用户名: 密码: 验证码:
新疆杏复合系统节肢动物群落特征及主要害虫防治对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杏是新疆维吾尔自治区的主要栽培果树之一,随着新疆林果业的快速发展,新疆杏树的种植面积也得到迅速的扩张,截止2009年新疆杏种植面积已达280万亩,其栽培面积和产量均居全国各省(区)之首。随着杏种植面积的迅速扩大,害虫的危害是影响杏产量的主要因素。因此对害虫实施持续生态调控,是杏产业蓬勃发展的重要保证。本文阐述了2类复合生态杏园节肢动物群落结构和动态,探究了杏园节肢动物群落的稳定机制,揭示间作作物节肢动物群落与杏园节肢动物群落以及杏、害虫、天敌之间相互关系和作用机理,并对复合生态系统杏园的主要害虫生物学、生态学特性进行了研究,最后提出了复合生态系统杏园主要害虫综合治理策略。概述如下:
     1.复合生态系统杏园节肢动物结构
     2006年杏粮复合生态系统杏园亚系统共查得害虫、天敌、中性昆虫个体8829头,分属于昆虫纲9目、48科,蛛形纲1目、4科等。2007年杏粮复合生态系统杏园亚系统共查得害虫、天敌、中性昆虫个体20995头,分属于昆虫纲10目、51科,蛛形纲1目、4科等。2006年杏棉复合生态系统杏园亚系统共查得害虫、天敌、中性昆虫个体9035头,分属于昆虫纲9目、40科,蛛形纲1目、6科等。2007年杏棉复合生态系统杏园亚系统共查得害虫、天敌、中性昆虫个体25976头,分属于昆虫纲10目、48科,蛛形纲1目、4科等。
     2.间作作物对节肢动物群落的调节作用
     间作作物小麦、玉米、棉花对杏复合系统节肢动物群落有重要的调节和稳定作用,复合生态系统节肢动物群落结构比杏亚系统更趋向于合理和稳定,抵御外界环境干扰的能力更强,即更不利于害虫的爆发。随着间作作物小麦、玉米和棉花的生长与收获,杏亚系统节肢动物群落结构也发生着明显的变化,当间作农作物在生长盛期,杏亚系统节肢动物群落也更趋向于稳定和合理。
     间作作物对杏园天敌的繁殖、调节方面起着重要的作用;在杏粮复合生态系统中随着间作作物的生长周期的波动,杏园和粮田之间存在着较大的天敌物种流动;当间作作物生长旺盛时,杏亚系统的天敌向粮田内迁移;当间作作物系统崩溃后,天敌又向杏亚系统迁移;突出表现在蜘蛛类和瓢甲类等天敌类群。在杏棉复合生态系统中不存在重大的物种流动,但棉田对稳定和调节杏园亚系统节肢动物群落也起到了重要作用。
     3.杏复合生态系统的主要害虫和天敌的控害作用
     在杏粮复合生态系统中不存在大量相互转移、严重危害粮食作物和杏树的共同害虫;杏亚系统植食性节肢动物群落中蚧类、小蠹虫类、小卷叶蛾类(食心虫类)害虫为主要害虫类群,而叶蝉类、蚜虫类、蓟马类、木虱类、螨类、盲蝽类等害虫均为次要害虫类群;杏粮复合生态系统粮田亚系统中蚜虫类、叶蝉类、蓟马类等为主要害虫类群。在杏亚系统中存在的天敌完全控制了杏亚系统中蚜虫类、螨类、叶蝉类等害虫的发生与为害,对蚧类害虫也起到了一定的控制作用。
     在杏棉复合生态系统中不存在能互相转移、严重危害棉花和杏树的共同害虫;在杏亚系统植食性节肢动物群落中蚧类、小卷叶蛾类(食心虫类)、小蠹类为主要害虫类群,叶蝉类、蚜虫类、蓟马类、飞虱类、盲蝽类、螨类、金龟甲类等为次要害虫类群;棉田中蚜虫类、蓟马类、盲蝽类、夜蛾类和叶蝉类等为主要害虫类群。在杏亚系统中存在的天敌对蚜虫类、螨类、叶蝉类等害虫的发生与为害也起到了完全控制的控制作用,但对蚧类害虫起到的控制作用较小。
     4.吐伦球坚蚧、桑白盾蚧生物学、生态学研究
     吐伦球坚蚧1年发生1代,为局部聚集为害;以2龄若虫在1年-2年生枝条上越冬, 4月中下旬雌虫开始产卵,单雌产卵量在153粒-1863粒之间,平均为816.9粒。5月上旬卵开始孵化,幼虫孵化后在附近叶片、果实上固着为害;叶落前,2龄若虫从叶片上转移到1-2年生枝条上越冬。在自然状况下吐伦球坚蚧种群下一代数量增长4.70倍。自然杏园中“捕食及其它”控制作用最大;其次是寄生性天敌,寄生性天敌于7月中旬和8月中下旬达到高峰期。破壳对吐伦球坚蚧越冬若虫的防治效果最好,药后7天的平均防治效果为83.99%,最高防治效果为88.52%,虫口减退率可达95.01%,但化学防治对寄生性天敌的影响较大,中毒杀虫剂对天敌的杀伤作用高于生物源杀虫剂的杀伤作用。根据吐伦球坚蚧的种群密度和杏产量损失率之间的关系,通过回归模拟,建立了回归模型y = 24.671Ln(x) - 16.56(y为杏产量损失率,x为种群密度,单位为头/30cm),相关系数(R2)为0.8226,并初步确定了不同杏价格下的常用药剂防治指标。
     桑白盾蚧1年发生2代,以受精雌成虫在枝干上越冬,3月中下旬开始吸食树汁液,蚧壳变大、变厚。4月中、下旬产卵,产卵期6天,卵经过10天左右孵化为若虫,若虫经20天-30天化为成虫。6月雄虫羽化后与雌成虫交配,受精雌成虫开始膨大,7月中旬产卵。第2代若虫于7月底出壳,固定后形成白色蚧壳。8月下旬出现雄蛹,雄虫于9月上旬羽化,并与雌虫交配。
     5.多毛小蠹发生与为害规律的研究
