用户名: 密码: 验证码:
基于模糊PID闭式液压系统双卷扬同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重机是工程施工中常见的工程机械,随着石油、化工、电力等行业的大力建设,起重机越来越趋向于大吨位、超大吨位化,因此对吊载安全性的要求越来越高。为了提高吊载吨位,大吨位及超大吨位起重机的吊载系统已普遍采用双卷扬单钩吊载,这对双卷扬的同步性要求也越来越高,采用传统PID控制双卷扬同步已不能满足系统精度和动态性能要求,本文将模糊控制和PID控制相结合,使系统根据双卷扬出绳量偏差及偏差变化率,通过模糊规则语言自动调整PID参数,并用MATLAB和AMESim软件建立双卷扬系统的控制和液压模型,通过对模型联合仿真,验证了模糊PID控制方法对双卷扬同步控制系统具有较好的控制效果。本文的主要研究内容如下:
     (1)总结大吨位、超大吨位起重机双卷扬系统的特点和构成,设计了一个闭式液压试验平台,包括液压系统和电气系统的设计,外购元器件选型等。
     (2)对闭式液压系统平台做稳定性分析。运用传递函数法建立闭式液压试验平台双卷扬同步控制系统的数学模型,并运用MATLAB绘制系统伯德图,运用时域分析法和频域分析法分析系统的稳定性和动态响应。
     (3)设计模糊PID控制器。深入学习了模糊PID控制器及模糊PID参数整定规则,设计双卷扬同步控制系统的模糊PID控制器并在MATLAB的Fuzzy模块中实现,在MATLAB/Simulink中对系统进行仿真,并对模糊PID控制器和传统PID控制器的控制效果进行对比分析,证明模糊PID控制效果好于传统PID。
     (4)电液联合仿真。通过MATLAB/Simulink和AMESim实现闭式液压试验平台双卷扬同步控制系统的电液联合仿真,在MATLAB/Simulink中建立了模糊控制控制器,在AMESim建立了液压系统,实现了联合仿真,结果表明,在双卷扬同步控制系统中相比传统PID而言,采用模糊PID控制策略能达到更好的控制效果。
Crane is a common construction machinery in engineering machinery. With the electricity, petroleum, chemical industry develop strongly, as the crane larger-tonnage and larger tonnage, requirements of the accuracy and dynamic performance is stricter and stricter. In order to increase the tonnage and lifting load factor of safety, large tonnage and extra-heavy load lifting crane dual-hoist system has been widely used single-hook hanging set, which is double hoist synchronization requirements have become more sophisticated, using the traditional PID control double hoist synchronization can not meet the system accuracy and dynamic performance requirements. Fuzzy logic is used for PID control, whose parameters can be adjusted automatically according to error and error changing. A comparison analysis between PID and Fuzzy PID control is carried with the help of MATLAB/AMESim software to establish two-hoist control systems and hydraulic models, through the co-simulation model to verify the fuzzy PID control method for simultaneous dual-hoist control system has better control effect. The main contents of this thesis are as follows:
     (1) Summary of large-tonnage cranes dual-hoist system characteristics and composition, A closed hydraulic test platforms is designed, including hydraulic system and electrical system design, and components are selected for it.
     (2) The closed hydraulic system stability analysis. Using transfer function method to establish the closed hydraulic test platform synchronized dual-winch control system mathematical model. And the bode diagram is draw. Using time-domain analysis and frequency domain analysis method to analyze the system stability and dynamic response.
     (3) Design of fuzzy PID controller. In-depth study of fuzzy PID controller and fuzzy PID parameter tuning rules. Design double-hoist synchronization control system in MATLAB fuzzy PID controller and the Fuzzy module is implemented in MATLAB/Simulink in system simulation, A comparison analysis between PID and Fuzzy PID were carried with the help of Simulink. The simulation results showed that the fuzzy PID has better effects than traditional PID.
     (4) Co-simulation of MATLAB/Simulink and AMESim, Using MATLAB/Simulink to create a fuzzy control controller, built hydraulic system in AMESim, to achieve a co-simulation The results show that the fuzzy PID control strategy has better control effects and robustness in A closed hydraulic test platforms.
引文
[1]刘中星,张卫东.我国履带起重机行业现状与发展[J].建设机械技术与管理,2010.
    [2]陈思府.利勃海尔首台3000吨履带式起重机[EB/OL].中国工程机械网,2012http://www.liebherrchina. com/sb/series.
    [3]MCG.新型格鲁夫GTK1100起重机协助中国风电建设[EB/OL].中国工程机械网,2010http://www.ccm-1.com/Article/212/229/2010-01-20/5023. html.
    [4]徐海星.三一重工(3600吨)履带起重机成功下线[EB/OL].建筑机械,2011http://www.cml981.com.cn/html/news_view.asp?id=2664.
