用户名: 密码: 验证码:
SL6装船机卷扬系统平台力学行为及减振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型港口散料装船机,在能源、电力、冶金、港口等行业特别是一些大宗散料集散中心的高速、稳定、集效、滚动式发展中,发挥着重要作用。随着经济全球化进程的加快,新的设计理念使装船机的装载能力不断提高,设备结构越来越庞大。因此设备的稳定性、钢结构的动强度与刚度、整机的振动特性等也越来越受到人们的重视。目前国内外对于装船机的力学特性分析主要集中在静力结构与静强度方面,而对人们所关注的动力学问题涉及很少,因此对装船机的动态力学行为研究具有重要的理论意义和工程价值。
     本文以神华黄骅港务公司与燕山大学签订的《神华黄骅港二期工程SL6装船机卷扬机构平台振动问题研究》项目为依托,针对黄骅港SL6装船机在俯仰臂高速升降时卷扬系统平台的异常振动问题,从动力学角度进行了现场实测和理论研究,提出并实施了平台减振加固改造方案。方案实施后,平台振幅显著降低,装船机作业率提高,经济效益增加。
     由于装船机设备庞大,振源分散,难以确定主要振源。为全面地分析卷扬系统平台振动的振源,采用集中质量法,针对卷扬机主传动系统建立扭振非线性数学模型,引入卷筒齿轮综合啮合刚度非线性,并对俯仰臂不同升降速度下卷筒负载进行建模求解,使扭振数学模型与实际结构相吻合。采用变步长Runge-Kutta方法对该非线性系统进行动力学响应求解,得到了扭振系统的固有振动特性和响应,通过频谱分析得到非线性扭振系统的响应特征。
     建立了SL6装船机整机以及卷扬机平台有限元模型,通过对装船机整机在伸缩臂处于不同位置下进行模态仿真,得到了装船机和卷扬系统平台的模态。通过对卷扬系统平台进行谐响应分析和应力位移分析,得到了不同工况下平台的频响特征和应力状态。
     为了确定卷扬系统平台产生振动的根本原因,对平台动态应变和卷扬系统齿轮轴动态扭矩进行了现场测试,采用现代数据处理技术对测试信号进行时域和频域分析,找到平台振动和卷扬系统扭振的频率成分,得到了平台在实际工况下的力学状态,理论分析结果与测试结果相吻合,验证了仿真模型正确性。
     在理论分析和现场测试的基础上,结合现场实际提出合理可行的卷扬系统平台的减振方案,并将其付诸实践,有效提高了平台结构刚度。为了评估减振方案的有效性,建立了减振改造后的卷扬系统平台有限元模型,并对其进行了强度校核,通过模态分析和谐响应分析得到了改造后振动模态和不同激励下的响应水平;对平台动态特性进行了对比测试,获得了不同工况下平台的动态应力水平和振动响应水平。通过改造前后仿真和测试结果的对比,验证了卷扬系统平台的减振方案的合理性和有效性。
     本文针对黄骅港SL6装船机卷扬系统平台振动问题提出的研究方法和减振方案,为类似结构装船机振动问题的解决开拓了新思路,具有重要的学术研究意义和工程参考价值。
Large port bulk shiploaders play an important role in industries such as energy, power, metallurgy, port, etc. especially in the rapid, stable, efficient and cumulative development of some balk cargo collection and distribution center. With the acceleration of economic globalization, new design concepts made the delivered payload capability of shiploaders updating continually, and the structure of the equipment getting larger and larger. Then the stability of equipment, dynamic strength and rigidity of steel structure and vibration performance of the complete appliance has been given more and more attention. Currently, the researches of mechanical properties for shiploaders have mainly concentrated on the aspects of static structure and strength, the study of concerned dynamics behavior for shiploaders are rare in literature. Therefore the researches of dynamic mechanical behavior for shiploaders have important theoretical and engineering significance.
     Based on the project "Research of boom luffing winch platform vibration for SL6 shiploader in Shenhua Huanghua Port phase II", aiming at the abnormal vibration of boom luffing winch platform of SL6 shiploader in Shenhua Huanghua Port Company, in this dissertation, the spot testing and theoretical researches have been completed, the vibration reduction and reconstruction scheme of platform has been proposed and put into effect. With the reconstructed scheme, the amplitude of vibration has been reduced evidently, and the economic benefit has been increased.
