用户名: 密码: 验证码:
含孔洞压力敏感性材料裂纹尖端渐近场的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对裂纹尖端渐近场的研究是断裂力学研究的重要课题之一。通过深入研究裂纹尖端物理量(应力、应变等)的分布及其力学本质,可以为建立材料的破坏准则以及评价结构的可靠性提供理论上的参考依据。
     对裂纹尖端场做渐近分析是一个十分复杂的问题。为了简化问题的复杂性,在裂纹尖端渐近场的弹塑性分析中,人们通常假设材料是塑性不可压缩的。然而,自然界中的大量材料并不是这样的,它们在外载荷的作用下会产生较大的塑性体积变形,是塑性可压缩的,称之为压力敏感性材料(如:岩石、土壤、泡沫金属、聚合物、橡胶材料等)。在这类材料中通常含有复杂的微观结构(如:微裂纹、夹杂、孔洞等),影响着裂纹尖端渐近场物理量的分布,因而对含孔洞压力敏感性材料裂纹尖端渐近场进行研究更具普遍意义。
     本文在综述裂纹尖端渐近场研究的历史和现状的基础上,采用损伤力学、断裂力学和弹塑性力学的理论,对含孔洞压力敏感性材料裂纹尖端渐近场问题进行深入细致的研究。主要工作如下:
     1、运用Gurson模型,推导出含细观参数和压力敏感性材料参数的塑性宏观屈服面方程,讨论了基体材料参数和损伤参数(孔隙度)对宏观屈服面的影响,建立了线性硬化条件下含孔洞压力敏感性材料的本构方程。
     2、运用压力敏感性材料的抛物型屈服准则和正交流动法则下的本构方程,在平面应力条件下,研究了压力敏感性材料起始扩展裂纹问题。给出I型、II型以及临界状态起始扩展裂纹尖端渐近场的基本构造为:I型裂纹可构造为两个弹性区和一个扇形区的“三区解”;II型裂纹可构造为两个弹性区、两个均匀应力区和三个扇形区的“七区解”;对于临界状态则较为复杂,当压力敏感性系数m=0时,可构造为两个均匀应力区和一个扇形区的“三区解”,当压力敏感性系数m>0时,可构造为一个均匀应力区、一个弹性区和一个扇形区的“三区解”。通过数值计算给出了裂纹尖端应力的角分布曲线,讨论了压力敏感性系数m对裂纹尖端渐近场的影响,讨论了场中应变的奇异性。
     3、运用含孔洞压力敏感性材料的屈服准则和线性硬化条件下的本构方程,在平面应力条件下,研究了含孔洞压力敏感性材料准静态裂纹问题。根据奇异性量级分析,推导出含孔洞压力敏感性材料准静态裂纹尖端的塑性区和弹性区的控制方程。运用边界条件和裂纹特点计算出初值,采用双参数打靶法,给出了I型、II型裂纹尖端的渐进解。绘制了不同参数下的角分布曲线。讨论了不同参数对裂纹尖端应力场、速度场的影响。结果表明,孔隙度f对I型和II型裂纹尖端渐近场的影响都较大,压力敏感性系数m对I型裂纹尖端渐近场影响较大,对II型裂纹尖端渐近场影响较小。
     4、运用含孔洞的压力敏感性材料的屈服准则和线性硬化条件下的本构方程,在平面应力条件下,研究了含孔洞压力敏感性材料在刚性表面上的界面裂纹问题。根据界面裂纹的特点及边界条件,计算出初值,采用双参数打靶法,给出了I型、II型裂纹尖端的渐进解。绘制了不同参数下的角分布曲线。讨论了不同参数对裂纹尖端应力场、速度场的影响。结果表明,材料常数αG对I型和II型裂纹尖端渐近场的影响较大,孔隙度f对I型裂纹尖端渐近场的影响较大,而对II型裂纹尖端渐近场的影响较小。
     裂纹尖端渐近场的力学分析一直是一个十分复杂的力学问题。本文运用含孔洞压力敏感性材料的屈服准则和本构模型,给出了裂纹尖端的构造和控制方程,得出了渐近解,绘制了相应的角分布曲线,讨论了不同参数对裂纹尖端渐近场的影响。这些工作对裂纹尖端渐近场问题的研究进行了有益探索,为解决实际工程中的裂纹问题和建立材料的破坏准则提供理论参考依据,具有重要的现实意义。
Study on asymptotic crack tip field is an important subject of fracture mechanics. In orderto provide theoretical reference for the material failure criterion and the structural reliability, wemust in-depth study the distribution of the crack tip physical quantities (stress, strain, etc.) and itsmechanical essence.
