness using the Weibull stress approach: significance of parameter calibration. Engineering Fracture Mechanics,67,101-117,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700