     Due to large size and dispersive vibration source, the principal vibration source is hard to be fixed. For deciding the principal vibration source of the platform, lumped parameter method was used to establish the nonlinear mathematical model for boom luffing winch system, which considered the nonlinear of winch gear meshing stiffness, and the winch loads under varied velocities of boom luffing have been built model and resolved, which makes the torsional vibration model being consistent with the practical situation. Using variable-step Runge-Kutta method the dynamic response of the nonlinear system has solved, the nature vibration characteristics and responses have been obtained, then to nonlinear response characteristics of torsional vibration system by the spectrum analysis.
     By establishing FEM models of SL6 shiploader and boom luffing winch platform, the modalities of shiploader and the platform at different boom luffing locations have been calculated. With harmonic response analysis applied to the platform, frequency response characteristics and stress states under different conditions has been obtained. Simulation results and spot testing results confirm each other, which provided a theoretical basis for vibration reduction reconstruction for platform.
     In order to determine the basic reasons of platform vibration, the dynamic strains of platform and dynamic torques of the gear shaft in boom luffing winch system has been obtained on spot testing, with the modern data technology the signals analysis in time domain and frequency domain have been completed, then the frequency components of platform vibration and torsional vibration of boom luffing winch system have been obtained, the mechanical state of platform in the actual operating conditions have been acquired. The theoretical analysis results accord with that of testing, which proved the simulation model.
     Based on the spot testing and theoretical analysis, with the consideration of the practical situation, the reasonable and practical vibration reduction scheme has been proposed and put into effect, which enhanced the rigidity of the platform effectively. To assess the effectively of vibration reduction scheme, the reconstruction platform FEM model has been established, and then the strength has been checked. Through modal analysis and harmonic analysis the modalities and the different responses to the level of excitation have been acquired. The contrastive spot testing has been executed, and then the dynamic stress and vibration response results under different conditions have been obtained. By comparing the simulation results and testing results, the rationality and effectiveness of the scheme has been affirmed.
     In this dissertation, the research methods and solution scheme for the vibration of Huanghua port SL6 shiploader boom luffing winch platform offer a new paradigm for solving vibration problem of similar type of shiploader, and have significance of academic research and engineering reference value.
引文
1李志建,刘晋川.基于MSC Nastran/ Patran的装船机金属结构有限元分析.计算机辅助工程, 2007, 16(4): 7-10
    2左凌虹.港口装卸机械的现状和发展方向.大众科技, 1998, (3): 39-46
    3邹胜,高飞.散料装船机械的发展.起重运输机械, 2005, (8): 9-13
    4 http://www.tk-materialshandling.com/hme.html
    5汪亚非.港口装卸机械现代设计方法的应用与发展.物流技术, 2001(6): 5-7
    6 Horak, Ralph. Latest Developments in Shiploading Technology - A Comparison of the Single and Dual Shiploading Systems. Bulk Solids Handling, 2002, 22(6): 446-463
    7 Harry Laessig, Norbert Slezak. Shiploader and Unloader for Bags and Bulk. Bulk Solids Handling, 1991, 11(3): 689-692