     多毛小蠹世代重叠严重,1年可以发生3个完整的世代;4月上旬始见多毛小蠹成虫活动为害,中旬达到高峰期,并产卵; 5月中下旬,6月下旬、7月下旬、8月中旬和9月上旬达到高峰期,7月、8月活动最为频繁。高度在80-110cm的枝干和东、南方向生长的枝干易遭受为害;在树势弱的杏树和有腐烂病、伤口的枝干上,多毛小蠹的卵和幼虫的成活率较高,易定居繁衍;遭受多毛小蠹为害后的杏树树势变弱,韧皮部可溶性糖含量随着为害程度的加重而逐渐升高,含水量逐渐降低,不同为害程度杏树韧皮部的可溶性糖含量和水含量存在差异;多毛小蠹-韧皮部可溶性糖含量和水含量-树势-栽培管理模式4者之间的关系密切。
     6.梨小食心虫与苹果蠹蛾发生与为害规律的研究
     在杏园蛀食杏的主要害虫为苹果蠹蛾、梨小食心虫和桃条麦蛾,在杏果实逐渐成熟糖度逐渐增大时(5月中下旬)才有蛀果现象,6月上旬(即果实预成熟期)出现第1次蛀果高峰,6月底7月初(即果实采收末期)为第2次蛀果高峰。梨小食心虫1年可以发生4代,成虫分别于4月下旬、6月上旬、7月中旬、8月下旬至9月中旬达到高峰。苹果蠹蛾1年可以发生3代,成虫分别在4月下旬、5月下旬至6月上旬、6月下旬至7月中下旬达到高峰。
     7.杏园主要害虫的综合治理策略
     本文根据本人和前人的研究结果总结了包含农业防治、生物防治、物理防治和化学防治的杏园主要害虫的综合治理措施;并制定了杏园主要害虫的年度管理计划。
Apricot is one of the main planted fruit trees in XinJiang Uygur autonomous region. Apricot-cotton intercropping and apricot-grain intercropping are the major the pattern. The implementation of sustainability ecological control to the pest is the important pledge for the development of apricot industry in XinJiang. This article describes the structure and dynamic of arthropod community of two types of agroforestry system in apricot orchard, revealed the arthropod community of crops and apricot orchard .The mechanism of interrelation and interaction among the apricot, insects and natural enemy were revealed. The biology and ecology characteristic of major insect in apricot orchard of agroforestry were studied. Finally, the integrated pest management strategy in apricot orchard of complex ecosystem were put forward, the results show that:
     1. The structure of arthropod agroforestry system in apricot orchard
     There were 8829 individual pests, natural enemy and neutral inscet in apricot-grain agroforestry system apricot orchard sub-system in 2006’s investigation, they belong to Insecta 9 Order ,48 family; Arachnida 1 Order,4 family; there were 20995 individual arthropods in 2007’s investigation, they belong to Insecta 10 Order ,51 family; Arachnida 1 Order,4 family. There were 9035 individual arthropods in apricot sub-system of apricot-cotton agroforestry system in apricot orchard in 2006’s investigation, they belong to Insecta 9 Order ,40 family; Arachnida 1 Order,6 family; there were 25976 individual pests, natural enemy and neutral inscet in 2007’s investigation, they belong to Insecta 10 Order ,48 family; Arachnida 1 Order,4 family.
