用户名: 密码: 验证码:
舰艇并靠导弹补给及波浪补偿系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上导弹补给是提高海军战斗能力的必要手段。由于风、浪、流的作用,使得海上补给作业非常困难。针对目前我国海上导弹补给系统无波浪补偿功能的缺陷,本文在国防预研项目支持下,建立了舰艇并靠导弹补给及波浪补偿系统。
     本文建立了舰艇并靠导弹补给动力学模型,进行了舰艇并靠导弹补给及波浪补偿系统动力学仿真分析,获得了导弹箱在不同海况下和舰用起重机不同位置参数的运动规律,为舰艇并靠导弹补给系统设计提供了理论依据和技术基础;建立了舰艇并靠导弹补给及波浪补偿受控系统多体动力学,在补给舰和被补给舰随机运动下,在补给和波浪补偿系统作用下,应用多体系统离散时间传递矩阵法进行了补给系统动力学分析,得到了导弹补给过程中,波浪补偿时,导引电机和卷扬电机输入电机脉冲计算方法;建立了以PLC控制系统为核心,用扭矩传感器测量导引带产生的扭矩来控制补给过程的控制方法;对系统振动问题进行了研究,提出了通过调整伺服电机参数减少系统振动的方法。用非波浪起重机方式,首次解决了两船间吊装货物过程中对海浪引起船舶运动的自动补偿这一普遍的重要理论与技术难题;发明了防倾斜无动力导引无级变速自动卷扬装置,发明了舰艇海上并靠补给系统中的海浪自动补偿装置,建立了卷扬装置与主架柔性连接的全新设计方法,在国内首次建成了舰艇并靠导弹补给及波浪补偿系统。建成的舰艇并靠导弹补给及波浪补偿系统,无需对补给舰和被补给舰作任何改装,即可实现舰艇并靠导弹补给中的波浪补偿功能,并通过模拟平台试验验证了补给装置的可靠性和实用性。该系统填补了国内导弹补给波浪补偿技术的空白,具有重要的军事和经济价值,应用前景广阔。
The sealifts system of missile is the essential measure to improve the fight ability of navy. It is very hard to supply missile in sea because of action of wind, wave and current. The sealifts system of missile has no wave compensate function in our country at present. Under the support of the national defense anvanced research project, the sytem of missile sealifts with wave compensation for navy ships connected parallely is established.
    The dynamics model of missile sealifts system for navy ships connected parallely is established. The dynamics simulation analysis of system is studied. The dynamics characteristic of missile box on the condition of different sea states and place parameters of crane are analyzed. The theory and technology bases for the design of system of missile sealifts or navy ships connected parallely are presented. The controlled multibody system dynamics of the system of missile sealifts with wave compensation for navy ships connected parallely is presented. On the condition of stochastic momevement of depot ship and incept ship and under the action of sealifts and wave compensation, the dynamics of sealifts system is studied by using discrete time transfer matrix method of multibody system. The calculate method of electric machine impule is developed in the process of supplying missile and action of wave compensate. Based on the PLC control system, the control method, which control supply process by testing torque of guide strings is presented. The vibration characteristic of system is studied and the method to reduce the vibration by adjusting the parameters of servo electrical machine is presented. The important and difficult problem of theory and technology for automatic wave compensation is firstly solved by using crane without wave compensation. The stepless shift automatical hoist device is invented, which prevent inclines and non-power guiding. The automatic wave compensation device of missile sealifts system is invented. The flexible connective design method between hoister and main shelf is presented. The sytem of missile sealifts with wave compensation for navy ships connected parallely is firstly established in home. The wave compensation function in the process of missile supply is realizated without any modifications to the depot ship and incepts ship by using the missile supply system. The reliability and practicability are validated by operation test in simulate ship. The technology blank of sealifts system of missile and wave compensation system is filled up in home. The military and economy value are very important, and the application foreground is much wider.