     Asymptotic analysis of the crack tip field is a complex problem. In order to reduce thecomplexity, we often assume that the material is plastic incompressible in the asymptotic cracktip field. However, a large number of materials called pressure sensitive material (such as rocks,soil, foam metal, polymer, rubber materials, etc.) will produce a large plastic volumetricdegeneration under external loads. These materials contain complex microscopic structures (suchas micro-cracks, inclusions, pores, etc.) which effect the distribution of physical parameters ofthe asymptotic crack tip field under external loads. Therefore, it is a universal significant to studyon asymptotic crack tip field in pressure sensitive material.
     Based on the study of the history and current situation of the asymptotic crack tip field, thisdissertation researches the asymptotic crack tip field through the damage mechanics, fracturemechanics and elastic-plastic mechanics theory. The main work is summarized as follows:
     1.From Gurson model, the plastic macroscopic yield surface equation containing themesoscopic parameters and pressure-sensitive parameters are obtained. The effect of themacroscopic yield surface equation with the matrix material parameters and injury parameters(porosity) are discussed. Under the linear hardening conditions, the constitutive equation forpressure-sensitive materials with holes is established.
     2. Under plane stress condition, with the parabolic yield criterion and orthogonal flow rulethe constitutive equation for pressure sensitive materials is established. The basic structure ofmode I, mode II and the critical state of the asymptotic crack tip field before growing issummarized as follows: For mode I crack, it is divided into two elastic zones and a fan zone ofthe “solution with three zones”. For mode II crack, it is divided into two elastic zones, twouniform stress zones and three fan zones “solution with seven zones”. For the critical state, it isdivided into two uniform stress zones and a fan zone of the “solution with three zones” whenm=0. And it is divided into one uniform stress zones, one elastic zone and a fan zone of the“solution with three zones” when m>0. Angular variation curve of stress for asymptotic cracktip field is obtained. The effect of the pressure sensitive parameters m for asymptotic crack tip field is discussed. The singularity of the strain field is also discussed.
     3. Under the plane stress conditions, quasi-static propagating crack for thepressure-sensitive materials with holes is studied. According to the analysis of singularity, theplastic zone and elastic zone control equation of the crack tip is deduced for the pressuresensitive material with holes. With the characteristics of the quasi-static propagating crack andboundary conditions, the initial value is calculated. Using the two-parameters shooting method,mode I and mode II asymptotic solutions in crack tip is obtained. Angular variation curve ofstress and velocity for asymptotic crack tip field is obtained. The impact of the crack tip stressfield and velocity field with the different parameters are discussed. The results show that theporosity f take great impact of the asymptotic crack tip field and the pressure sensitivitycoefficient m take greater impact of the mode I than mode on the asymptotic crack tip field.
     4. Under the plane stress conditions, rigid interface crack propagation for thepressure-sensitive materials with holes is studied. According to the characteristics of theinterface crack and boundary conditions, the initial value is calculated. Using the two-parametersshooting method, mode I and mode II asymptotic solutions in crack tip is obtained. Angularvariation curve of stress and velocity for asymptotic crack tip field is obtained. The impact of thecrack tip stress field and velocity field with the different parameters are discussed. The resultsshow that the porosity f take great impact of the asymptotic crack tip field and the materialconstantsα Gtake greater impact of the mode I than mode on the asymptotic crack tip field.
     The mechanical analysis of the asymptotic crack tip field is a very complex problem. In thisdissertation, the pressure sensitive materials yield condition and the constitutive model is used.The structure and the control equation of the crack tip deduced and the asymptotic solution isobtained. The angular distribution curve is drawn and the impact of the asymptotic crack tip fieldwith different parameters discussed. This work is useful of the asymptotic crack tip field. It hasimportant significance for the actual project and the failure criterion.