    8骆红云,梁海燕,张峥,等.港口大型起重设备安全评定中的强度分析.起重运输机械, 2005, (3): 65-68
    9 T.S. Mujber, T. Szecsi, M.S.J. Hashmi. Virtual Reality Applications in Manufacturing Process Simulation. Materials Processing Technology, 2004, (155-156): 1834-1838
    10李爱平,王洁,刘雪梅,等.基于虚拟样机技术的散货装船机运动仿真研究.机械设计, 2009, 26(2): 23-26
    11 Yehiel Rosenfeld, Aviad Shapira. Automation of Existing Tower Cranes: Economic and Technological Feasibility. Automation in Construction, 1998, 7(4): 285-298
    12石端伟,朱惠华,宋晓辉. TC2400塔带机结构有限元分析.起重运输机械, 2006, (4): 30-33
    13杜群贵,林业威.龙门架结构有限元分析及其技术处理.起重运输机械, 2006, (1): 10-12
    14沈莹,王悦民. 1300t浮式起重机金属结构有限元分析.起重运输机械, 2005, (4): 4-7
    15何先凡.轮胎式集装箱门式起重机结构有限元分析.起重运输机械, 2005, (3): 57-59
    16刘晋川,饶京川.岸边集装箱起重机金属结构疲劳寿命研究.港口装卸, 1998, (5): 6-10
    17钱锦芳. 4200t/h装船机悬臂损坏及修复工艺.港口科技动态, 1997, (6): 20-23
    18卢耀祖,李翠,张氢. 6000t?h-1装船机臂架系统分析.中国工程机械学报, 2008, 6(1): 48-52
    19沈家桢.直线摆动式散货装船机臂架的优化设计.港口科技动态, 1990, (3): 12-16
    20沈卓,王悦民.装船机的结构有限元计算及薄弱点分析.起重运输机械, 2008, (5): 59-61
    21李斌,王悦民.大型港口装船机结构载荷组合及计算.起重运输机械, 2009, (3): 9-12
    22 J.J. Chen, J.W. Che, H.A. Sun, etc. Probabilistic Dynamic Analysis of Truss Structures. Structure Engineering and Mechanics, 2002, 13(2): 231-239
    23 Wei Gao, Jianjun Chen, Yabin Zhou, etc. Dynamic Response Analysis of Closed-loop Control System for Random Intelligent Truss Structure under Random Forces. Mechanical Systems and Signal Processing, 2004, 18(4):947-957
    24 Zhiping Qiu, Lihong Ma, Xiaojun Wang. Non-probabilistic Interval Analysis Method for Dynamic Response Analysis of Nonlinear Systems with Uncertainty. Journal of Sound and Vibration, 2009, 319(1-2): 531-540
    25 Hao Fang, Bing Zhou, Yan Xu, etc. 6-DOF Parallel Manipulator Dynamic Model and Simulation. Mechanical Science and Technology, 2000, 19(9): 138-140
    26 I.A. Krylov. Numerical Solution of the Problem of the Optimal Stabilization of an Artificial Satellite. USSR Computational Mathematics and Mathematical Physics, 1968, 8(1): 284-291
    27 S. Sridhar, D.T. Mook, A.H. Nayfeh. Non-linear Resonances in the Forced Responses of Plates, Part I: Symmetric Responses of Circular Plates. Journal of Sound and Vibration, 1975, 44(3): 359-373
    28 S. Sridhar, D.T. Mook, A.H. Nayfeh. Non-linear Resonances in the Forced Responses of Plates, Part II: Asymmetric Responses of Circular Plates. Journal of Sound and Vibration, 1978, 59(8): 159-170
    29 D.W. Lobitz, A.H. Nayfeh, D.T. Mook. Non-linear Analysis of Vibrations of Irregular Plates. Journal of Sound and Vibration, 1977, 50(2): 203-217
    30 K.R. Asfar, A.H. Nayfeh, D.T. Mook. Response of Self-excited Oscillators to Multifrequency Excitations. Journal of Sound and Vibration, 1981, 79(4): 589-604
    31 Chaofeng Li, Xiaopeng Li, Ma Hui, etc. Study on Complicated Nonlinear Dynamics of a Rotor-Bearing System by a Continuum Model. Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing, Tian Jin, 2008: 910-914
    32徐文焕.加权余量法分析结构动力学问题,西南交通大学科研资料. 1981, (11): 2-8
    33秦荣,梁福崇.计算力学中的样条函数方法及其应用.第一届全国解析与数值结合法会议论文集,长沙, 1989: 153-159
    34孙纯焕.非线性结构动力分析的改进方法.力学学报, 1981, (2): 14-21
    35刘晓俭.基于Newmark积分格式的单步预测校正算法的无条件稳定性.计算结构力学及其应用, 1994, 11(3): 21-28
    36钟万勰.暂态历程的精细计算方法.计算结构力学及其应用, 1995, 12(1): 1-8
    37曾庆国.弹性动力学变分原理及结果动力响应分析的新方法. [中山大学硕士论文]. 1995: 78-82
    38张贺忻.高层建筑结构分析的墙元及动力响应分析的新方法. [中山大学硕士论文]. 1997: 58-74
    39刘寒冰,张淼,魏健.结构动力响应分析的多重网格方法.吉林大学学报(工学版), 2008, 38(3): 619-623
    40 M.A. Dokainish, K. Subbaraj. A Survey of Direct Time-integration Methods in Computational Structural Dynamic-I.Explicit methods. Computers & Structures, 1989, 32(6): 1371-1386