引文
1. Weijie Lu, Xiaoting Rui, FufengYang. Study on Dynamic Simulationof Container Replenishment System[A]. Proceedings of ICMEM2005 International Conference on Mechanical Engineering and Mechanics[C]. Nanjing, China 2005, V1:742-745
    2. Fufeng Yang Xiaoting Rui Jinliang Gu Weijie Lu. Study on the Controlled Multibody System Dynamics of Mooring Supply Systems[A]. Proceedings of ICMEM2005 International Conference on Mechanical Engineering and Mechanics[C]. Nanjing, China 2005, V1:749-752 (ISTP UT ISIP:000232717800151)
    3.严梅剑.海上航行横向补给装置选型设计[J].船舶,2004,(1):51—53
    4.邵曼华,寇雄,赵鹏程.几种船用起重机波浪补偿装置[J].机械工程师,2004,(2):14—16
    5. Brain Dviad. High sea state container transfer system concept evaluation program technical test report[R]. AD-A245 222 1991. 9
    6. Gary G. Elvik. Frequency Response Analysis of T-ACS Experimental Data[D]. science in mechanical engineering Naval Postgraduate school. 2000 9
    7. Michael Todd, Sandefp. Vohra, Chris Vandette etc. Analysis of Pendulated Load Response and T-ACS/Lighter Interaction in a 1:24 Scale Model JLOTS Cargo Transfer Operation at the David Taylor Model Basin in 1997[R]. NRL/MR-5673—98-8310, Washington. DC 20375-5320.1998, Oct, 3
    8. Crick T. Huang. Joseph Barthelemy. Motion dynamics of a coupled lighter and sealift ship in seaways: a parametric study[R]. Office of Naval Research Arlington, VA 22217-5000, report number:TM-2305-AMP. 1999, 1
    9. Yuan, G. H., Hunt, B. R., Grebogi, C., Ott, E., Yorke, J. A. and Kostelich, E. J. Design and Control of Shipboard Cranes[A], Proceedings of the 1997 ASME Design Engineering Technical Conference[C], September 14-17, 1997.
    10. Paolo, Dadone, Hughf. Van Landingham The Use of Fuzzy Logic for Controlling Coulomb Friction in Crane Swing Aleviation[J], Smart Engineering System Design, 1999, (9) 1-6
    11. Mohammed F. Daqaq. Virtual Reality Simulation of Ships and Ship-Mounted Cranes[D] Virginia Polytechnic Institute and State University. Masters. Blacksburg, Virginia. April 28, 2003
    12. Idres, M. M., Youssef, K. S., Nayfeh, A. H., and Mook, D. T. A Nonlinear 8-DOF Coupled Crane-Ship Dynamic Model[A], in Proceedings of the 44th AIAA Structural Dynamics Conference[C], Paper No. 1855, Norfolk, VA, 2003.
    13. Ziyad N. Masoud. A Control System for the Reduction of Cargo Pendulation of Ship-Mounted Cranes[D] Virginia Polytechnic Institute and State University .Doctorate . Blacksburg, Virginia. December 4, 2000.
    14. Ryan J. Henry. cargo pendulation reduction on ship-mounted cranes[D] . Masters. Virginia Polytechnic Institute and State University. Blacksburg, Virginia . 1999 .6
    15. Schellin, T. E. , Sharma, S. D., and Jiang, T. Crane Ship Response to Regular Waves: Linearized Frequency Domain Analysis and Nonlinear Time Domain Simu-Lation[A]. Proceedings of the 8th International Conference on Offshore Mechanics and Arctic Engineering[C], ASME, II:627-635, 1989.
    16. Schellin, T. E. , Jiang, T. , and Sharma, S. D. Crane Ship Response to Wave Groups[J]. Journal of Offshore Mechanics and Arctic Engineering, 1991.113:211-218.
    17. Kral, R. , Kreuzer, E. , andWilmers, C. Nonlinear Oscillations of a Crane Ship[J]. Z. Angew Math. Mech., 1996.76(S4):5-8.
    18. Patel, M. H. , Brown, D. T. and Witz, J. A., Operability analysis for a monohul1 crane vessel [J], Transaction of the Royal Institute of Naval Architects. 1987, 129, 102-113.