引文
[1] Carroll M M. Appl Mech Rev[M].1985,38(10):1256-1260
    [2]张学言.土塑性力学的建立与发展[J].力学进展.1989,19(4):485-495
    [3]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009
    [4]匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002
    [5]黄克智,余寿文.弹塑性断裂力学[M].北京:清华大学出版社,1985
    [6] Griffith A A. The phenomena of rupture and flow in solids [J]. Philosophical Tansactions of the RoyalSociety of London A,1921,221:163-198
    [7] Griffith A A. The theory of rupture[C]. In Proceedings of the First Congress of Applied Mechanics,192455-63
    [8] Irwin G R. Fracture dynamics, in fracture of metals [J]. Cleveland, Am. Soc. Metals.1948:147-166
    [9] Orowan E. Fracture and strength of solids [J]. Reports on Progress in Physics,1948, XII:185
    [10] Irwin G R. Analysis of stress and strains near the end of a crack transversing a plate [J]. J. AppliedMechanics,1957,24:109-114
    [11] Wells A A. Applications of fracture mechanics and beyond general yielding[J]. British Welding Journal,1963,10:563-570
    [12] Liebowitz H. Fracture: an advanced treatise[M]. New York: Academic. Pre88.1968: I-VII
    [13] Sih G C. Mechanics of fracture [M]. Leyden: Noordhoff International Publishing,1973-1979
    [14] Rice J R. A path independent integral and the approximate analysis of strain concentration by notchesand cracks [J]. J. Appl. Mech.1968,35:379-386
    [15] Hutchinson J W. Singular bebavior at the end of a tensile crack tip in a hardening materials [J]. J. Mech.Phys. Solids,1968,16:13-31
    [16] Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power law hardening material[J]. J. Mech. Phys. Solids,1968,16:1-12
    [17] Hutchinson J W. Plastic stress and strain field at a crack tip [J]. Journal of Mechanics and Physics ofSolids.1968,16(4):337-347
    [18] Shih C F. Small-scale yielding analysis of mixed mode plane strain crack problems [J]. In Fractureanalysis. ASTM. STP.1974,560:187-210
    [19]高玉臣.裂纹起始扩展的弹塑性场[J].固体力学学报.1980,12(1):67-76
    [20] Gao Y C, Hwang K C. Elastic-plastic fields in steady crack growth[C]. In Three-DimensionalConstitutive Relations and Ductile Fracture. Nemat-Nasser S. ed. North-Holland Publication Company.1980:417-434
    [21] Gao Y C, Hwang K C. Elastic-plastic fields in steady crack growth in a strain-hardening material [J].ICF5in Advances in Fracture Research. Francois D. ed. V2, Pergamon Press,1981:669-682
    [22]高玉臣,黄克智.理想弹塑性平面应变问题[J].力学学报.1981年特刊:111-120
    [23]高玉臣.理想弹塑性平面应力问题[J].固体力学学报.1982,3(3):339-350
    [24] Gao Y C, Hwang K C. On the formulation of plane strain problems for elastic perfectly-plastic medium[J]. International Journal of Engineering Science.1983,21(7):765-780
    [25] Dong P, Pan J. Asymptotic crack-tip fields for perfectly plastic solids underplane-stress andmixed-mode loading conditions [J]. Journal of Applied Mechanics,1990,57:635-638
    [26]唐立强,黄克智.理想正交各向异性弹塑性材料平面应力条件下I型静止裂纹尖端渐近场[J].力学学报.1991,23(4):448-457
    [27]靳志和,余寿文.理想弹塑性材料平面应力I型裂纹尖端的弹塑性场[J].力学学报.1987,19(5):483-457
    [28] Sham T L, Hancock J W. Mode I crack tip fields with incomplete crack tip plasticity in plane stress [J].Journal of the Mechanics and Physics of Solids.1999,47,2011-2027
    [29] Rahman M, Hancock J W. Elastic perfectly-plastic asymptotic mixed mode crack tip fields inplanestress [J]. International Journal of Solids and Structures.2006,43:3692-3704
    [30] Chitelay A D, McClintock F A. Elastic-plastic mechanics of steady crack growth under anti-plane shear[J]. Journal of Mechanics and Physics of Solids.1971,19(3):147-163
    [31] Slepyan L I. Growing crack during plane deformation of an elastic-plastic body [J]. Izv. Akad. Nauk.SSSR. MekhanikaTverdogoTela.1974,9(1):57-67
    [32]高玉臣.理想塑性介质中裂纹定常扩展的弹塑性场[J].力学学报.1980,12(1):48-56
    [33] Rice J R, Drugan W J, Sham T L. Elastic-plastic analysis of growing crack [J]. Fracture Mechanics:ASTM STP700.1980:189-221
    [34] Hui C Y, Riedel H. The asymptotic stress and strain field near the tip of a growing crack under creepconditions [J]. International Journal of Fracture.1981,17(4):409-425
    [35] Hui C Y. The mechanics of self-similar crack growth in an elastic power-law creeping material [J]. Int.J. Solids Structs.1986,22(4):357-372
    [36] Hui C Y, Taher M and Saif A. Asymptotic stress field of a mode III crack growing along anelastic-elastic power law creeping bi-material interface [J]. Transactions of the ASME. J. Appl. Mech.1994,61(3):384-389
    [37] Taher M, Saif A and Hui C Y. Plane strain asymptotic field of a crack growing along an elastic-elasticpower law creeping bi-material interface [J]. J. Mech. Phys. Solids.1994,42(2):181-214
    [38] Tang L Q, Li Y D and Liu C H. Asymptotic Analysis of Mode Ⅱ Stationary Growth Crack onElastic-Elastic Power Law Creeping Bimaterial Interface [J]. Applied Mathematics and Mechanics.2004,25(2):228-235
    [39] Hui H D.著.高玉臣.译.材料的力学反问题引论[M].哈尔滨:哈尔滨工程大学出版社.1995.