    41 K. Subbaraj, M.A. Dokainish. A Survey of Direct Time-integration Methods in Computational Structural Dynamic-II. Implicit Methods. Computers &Structures, 1989, 32(6): 1387-1401
    42 Anjan Dutta. Adaptive Finite Element Analysis of Structures Subjected to Transient Dynamic Loads Using Time Marching Scheme. Computer & Structures, 2002, 80(27-30): 2312-2319
    43 A. Rama Mohan Rao. A Parallel Mixed Time Integration Algorithm for Nonlinear Dynamic Analysis. Advances in Engineering Software, 2002, 33(5): 261-271
    44 S.K. Lai, C.W. Lim. Accurate Approximate Analytical Solutions for Nonlinear Free Vibration of Systems with Serial Linear and Nonlinear Stiffness. Journal of Sound and Vibration, 2007, 307(3-5): 720-736
    45赵文礼,王林泽.机械振动系统随机疲劳和间隙非线性.北京:科学出版社, 2006: 87-152
    46邹家祥,孙志辉. MVR仿真程序在轧钢机主传动系统扭振分析中的应用.冶金设备, 1993, (5): 1-5
    47 ?. Lozina. A Comparison of Harmonic Acceleration Method with the other Commonly Used Methods for Calculation of Dynamic Transient Response. Computers and Structures, 1988, 29(2): 227-240
    48 T.C. Fung. Third Order Complex-Time-Step Methods for Transient Analysis. Computational Methods in Applied Mechanics and Engineering, 2001, 190(22-23): 2789-2802
    49孟宗.轧机传动系统扭振测量模型及实验研究.[燕山大学博士论文]. 2008: 10-16
    50 P. Frank Pai. Nonlinear Vibration Characterization by Signal Decomposition. Journal of Soundand Vibration, 2007, 307(3-5): 5427-5442
    51 Yuh-Tay Sheen. An Analysis Method for the Vibration Signal with Amplitude Modulation in a Bearing System. Journal of Sound and Vibration, 2007, 307(3-5): 538-552
    52 P. Charles, Jyoti K. Sinha, F. Gu, etc. Detecting the Crankshaft Torsional Vibration of Diesel Engines for Combustion Related Diagnosis. Journal of Sound and Vibration, 2009, 321(3-5): 1171-1185
    53 J.E. Mottershead, M.I. Friswell. Model Updating in Structural Dynamics: a Survey. Journal of Sound and Vibration, 1993, 167(2): 347-375
    54 Taehyoun Kim. Frequency-domain Karhunen-loeve Method and Its Application to Linear Dynamic System. AIAA Journal, 1998, 36(11): 2117-2123
    55 K.S. Breuer, L. Sirovich. The Use of the Karhunen-loeve Procedure for the Calculation Eigenfunctions. Journal of Computational Physics, 1991, 96(2): 277-296
    56林循泓.振动模态参数识别及其应用.南京:东南大学出版社, 2004: 266-268, 284-290
    57 P. Verboven, B. Cauberghe, P. Guillaume. Improved Total Least Squares Estimators for Modal Analysis. Computers & Structures, 2005, 83(25-26): 2077-2085
    58 Brad A. Pridham, John C. Wilson. A study of Damping Errors in Correlation-driven Stochastic Realizations Using Short Data Sets. Probabilistic Engineering Mechanics, 2003, 18(16): 61-77
    59 S.M. Pandit, N.P. Mehta. Data Dependent Systems Approach to Modal Analysis PartⅠ: Theory. Journal of Sound and Vibration, 1988, 122(3): 143-422
    60 Fanglin Huang, Xuemin Wang, Zhengqing Chen, etc. A New Approach to Identification of Structural Damping Ratios. Journal of Sound and Vibration, 2007, 303(1-2): 144-153
    61王凤文.数字信号处理(第二版).北京:北京邮电大学出版社, 2007: 19-30
    62 J.W. Cooley, P.A.W. Lewis, P.D. Welch. The fast Fourier Transform Algorithm: Programming Considerations in the Calculation of Sine, Cosine and Laplace transforms. Journal of Sound and Vibration, 1970, 12(3): 315-337
    63 J.W. Cooley, P.A.W. Lewis, P.D. Welch. The Application of the Fast Fourier Transform Algorithm to the Estimation of Spectra and Cross-spectra. Journal of Sound and Vibration, 1970, 12(3): 339-352