    19. Alp, A. B. and Agrawal, S. K. , Cable suspended robots: Design, planning and control[A], Proceedings of International Conference on Robotics and Automation[C], Washington, DC, 2002, pp. 4275-4280.
    20. Schellin, T. E. , Sharma, S. D. and Jiang, T. Crane ship response to regular waves: Linearized frequency domain analysis and nonlinear time domain simulation[A], Eighth International Conference on Offshore Mechanics and Arctic Engineering[C], The Hague, March, 1989. 19-23.
    21. . Nayfeh, A. H. and Masoud, Z. N., A supersmart controller for commercial cranes[J], Newsletter, International Association for Structural Control. 2002, 6(2) :4- 6.
    22. Shiang, W. , Cannon, D. and Gorman, J. , Dynamic analysis of the cable array robotic crane[A], Proceedings of the IEEE International Conference on Robotics and Automat ion [C], Detroit, Michigan, 1999, pp. 2495-2500.
    23. Schulz, W. E. , Musatow, M. , Jiang, C., Higgins, C. , Albus, J. and Bostelman, R. Skin-to-Skin replenishment[R]. NIST Report, 2003.
    24. Posiadala, B. , Skalmierski, B., and Tomski, L. Motion of the Lifted Load Broughtby a Kinematic Forcing of the Crane Telescopic Boom[J]. Mechanism and Machine Theory, 1990. 25:547-556,
    25. Posiadala, B. , Skalmierski, B., and Tomski, L. Vibration of Load Lifted by a Truck Crane with Consideration of Physical Properties of Rope[J]. Machine Dynamics Problems, 1991.2:85-104,
    26. Posiadala, B. Effect of Vibration in Hoist System on Dynamics of Truck Crane[J]. Z. Angew Math. Mech. , 1996. 76(S5):403-404,
    27. Posiadala, B. Influence of Crane Support System on Motion of the Lifted Load[J]. Mechanism and Machine Theory, 1997.32:9-20.
    28. Souissi, R., and Koivo, A. J. Modeling and Control of a Rotary Crane for Swing-Free Transport of Payloads[J]. First IEEE conference on Control Applications, 1992.2:782-787,
    29. Sakawa, Y. , and Nakazumi, A. Modeling and Control of a Rotary Crane[A]. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control[C], 1985, 107:200-206.
    30. Iwasaki, I., Tanida, K. , Kaji, S. , andMutaguchi, M. Development of an Active Mass Damper for Stabilizing the Load Suspended on a Floating Crane[A]. Proceedings of the ASME Design Engineering Technical Conference[C] , DETC97/VIB-3816, 1997.
    31. Imazeki, M. , Mutaguchi, M. , Iwasaki, I., and Tanida, K. Active Mass Damper for Stabilizing the Load Suspended on a Floating Crane[J]. IHI Engineering Review, 1998, 31(2):61-69.
    32. K. Ellermann, E. Kreuzer. Nonlinear Dynamics in the Motion of Floating Cranes [J]. Multibody System Dynamics , 2003., 9: 377-387.
    33. E. Kreuzer, U. Wilke .Dynamics of mooring systems in ocean engineering[J]. Archive of Applied Mechanics, 2003, 73: 270-281.
    34. E. Kreuzer, U. Wilke. Mooring Systems - A Multibody Dynamic Approach[J]. Multibody System Dynamics, 2002, 8:279-297.
    35. Roland Kral , E. Kreuzer. Multibody Systems and Fluid-Structure Interactions with Application to Floating Structures [J]. Multibody System Dynamics, 1999,3: 65-83.
    36. Burg, T., Dawson, D. , Rahn, C. , and Rhodes, W. , Nonlinear control of an overhead crane via the saturating control approach of Teel [A], in Proceedings of the IEEE International Conference on Robotics and Automation[C], Minneapolis, MN, 1996, pp. 3155-3160.
    37. Henry, R. J., Masoud, Z. N., Nayfeh, A. H., and Mook, D. T., Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation[J], Journal of Vibration and Control, 2001, 7:1253-1264
    38. Nayfeh A. H., Masoud Z. N., Nayfeh N. A. A smart controller for commercial and military cranes[A] The IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics[C], ROME, ITALY, 2003, 3(14):8-13.