    [40] Yang W, Freund L B. An analysis of antiplane shear crack growth in a rate sensitive material [J].International Journal of Fracture.1986,30(3):157-174
    [41] Chang T C, Popelar C H, Staab G H. Creep crack growth in an elastic-creeping material [J]. Part I:mode III. International Journal of Fracture.1987,33(1):17-30
    [42] Chang T C, Popelar C H, Staab G H. Creep crack growth in an elastic-creeping material [J]. Part II:mode I. International Journal of Fracture.1987,33(1):31-45
    [43] Delph T J, Stengle G A. An analysis of the Hui-Riedel equation. International Journal of Fracture [J].1989,40(4):295-305
    [44] Delph T J. The steadily propagating viscoplastic crack with elastic unloading [J]. International Journalof Fracture.1994,68(2):183-191
    [45] Tang S, Guo T F and Cheng L. Creep fracture toughness using conventional and cell elementapproaches [J]. Computational Materials Science.2008,44:138-144
    [46] Tang S, Guo T F and Cheng L. Rate effects on toughness in elastic nonlinear viscous solids [J]. J. Mech.Phys. Solids.2008,56:974-992
    [47] Slepyan L I. Crack dynamics in an elastic-plastic body [J]. Izv. Akad. Nauk. SSSR.MekhanikaTverdogoTela.1976,11(2):126-135
    [48] Gao Y C, Nemat-Nasser S. Dynamic fields near a crack tip growing in an elastic-perfectly-plasticmaterial [J]. Mechanics of Materials.1983,2(1):47-60
    [49] Leighton J T, Champion C R, Freund L B. Asymptotic analysis of steady dynamic crack growing in anelastic-plastic material [J]. Journal of Mechanics and Physics of Solids.1987,35(5):541-563
    [50] Zhu X K, Hwang K C. Dynamic crack-tip field for tensile cracks propagating in power-law hardeningmaterials [J]. International Journal of Fracture.2002,115:323-342
    [51] Zhu X K, Hwang K C. Asymptotic crack-tip fields for dynamic crack growth in compressivepower-law hardening materials [J]. International Journal of Solids and Structures.2008,45:3644-3659
    [52] Hutchinson J W. A course on nonlinear fracture mechanics [M]. The Technical University of Denmark,1979
    [53] Rice J R. Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded bylongitudinal shear [J]. In. J. of Fracture Mech.1966,2(2):426-447
    [54] Rice J R. Elastic-plastic crack growth in Mechanics of solids [J]. Rodney Hill60th AnniversaryVolume. Hopkins H G and Sewell M J ed. Oxford: Pergamon Press.1981:539-562
    [55]高玉臣.裂纹尖端的弹塑性场[J].力学学报.1981年特刊:100-110
    [56] Gao Y C. The influence of compressibility on the elastic-plastic field of a growing crack. In ASTM2nd International Symposium on Elastic-Plastic Fracture Mechanics. Philadelphia.1981:6-10
    [57] Drugan W J, Rice J R, Sham T L. Asymptotic analysis of growing plane strain tensile cracks inelastic-ideally plastic solids [J]. Journal of Mechanics and Physics of Solids.1982,30(6):447-473
    [58]罗学富,黄克智.可压缩弹塑性扩展裂纹尖端渐近场问题的正确提法及其解[J].中国科学A辑.1988,12:1274-1282
    [59] Gao Y C. Logarithm strain singularity at tip of mode I growing crack in elastic and perfectly plasticmaterial [J]. Theoretical and Applied Fracture Mechanics.1996,25(2):85-102
    [60]沈成康.断裂力学[M].上海:同济大学出版社.1996:20-33,159-202,253-254
    [61]杨卫.宏微观断裂力学[M].北京:国防工业出版社.1995:1-131
    [62] McMeeking R M, Parks D M. Elastic-plastic fracture [J]. ASTM STP668,1979:175-194
    [63] Sih C F, German M D. Requirement for a one parameter characterization of crack tip fields by the HRRsingularity [J]. I. J. Fracture,1981,17:27-43
    [64] Hancock J W, cowling M J. Role of state of stress in crack tip failure processes [J]. Metal Science,1980,14:293-304
    [65] De Castro P M S T, Spurrire J, Hancock P. An experimental study of the crack length/specimen widhration dependence for the crack opening displacement test using smale scale specimen [J]. FractureMechanics, ASTM STP677, Philadelphia,486-497