    [5]2011年中国履带起重机市场发展分析[J].中国工程机械网,2011.
    [6]叶勇,阮奇.中国风电装机容量世界第一[EB/J].中国新闻网,2011http://www.chinanews.com/ny/2011/01-14/2787791.shtml.
    [7]王小明,卢志强.国内外大型起重机的研究现状及发展趋势[J].机电产品开发与创新,2009.
    [8]刘金江.履带起重机产品现在及发展趋势[J].建筑机械,2009.
    [9]Demag公司.CC2800-1 CC8800操作手册.
    [10]周红.履带起重机双卷扬单钩的一种控制同步控制技术[J].产品·技术.2007(06):84-85.
    [11]赵璐.大型履带式起重机卷扬液压系统的动态特性研究[D].长春:吉林大学,2011.
    [12]窦建国.闭式系统液压装置原理及在起重机上的应用[EB/OL].[2007-12-24].http://www.cmwin.com
    [13]祝守新,邢英杰,韩连英.机械工程控制基础[M].北京:清华大学出版社,2008.
    [14]王欣,宋晓光,薛林.基于Matlab/Simulink的键合图在液压系统动态仿真中的应用[J].机床与液压.2007,35(6):123—127.
    [15]王红卫.建模与仿真[M].北京:科学出版社.2002.
    [16]李壮云.液压元件与系统[M].北京:机械工业出版社,2011.
    [17]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [18]姚怀新.工程车辆液压动力学与控制原理[M].大连:大连理工大学出版社.1993.
    [19]吴新余,周井泉,沈元隆.信号与系统:时域、频域分析及MATLAB软件的应用[M].北京:电子工业出版社.1999.
    [20]诸静.模糊控制原理与应用[M].北京:机械工业出版社.2005.
    [21]李士勇,夏承光.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1991.
    [22]Kevin M. Passino, Stephen Yurkovich. Fuzzy control[M]. Beijing:Tsinghua University Press, 2001.
    [23]Z. Situm D. Pavkovic B. Novakovic. Servo pneumatic position control using fuzzy PID gain scheduling[J].IEEE, 2004, 126(2):376-387.
    [24]Qiao W Z, Mizumoto M. PID type fuzzy controller and parameters adaptive method[J]. Fuzzy Sets System,1996,78(1):23-25.
    [25]Amin Haj-Ali, Hao Ying. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains [J]. Automatica 2004 (40):1551-1559.
    [26]黄赞,陈伟文.模糊自整定PID控制器设计及其MATLAB仿真[J].组合机床与自动化加工技术,2006,(2):50-52.
    [27]Hyun-Joon Cho, Kwang-Bo Cho, Bo-Hyeun Wang. Fuzzy-PID hybrid control:Automatic rule generation using genetical gorithms. Fuzzy Sets and Systems,1997, (92):305-316.
    [28]舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006.
    [29]邱丽,曾贵娥,朱学峰.几种PID控制器参数整定方法的比较研究[J].工业控制与应用.2005,24(11)
    [30]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002.
    [31]K. J. Astroom, T. Hagglund. The future of PID control[J]. Control Engineering Practice, 2001 (9):1163-1175.
    [32]Linlin Ou, Weidong Zhang, Danying Gu. Nominal and robust stability regions of optimization-based PID controllers [J]. ISA Transactions? Volume 45, Number 3, 2006(6):361-371.
    [33]黄友锐,曲立国.PID控制器参数整定与实现[M].北京:科学出版社,2010.
    [34]K. K. Ahna, D. Q. Truongb. Online tuning fuzzy PID controller using robust extended Kalman filter [J]. Journal of Process Control,2009(19):1011-1023.
    [35]赵亮.基于模糊自适应PID控制的矿用电机车直接转矩控制系统研究[D].阜新:辽宁工程技术大学.2009.
    [36]Amin Haj-Ali, Hao Ying. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains [J]. Automatica 2004 (40):1551-1559.
    [37]Hyun-Joon Cho, Kwang-Bo Cho, Bo-Hyeun Wang. Fuzzy-PID hybrid control:Automatic rule generation using genetic algorithms[J]. Fuzzy Sets and Systems 1997 (92):305-316.
    [38]JJ Buckley, H Ying. Fuzzy controller theory:Limit theorems for linear fuzzy control rules[J]. Automatica, 1989(25):469-472.
    [39]秦家升,游善兰AMEsim软件的特征及其应用[J].工程机械,2004(1):58-60
    [40]付永领,祈晓野AMESim系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006.6
    [41]付永领,齐海涛LMS Imagine. Lab AMESim系统建模和仿真实例教程[M].北京:北京航空航天大学出版社.2011
    [42]谷娜.基于AMESim和Simulink的汽车电动助力转向系统的联合仿真[D].成都:西华大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700