    64 G. Thomas. Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals. IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 350-355
    65 C. Offelli, D.Petri. The Influence of Windowing on the Accuracy of Multifrequency Signal Parameter Estimation. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 256-261
    66丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用.振动工程学报, 2005, 18(3): 304-308
    67 T. Gudra, K.J. Opielinski. Applying Spectrum Analysis and Cepstrum Analysis to Examine the Cavitation Threshold in Water and in Salt Solution. Ultrasonics, 2004, 42(9): 621-627
    68 A. Hossen, U. Heute. Different Approximate Cepstra Using Subband-transforms: Theory and Applications. International Journal of Electronics and Communications, 2003, 57(4): 247-254
    69 M. Muselli. Frequency Analysis of Binary Oscillators Triggered by a Random Noise. Physical D, 2004, 188(1): 119-133
    70 P. Goupillaud, A. Grossmann, J. Morlet. Cycle-octave and Related Transforms in Seismic Signal Analysis. Geoexploration, 1984, 23(1): 85-102
    71 I. Daubechies. The Wavelet Transform Time-frequency Localization and Signal Analysis. IEEE Transactions on Information Theory, 1990, 65(5): 961-1006
    72 S.G. Mallat. A theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 11(7): 674-693
    73 N.E. Huang, Z. Shen, S.R. Long. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proceedings of the Royal Society of London Series A, 1998, (454): 903-995
    74 N.E. Huang. A New Method for Nonlinear and Non-stationary Time Series Analysis: Empirical Mode Decomposition and Hilbert Spectral analysis. Proceedings of SPIE, 2000, (4056): 197-209
    75 N.E. Huang. Review of Empirical Mode Decomposition analysis. Processings of SPIE, 2001, (4391): 71-79
    76钟佑明,秦树人. Hilbert-Huang变换中的理论研究.振动与冲击, 2002, 21(4): 14-17
    77马孝江,朱泓.论局域波法中瞬时频率分析.大连理工大学学报, 2003, 43(6): 775-777
    78于德介,程军圣,杨宇. Hilbert-Huang变换在齿轮故障诊断中的应用.机械工程学报, 2005, 41(6): 102-107
    79谭善文,秦树人. Hilbert/Huang变换的滤波特性及其应用.重庆大学学报, 2004, 27(2): 10-13
    80淡丹辉,郑愚,王绪.一种大型结构试验数据处理系统.西南交通大学学报, 2003, 38(2):151-153
    81赵阳,张大伟,田浩.小型悬臂梁结构振动参数交互辨识方法.机械设计与制造, 2008, (8): 74-75
    82 O. Cakar, K.Y. Sanliturk. Elimination of Transducer Mass Loading Effects from Frequency Response Functions. Mechanical Systems and Signal Processing, 2005, 19(1): 87-104
    83 Ole Dossing. Prediction of Transducer Mass-loading Effects and Identification of Dynamic Mass. Proceedings of the Ninth International Modal Analysis Conference, Florence, Italy, 2002: 306-312
    84邸蓉.大型结构应变测量技术研究.机械工程与自动化, 2005, (5): 58-59
    85 N. Osawa, K. Hashimoto, J. Sawamura, etc. Study on Shell-solid Coupling FE Analysis for Fatigue Assessment of Ship Structure. Marine Structures, 2007, 20(3): 143-163
    86易良榘.简易振动诊断现场实用技术.北京:机械工业出版社, 2003: 36-54
    87李伟民,何伟,杨琳.简支梁振动特性的理论分析及实验研究.贵州教育学院学报(自然科学), 2007, 18(2): 44-49
    88 Jay Kim, Daniel E. Welcome, Ren G. Dong, etc. Time–frequency Characterization of Hand-transmitted, Impulsive Vibrations Using Analytic Wavelet Transform. Journal of Sound and Vibration, 2007, 308(1-2): 98-111
    89王伯雄.测试技术基础.北京:清华大学出版社, 2003: 19-34
    90谢官模.振动力学.北京:国防工业出版社, 2007: 8-9
    91李润方.齿轮系统动力学—振动、冲击、噪声.北京:科学出版社, 1997: 18-19
    92王宏伟,孟新田,唐葭.结构动力分析中的阻尼模型研究.湖南城市学院学报(自然科学版), 2009, 18(2): 13-16
    93 Tetsuro Kakinoki, Ryuichi Yokoyama, Goro Fujita, etc. Shaft Torque Observer and Excitation Control for Turbine–generator Torsional Oscillation. Electric Power Systems Research, 2004, 68(3): 248-257
    94塔娜,饶柱石,李义明,等.岸桥起重机有限元建模与动态响应分析.噪声与振动控制, 2008, (4): 6-8, 12
    95张银龙.塔式起重机的振动模态分析.起重运输机械, 2007, (3): 54-56