    [66]李尧臣,王自强.平面应变I型非线性裂纹问题的高阶渐近解[J].中国科学A,1986:182-194
    [67] Chao Y J, Yang S, Sutton M A. Asymptotic analysis of the crack tip fields to determine the region ofdominance of the HRR solution [C]. In Proceedings of the28th Annual Technical Meeting of theSociety of Engineering Science,1991
    [68]夏霖,自强.非线性材料裂纹问题的高阶渐近分析[J].力学学报(英文版),1992,8:156-163
    [69] Xia L, Wang T C, Shih C F. High order analysis of crack tip fields in power law hardening materials [J].J. Mech, Phys. Solids,1993,41:665-687
    [70] O’Dowd N P, Shih C F, Dodds. The role of geometry and crack growth on constrain and applicationsfor ductile/brittle fracture[C]. In ASTM STP1224, Philadelphia,1994
    [71]范天佑.断裂动力学引论[M].北京:北京理工大学出版社.1990
    [72] Kanninen M F and Popelar C H. Advanced Fracture Mechanics [M]. Oxford University Press, NewYork, Clarendon Press, Oxford,1985
    [73] Stepanova L V, Fedina M Y. Self-similar solution of a tensile crack problem in a coupled formulation[J]. Journal of Applied Mathematics and Mechanics.2008,72:360-368
    [74] Larisa Stepanova. Eigenspectra and orders of stress singularity at a mode I crack tip for a power-lawmedium [J]. ComptesRendusMecanique.2008,336:232-237
    [75] Enrico Radi and Benjamin Loret. Mode I intersonic crack propagation in poroelastic media [J].Mechanics of Materials.2008,40:524-548
    [76] Paliwal B, Ramesh K T. An interacting micro-crack damage model for failure of brittlematerials undercompression [J]. Journal of the Mechanics and Physics of Solids.2008,56:896-923
    [77] Sih G C. Crack tip mechanics based on progressive damage of arrow: Hierarchy of singularities andmultiscalesegments [J]. Theoretical and Applied Fracture Mechanics.2009,51:11-32
    [78]黄克智,黄永刚.固体本构关系[M].清华大学出版社,2002
    [79] Fleck N A and Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity [J]. J.Mech. Phys. Solids,1993,41:1825-1857
    [80] Fleck N A, Hutchinson J W. Strain gradient plasticity [J]. In: Hutchinson J W and Wu T Y, eds. J. Mech.Phys. Solids,1993,41:1825-1857
    [81] Acharya A and Shawki T G. Thermodynamics restriction on constitutive equation for second-deformation-gradient inelastic behavior [J]. J. Mech. Phys. Solids,1995,43:1751-1772
    [82] Fleck N A, Muller G M, Ashby M. F, et al. Strain gradient plasticity: theory and experiment [J]. ActaMetall. Mater.1994,42:475-487
    [83] Stolken J S, Evans A G. A microbend test methold for measuring the palsticity length scale [J]. ActaMater.1998,46:5109-5115
    [84] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-I. Theory [J]. J. Mech.Phys. Solids,1999,47:1239-1263
    [85] Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity-II. analysis [J]. J. Mech.Phys. Solids,2000,48:99-128
    [86] Huang Y, Xue Z, Gao H, et al. A study of micro-indentation hardness tests by mechanism-based straingradient plasticity [J]. J. Mater. Res.2000,15:1786-1796
    [87] Xia Z C and Hutchinson J W. Mechanism-based strain gradient plasticity [J]. J. Mech. Phys. Solids,1996,44:1621-1648
    [88] Huang Y, Zhang L, Guo T F, et al. Near-tip fields for cracks in materials with strain-gradient effects [C].In: Willis J R. eds. Prodeedings of IUTAM Symposium on Nonlinear Analysis of Fracture. Cambridge,England: Kluwer Academic Piblishers,1995,231-242
    [89] Huang Y, Zhang L, Guo T F, et al. Mixed mode near-tip fields for cracks in materials withstrain-gradient effects [J]. J. Mech. Phys. Solids,1997,45:439-465
    [90] Huang Y, Chen J Y, Guo T F, et al. Analytic and numerical studies on mode I and mode II fracture inelastic-plastic materials with strain gradient effects [J]. Int. J. Fracture,1999,100:1-27
    [91] Qiu X M, Guo T F, Hutchinson J W, et al. FEM solitions for plane stress mode-I and mode-II fracturein elastic-plastic materials with strain gradient effects [J]. Science in China (A),2003,43:969-979