    39. S-R. Oh, S. K. Agrawal, Robust Control of Dual-Stage Cable Suspended Robots with Input Constraints for Cargo Handling[J]. 004 ASME International Mechanical Engineering Congress and R&D Expo, Anaheim, California, 2004, IMECE2004-61519.
    40. Oh, S. R., Mankala, K. K., Agrawal, S. K., Albus, J. S., A Dual Stage Planar Cable Robot: Dynamic Modeling and Design of a Robust Controller With Positive Inputs[J]. ASME 2004 Design Engineering Technical Conferences, Salt Lake City, Utah, 2004, DETC04-57323.
    41. Oh, S. R., Mankala, K. K., Agrawal, S. K., Albus, J. S., Dyanmic Modeling and Robust Controller Design of a Two-Stage Parallel Cable Robot[J], IEEE International Conference on Robotics and Automation, New Orleans, LA., 2004, 3678-3683.
    42. Oh, S. R., Mankala, K. K., Agrawal, S. K., Albus, J. S. Dynamic Modeling and Robust Controller Design of a Two-Stage Parallel Cable Robot[J], Multibody System Dynamics, Accepted for Publication (SCI), 2003
    43.刘绍兴,周江涛,杨清璞.船用液压起重机加装波浪补偿装置的研究[J].机电设备,1999,(5):21—25
    44.邱志诚,赵明扬,谈大龙等.一种具有波浪补偿和防晃功能的船用起重机[J].工程机械,1999,(2):12—13
    45.彭江丰.液压折臂式起重机的波浪补偿装置设计[J].船舶,2000,(3):39—41
    46.孙虹.杨清璞 电液比例控制在波浪补偿起重机中的应用[J].液压与气动,2001,(7):18—19
    47.沈庆,陈徐均.系泊多浮体系统波浪运动响应的动力学分析[J].解放军理工大学学报,2002,1(4):31~36
    48.勾莹,滕斌,宁德志,波浪与两相连浮体的相互作用[J].中国工程科学,2004,16(17):75-80
    49.毛筱菲.双体船连接桥波浪载荷的试验研究[J].船海工程,2003,(6):10-12
    50.高钟毓.机电控制工程[M].北京:清华大学出版社,2002年4月
    51.陆卫杰,芮筱亭,负来峰等.受控线性多体系统传递矩阵法[J].振动与冲击,2006,V25(3)
    52.陆卫杰,芮筱亭,刘军.高速旋转引信弹道簧的受力和变形分析[J].兵工学报 2006(录用)
    53.陆卫杰,芮筱亭,陆文广.基于系统动力学仿真的引信安全性分析[J].兵工学报 2006(录用)
    54.T.R.Kane,P.W.Likins,D.A.Levinson.Spacecraft Dynamics.New York: McGravr-Hill Book Company,1983(黄克累,张安厚译.航天飞行器动力学,科学出版社,北京,1988)
    55.芮筱亭.火炮系统的自由振动[J].南京理工大学学报,1993,No.5:44~48
    56. Lu Y Q, Rui X T. Eigenvalue problem, orthogonal property and response of multibody system[A], in ICAPV 2000, Proceedings of International Conference on Advanced Problems in Vibration Theory and Applications[C], Zhang, J. H. and Zhang, X. N., Science Press, Beijing, 2000
    57.芮筱亭,陆毓琪,多体系统动力学离散时间传递矩阵法[A].第六届全国一般力学学术会议论文集[C],1998:279~283
    58. Xiaoting Rui, Yuqi Lu, Ling Pan. Discrete time transfer matrix method for mutibody system dynamics[A]. EUROMOECH COLLOQUIUM 404[C], 1999, 93~108
    59. Xiaoting Rui, Bin He, Yuqi Lu. Discrete time transfer matrix method for mutibody system dynamics[J]. Multibody System Dynamics, 2005, 14(4): 317~344
    60.芮筱亭,党双喜,张金奎等.多体系统传递矩阵法在火炮动力学中的应用[J].力学与实践,1995,No.4:42~44