    96蒋红旗,刘玉.基于ANSYS的空间网架结构静力和动力分析.钢结构, 2008, 23(5): 22-24
    97大久保信行.机械模态分析.上海:上海交通大学出版社, 1985: 31-36
    98尹强,陈世教,冀满忠.基于ANSYS的塔式起重机结构模态分析.重庆建筑大学学报, 2005, 27(6): 97-100
    99 G. Oliveti, A.Santini. Complex Modal Analysis of a Continuous Model with Radiation Damping. Journal of Sound and Vibration, 1996, 192(1): 15-33
    100谭刚,唐驾时,李克安,等.重型燃气轮机吊具有限元模态分析.噪声与振动控制, 2008, (4): 13-16
    101刘雯雯,吴功平,肖晓晖,等.龙滩水电站20t缆索起重机结构有限元分析.起重运输机械, 2006, (3): 9, 10-12
    102 Cicek Karaoghu, N. Sefa Kuralay. Stress Analysis of a Truck Chassis with Riveted Joints. Finite Elements in Analysis and Design, 2002, 38(10): 1115-1130
    103 Yong-Hwa Park, Youn-Sik Park. Structure Optimization to Enhance Its Natural Frequencies Based on Measured Frequency Response Functions. Journal of Sound and Vibration, 2000, 229(5): 1235-1255
    104 J.J. Wu, A.R. Whittaker, M.P. Cartmell. Dynamic Responses of Structures to Moving Bodies Using Combined Finite Element and Analytical Methods. International Journal of Mechanical Sciences, 2001, 43 (11): 2555-2579
    105陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南.北京:中国铁道出版社, 2001: 94-96
    106张延军.使用ANSYS软件进行动力模块的振动响应分析.中国修船, 2003, (2): 41-43
    107刘豫,孙秦.大型结构动力特性的Lanczos数值计算方法及程序设计.科学技术与工程, 2008, 8(4): 1010-1014
    108 A. Ben-Tal, A. Nemirovski. Robust Solutions to Uncertain Linear Programs. Operations Research letters, 1999, (25): 1-13
    109罗玉峰,刘治志,石志新,等.一种机械系统动力学响应分析方法.工程设计学报, 2008, 15(1): 1-5
    110郑培,卢耀祖,张氢.大型港口桥式起重机钢结构动力响应分析.起重运输机械, 2008, (3): 61-64
    111 P. Verboven, B. Cauberghe, P. Guillaume. Improved Total Least Squares Estimators for Modal Analysis. Computers & Structures, 2005, 83(25-26): 2077-2085
    112 M. Smail, M. Thomas, A. Lakis. ARMA Models for Modal Analysis: Effect of Model Orders and Sampling Frequency. Mechanical Systems and Signal Processing, 1999, 13(6): 925-941
    113 G. Romero, J. Felez, J. Maroto, etc. Efficient Simulation of Mechanism Kinematics Using Bond Graphs. Simulation Modelling Practice and Theory, 2009, 17(1): 293-308
    114 G. Romero. Optimised Procedures for Obtaining the Symbolic Equations of a Dynamic System by Using the Bond-Graph Technique. International Conference on Bond Graph Modeling and Simulation ICBGM’05, Simulation Series, New Orleans, 2005, 37(1): 51-58
    115 G. Romero, J. Felez, M.L. Martinez, etc. Kinematic Analysis of Mechanism by Using Bond-graph Language. 20th European Conference on Modelling and Simulation ECMS2006, Bonn, 2006: 155-165
    116娄正忠.新双峰海减载平台装船机结构介绍.上海港科技, 2000, (2): 9-13
    117 Jinmei Tian, Yufeng Xing. The Frequencies of Two-Dimensional Laminated Beam by Several Laminated Composite Models, WCCMVI in Conjunction with APCOM, Beijing, 2004: 186-193
    118李朝峰,刘毛,居全,等.大型复杂机械节点导入建模及有限元分析.农业机械学报, 2007, 38(8): 124-127
    119 Xinren Wei, Linpeng Xue. Baseline Finite Element Modeling of a Large Span Cable-stayed Bridge Through Field Ambient Vibration Tests. Computers & Structures, 2005, 83(8-9): 536-550
    120 Pasi Tanskanen. A Multiobjective and Fixed Elements Based Modification of the Evolutionary Structural Optimization Method. Computer Methods in Applied Mechanics and Engineering, 2006, 196(1-3): 76-90
    121徐医培,李素有,吴立言.结构动态响应的求解方法分析.机械设计与制造, 2009, (6): 12-14
    122 Huajiang Hang, Krishna Shankar, Joseph C.S. Lai. Prediction of the Effects on Dynamic Response Due to Distributed Structural Modification with Additional Degrees of Freedom. Mechanical Systems and Signal Processing, 2008, 22(8): 1809-1825

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700