    [92] Chen J Y, Wei Y, Huang Y, et al. The crack tip in strain gradient plasticity: the asymptotic andnumerical analysis [J]. Eng. Fracture Mech,1999,64:625-648
    [93] Shi M X, Huang Y, Gao H, et al. Non-existence of separable crack tip field in mechanism-based straingradient plasticty [J]. Int. J. Solids Struct,2000,37:5995-6010
    [94] Williams M L. The stresses around a fault or crack in dissimilar media [J]. Bulletin of the Seismoloicalsociety of America,1959,49(2):199-204
    [95] Rice J R. Elastic fracture mechanics concepts for interfacial cracks [J]. ASME J Appl Mech,1988,55(1):98-103
    [96] Erdogan F. Stress distribution in bonded dissimilar materials with cracks [J]. ASME J Appl Mech,1965,32:403-410
    [97] Comninou M. The interfacial crack [J]. J Appl Mech,1977,44:631-636
    [98] Knowles J K, Sternberg E. Large deformations near a tip of an interface-crack between twoNeo-Hookean sheets [J]. J. Elasticity,1983,13:257-293
    [99] Hao T H. Nonlinear response of mode I crack on bi-material interfaces [J]. Int J Fract,1989,41:23-28
    [100] Shih C F, Asaro R J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part I: Small ScaleYielding [J]. J Appl Mech,1988,55:229-316
    [101] Shih C F, Asaro R J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part Ⅱ: Structure ofSmall Scale YieldingFields [J]. J Appl Mech,1989,56:763-779
    [102] Shih C F, Asaro R J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part III: Large ScaleYielding [J]. J Appl Mech,1991,58:450-463
    [103] Wang T C. Elastic-plastic Asymptotic Fields for Cracks on Bi-material Interfaces [J]. Engng FractMech,1990,37(3):527-538
    [104] Taher M, Saif A, Hui C Y. Plane strain asymptotic field of a crack growing along an elastic-elasticpower law creeping bi-material interface[J]. J Mech Phys Solids.1994,42(2):181-214
    [105] Tang L Q, Sun X G, Wang Z Q. Near tip field for stationary growth crack at the interface between anelasto-nonlinear viscous material and an elastic solid [C]. In FEFG’94, Acta Mechanica Solida Sinica,1995,8:646-650
    [106]李永东.刚性-粘弹性材料界面Ⅱ型裂纹准静态扩展的渐近解[J].哈尔滨工程大学学报,2000,21(2):69-73
    [107] Chang J and Xu J Q. The singular stress field and stress intensity factors of a crack terminating at abimaterialinterface [J]. International Journal of Mechanical Sciences.2007,49:888-897
    [108] Belhouari M, Gouasmi S, Bachirbouiadjra B, et al. Elastic-plastic analysis of interaction between aninterfacial crack and a subinterfacial microcrack in bi-materials [J]. Computational Materials Science.2008,43:924-929
    [109] Gao Y C. Analysis of the interface crack for rubber-like materials [J]. J. of Elasticity.2002,66:1-19
    [110] The role of constraint in the field of crack normal to the interface between elastically and plasticallymismatched solids [J]. J. Mech. Phys. Solids.2004,52:1093-1108
    [111] Collins I F. Elastic/plastic models for soils and sands [J]. Int. J. of Mechanical Sciences,2005,47(4-5):493-508
    [112] Collins I F, Kelly P A. A phermomechanics analysis of a family of Soil models [J]. Geotechnique,2002,26:1313-1347
    [113] Collins I F, Hilder T A. A theoretical framework for constructing elastic/plasticconstitutive models oftriaxial tests [J]. Int. J. of Numerical and Analytical Methods in Geomechanics.2002,26(13):1313-1347
    [114]陈惠发.土木工程材料的本构关系-塑性与建模[M].武汉:华中科技大学出版社,2001
    [115]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [116] Duva J M, Hutchinson J W. Constitutive potentials for dilutely voided nonlinear materials [J]. MechMater,1984(3):41-54
    [117] Leblond J B, Perrin G. Theoretical models for void coalescence in porous ductile solids [J]. Int. J.Solids Struct,2001(32):5581-5604
    [118]俞茂宏.强度理论百年总结[J].力学进展.2004,34(4):529-560