    61.芮筱亭,王士明,孙一平.带有集中质量和弹簧及刚体的分布质量梁系统振动的传递矩阵法[J].南京理工大学学报,1993,No.8
    62.芮筱亭,刘正福,陆毓琪.多体系统传递矩阵法的若干问题[J].见:陈滨主编.第五届全国一般力学学术会议论文集,“动力学、振动与控制的研究”.北京:北京大学出版社,1994,121~124
    63.芮筱亭,邱风昌.多体火炮系统的固有振动[J].兵工学报,1995,No.2:7~12
    64.芮筱亭,秦英孝,赵海林.有任意个集中质量的转管炮的固有振动[J].兵工学报,1994,No.2
    65.芮筱亭,陆毓琪,王国平等.多管火箭发射动力学仿真与试验测试方法[M].北京:国防工业出版社,北京,2003
    66.芮筱亭,秦英孝,石永亮等.用传递矩阵法研究火炮系统的振动特性[J].兵工学报,1996.No.1:75~78
    67. Xianting Rui & Mingyou Xu. Application of Tranfer Matrix in Launching Dynamics[A]. 14th International Symposium on Ballistics[C], Quebec, Canada. 1993
    68.胡海昌.多自由度结构固有振动理论[M].北京:科学出版社,1987
    69. B. Yang. Linear Vibration of a Coupled String-Rigid Body System[A]. In: Z. C. Zheng. Proceedings of the International Conference on Vibration Engineering[C], Beijing: International Academic Publishes, 1994, 91~96
    70.芮筱亭,黄葆华,陆毓琪.复杂多体耦合系统振动分析[J].见:余寿文,杨卫,郑泉水主编.固体力学进展.北京:清华大学出版社,1997,147~154
    71.陆毓琪,芮筱亭,刘正福等.耦合多体系统动力响应计算[J].宇航学报,1998,No.1:44~48
    72.李春明,芮筱亭.提高多体系统离散时间传递矩阵法计算精度的研究[J].应用力学学报,2004,No.1:56~61
    73.李春明,芮筱亭.完整系统的多刚体系统离散时间传递矩阵法研究[J].力学季刊,2003,No.3:411~415
    74. W. Schiehlen ed. Multibody Systems Handbook[M]. Berlin:Springer-Verlag, 1990
    75. T. R. Kane, P. W. Likins, D. A. Levinson. Spacecraft Dynamics[M]. New York: McGraw-Hill Book Company, 1983
    76. E. C. Pestel and F. A. Leckie. Matrix Method in Elastic Mechanics[M]. New York: McGraw Hill Book Comp, 1963
    77. S. Rubin. On Transmission Matrices for Vibration and Their Relation to Admittance and Impedance[J]. J. Appl. Mech., 1963
    78. S. Rubin, Review of mechanical immittance and transmission matrix concepts[J], Journal of the Acoustical Society of America 41, 1967, 1171~1179
    79. Horner G. C. and Pilkey W. D., The Riccati Transfer Matrix Method[J], Journal of Mechanical Design. 1978, 1(2): 297~302
    80.高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996:220~232
    81.刘金锟.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005年10月
    82.倪振华.振动力学[M].西安:西安交通大学出版社,1990年5月
    83.∑Ⅱ系列SGM□H/SGDM用户手册设计·维护[M].SICPS80000008A,YASKAWA,株式会社,1997年
    84.张颖.步进电机与交流伺服电机性能对比分析[J].农机化研究,2004年5月第3期98
    85. Schiehlen W. Multibody system dynamics: roots and perspectives[J]. Multibody System Dynamics, 1997, 1: 149-188.
    86. Ahmed A Shabana. Dynamics of Multibody systems[M]. Cambridge University Press, 1998
    87.黄克智.非线性连续介质力学[M].北京:清华大学出版社,1989
    88.朵英贤.工程中的纵向振动[M].北京:国防工业出版社,1983
    89.钟万勰.振动波与辛数学[A].见:黄文虎,陈滨,王照林.一般力学(动力学、振动与控制)最新进展[C].北京:科学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700