    [119]王自强.理性力学基础[M].北京:科学出版社,2000
    [120]王自强,段祝平.塑性细观力学[M].北京:科学出版社,1995:242-275
    [121] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J].Proc. Roy. Soc. London, A241,1957:376-396
    [122] Eshelby J D. Elastic inclusion and inhomogeneities, in Progress on Solid Mechanics [J]. In Sneddonand R Hill.1961, Vol.2:222-246
    [123] Budiansky B and O’Connell R J. Elastic moduli of a cracked solid [J]. Int. J. Solids Struct,1976,12(1):81-95
    [124] Mori T and Tanaka K. Average Stress in Matrix and Average Energy of Materials with MisfittingInclusions [J]. Act. Metall,1973,21:571-574
    [125] McClintock F A. A criterion of ductile fracture by growth of holes [J]. ASME, Journal of AppliedMechanics,1968,35:363-371
    [126] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of theMechanics and Physics of Solids,1969,17:201-207
    [127] Gurson A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-YieldCriteria and Flow Rules for Porous Ductile Media [J]. Journal of Engineering Materials&Technology,1977,99:2-15
    [128] Yamamoto H. Conditions for shear localization in the ductile fracture of void containing materials [J].Int. J. Fract,1978,14:347-365
    [129] Nemat-Nasser S and M Taya. Numerical Studies of Void Growth in Necked Bar [J]. InternationalJournal of Solids and Structures,1980,16:483-494
    [130] Nemat-Nasser S and M Taya. On Effective Moduli of an Elastic Body Containing PeriodicallyDistributed Voids [J]. Quarterly of Applied Mathematics,1981,39:43-59
    [131] Tvergaard V. Influence of Voids on Shear Band Instabilities under Plane Strain Condition [J]. Int. J.Fract,1981,17:389-407
    [132] Tvergaard V. Ductile Fracture by Cavity Nucleation between Larger Voids [J]. J. Mech. Phys. Solids,1982,30:265-285
    [133] Tvergaard V, Needleman A. Analysis of the cup-cone fractures in a round bar [J]. ActaMetallurgica,1984,32:157-189
    [134] Mear M E, Hutchinson J W. Influence of Yield Surface Curvature on Flow Localization in DilatantPlasticity [J]. Mechanics of Materials,1985,4:395-407
    [135]王自强,秦嘉亮.含孔洞非线性材料的本构势和孔洞扩展率[J].固体力学学报,1989,6(2):127-141
    [136] Sun Y, Wang D. A lower bound approach to the yield loci of porous materials [J]. Acta Mech Sinica,1989(5):237-243
    [137]郑长卿,周励,张克实.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995
    [138]黄筑平,孙立志.韧性材料中一个新的动态孔洞增长模型[J].中国科学A,1992,960-969
    [139] Needleman A, Tvergaad V. An analysis of ductile rupture modes at a crack tip [J]. J. Mesh. Phys. solids,1987,35(2):151-183
    [140] Jagota A, Hui C Y, Dawson P R. The determination of fracture toughness for a porous elastic-plasticsolid [J]. Int. J. Fracture,1987(33):111-124
    [141] Tvergaard V, Hutchison J W. Effect of T Stress on mode I Crack resistance in a ductile solid [J]. Int JSolids Struct,1994(31):823-833
    [142] Tvergaard V, Hutchinson J W. Two mechanisms of ductile fracture: void by void growth versusmultiple void interactions [J]. Int. J. Solids Structures,2002,39:3581-3597
    [143] Xia L, Shih CF. Ductile crack growth-I, A Numerical study using computational cells withmicrostructurally based length scales [J]. J. Mech. Phys. Solids,1995(43):233-259
    [144] Xia L, Shih CF. Ductile crack growth-Ⅱ, A Numerical study using computational cells withmicrostructurally based length scales [J]. J. Mech. Phys. Solids,1995(43):1953-1981
    [145] Tvergaard V, Hutchinson J W. Two mechanisms of ductile fracture: void by void growth versusmultiple void interactions [J]. Int. J. Solids Structures,2002,39:3581-3597
    [146] Tvergaard V, Needleman A. Three-dimensional microstructural effects on plane strain ductile crackgrowth [J]. Int J Solids Struct.2006,43(20):6165-6179
    [147]姚仰平,侯伟.土的基本力学特征及其弹塑性描述[J].岩土力学.2009,30(10):2281-2902
    [148] Lade P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surface [J]. Int. J.Solids and Structures.1977,3:1019-1035
    [149] Wilson C D. A critical reexamination of classical metal plasticity [J]. J. Applied Mechanics.2002,69:63-68
    [150] Andrianopoulosn N P, Manolopoulos V M. Can Coulomb criterion be generalized in case of ductilematerials? An application to Bridgman experiments [J]. International Journal of Mechanical Sciences.2012,54:241-248
    [151] Bai Y, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture [J]. Int. J.Fract.2010,161:1-20
    [152] Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and lode dependence[J]. Int. J. Plast.2008,24:1071-1096
    [153] Drucker D C and Prager W J. Soil mechanics and plastic analysis or limit design [J]. Quat. of Appl.Math.1952,10:157-165
    [154] Tschoegl N W. Failure Surfaces in Principal Stress Space [J]. J. of Polymer Sci. Sym.1971,32:239-267
    [155] Christensen R M.A comparative evaluation of three isotropic two property failure theories [J]. J.Applied Mechanics.2006,73:852-859
    [156] Christensen R M. A two property yield, failure(fracture) criterion for homogeneous, isotropic materials[J]. J. Egn. Mater. Technol.2004,126:45-52
    [157] Christensen R M. A comprehensive theory of yielding and failure for isotropic materials [J]. J. Eng.Mater. Technol.2007,129:173-81
    [158] Chandler H. W. Homogeneous and localized deformation in granular materials: A mechanistic model[J]. Int. J. Eng. Sci.1990,28(8):719-134
    [159] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams [J]. Journal of theMechanics and Physics of Solids.2000,48:1253-1283
    [160] Gibson L J. Mechanic behavior of metallic foam [J]. Annual Review of materials Science,2000,30:191-227
    [161] Doyoyo M, Wierzbicki T. Experimental studies on the yield behavior of ductile and brittle aluminumfoams [J]. International Journal of Plasticity,2003,19:1195-1214
    [162] Zhang T G, Lee J. A plasticity model for cellular materials with open celled structure [J]. InternationalJournal of Plasticity.2003,19:749-770
    [163] Sturmer G S, Schulz A and Wittig S. Life time prediction for ceramic gas turbine components[J].1991, ASME-Paper No91, GT-96
    [164] Gurson A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-YieldCriteria and Flow Rules for Porous Ductile Media [J]. Journal of Engineering Materials&Technology,1977,99:2-15
    [165] Jeong H Y and Pan J. A macroscopic constitutive law for porous solids with pressure-sensitive matricesand its implications to plastic flow locazation [J]. Int. J. Solids and Structures.1995,32(24):3669-3691
    [166] Jeong H Y. A new yield function and a hydrostatic stress-controlled void nucleation model for poroussolids with pressure-sensitive matrices [J]. Int. J. Solids and Structures.2002,39:1385-1403
    [167] Guo T F, Faleskogb J and Shih C F. Continuum modeling of a porous solid with pressure-sensitivedilatant matrix [J]. Journal of the Mechanics and Physics of Solids.2008,56:2188-2212
    [168] Lee J H, Oung J. Yield functions and flow rules for porous pressure-dependent strain-hardeningpolymeric materials [J]. ASME, Journal of Applied Mechanics,2000,67:288-297
    [169]唐立强,田德谟.一个压力敏感材料的本构方程[J].哈尔滨船舶工程学院学报.1994.15(1):6-12
    [170] Rahman M., Hancock J W. Elastic perfectly-plastic asymptotic mixed mode crack tip fields in planestress[J]. International Journal of Solids and Structures.2006(43):3692-3704
    [171] Ponte Casta n%eda. P. Asymptotic fields in steady crack growth with linear strain-hardening [J]. Journalof the Mechanics and Physics of Solids.1987,35:227-268
    [172] Ponte Casta n%eda. P., Mataga, P.A., Stable crack growth along a brittle/ductile interface-I.Near-tipfields[J]. International Journal of Solids and Structures.1991,27(1):105-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700