     2. The adjustment effect of intercrop to arthropod community
     The intercrop played an important role on the adjustment and stability of arthropod community in apricot complex ecosystem and apricot sub-ecosystem. They played an important role on the propagation and adjustment of natural enemy in apricot orchard as well. With the undulating of growing period of intercrop in apricot-grain complex ecosystem, there were more migration of natural enemy between grain field and apricot orchard. When intercrop were vigorous growth, the natural enemy migrated from apricot sub-ecosystem to grain field. When intercrop ecosystem declined, the natural enemy migrated to apricot sub-ecosystem. This phenomenon displayed obviously on natural enemy categories like Araneae and beetles etc. There were no obvious species movement in apricot-cotton complex ecosystem, but the cotton field played an important role on the adjustment and stability of arthropod community in apricot sub-ecosystem.
     3. The effect of harmful control of main pest and natural enemy in apricot complex ecosystem
     There were no common pest which a great deal of mutually transfer and serious danger of intercrop or apricot trees in the apricot-grain complex ecosystem and apricot-cotton complex ecosystem. Coccidae、bark beetles、leaf rollers(borers)were major pest group of types, and Cicadellidae、Aphidinea、thrips、Psylla、mites、Mirini etc. were secondary pest group of types in apricot-grain complex ecosystem apricot sub-ecosystem . The occurrence and damage by secondary pest group of types in apricot sub-ecosystem was controlled by the natural enemy which in the 2 complex ecosystem apricot sub-ecosystem, and it played a role on controlling the scale insect pests as well。
     4. The biological and ecological study of Rhodococcus turanicus and Pseudaulacaspis pentagona
     The occurrence pattern of R. turanicus was one generation annually. Its second instar nymph over winter in the annual to biennial branches. The female insect began to lay egg in the middle ten-day to third ten-day period of April, the productivity per female insect was 153 to 1863, averagely 816.9 per female insect. The egg began to hatch in first ten-day period of May. It damage the leaves and fruits by fixation, and developing to second instar nymph, it migrated to annual to biennial branches before the leaves fallen, the second instar nymph overwintered. The population number of R. turanicus can increase 4.70 times in one generation with natural condition.
     The“predation and others”played the most important controlling effect in natural apricot orchard. The second natural enemy was parasitic enemy, its number got the summit period in middle ten-day Jul. to third ten-day Aug. The regression model between the loss rate of apricot and Rhodococcus turanicus. population was established as follow: y = 24.671Ln(x) - 16.56 (y:the loss rate of the yield, x: the population density of Rhodococcus turanicus,the unit was head/cm2),the correlation coefficient was (R2) 0.8226.
     The occurrence pattern of P. pentagona was two generation annually. Its fertilized imago overwinter in the branches. It began to take its food, and develop in middle ten-day to third ten-day March, the female insect began to lay egg in the middle ten-day to third ten-day period of April, the eggs began to hatch in ten days more or less. The nymph can develop imago. The mating occurred between male and female imago in June, the female began to lay egg in July. The second generation was hatched in the end of July. The second male pupa generaton came out in the end of Aug.The male insect eclosion and mating with female occurred in frist ten-day of Sep.
     5. The study of occurrence pattern and damage of Scolytus seulensis Mur.
     The occurrence pattern of S. seulensis was three generation annually.The damage can be see by S. seulensis imago in the first ten-day of May, the summit damage period happened in the middle ten-day of April, and it began to lay eggs.The active summit period occurred in the last ten-day of May, and the last ten-day of June and July, and the middle ten-day of Aug, first ten-day of Sep. The most active frequent was in July and August. The stem and branches which was 80-110cm and south-east orientation were damaged easily. There were high survival ratio of egg and larva in weak growth tree , rot disease, stem and branches with wound. The growth power became weak after being damaged,and the solubility sugar content in phloem increased gradually with the degree of being damaged, and the water content decreased gradually. There was some difference on solubility sugar and water content in apricot tree phloem to varying degree of being damaged.
     6. The study of occurrence patten and damage of Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) and codling moth, Cydia pomonella(L.)
     The codling moth,Cydia pomonella(L.), Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) and Anarsia lineatella Zeller were the main insects which bore the apricot fruit in apricot orchard, it occurred when the fruit was maturing and the sugar content was increasing gradually(the third ten-day of May). The frist fruit boring summit period occurred in the frist ten-day of June ( prior ripen of apricot fruit). The second fruit boring summit period occurred in the end of June to beginning of July ( end picking period of apricot fruit). The occurrence pattern of Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) was four generation annually. The imago population increased the summit period in the last ten-day of April, the frist ten-day of June, the middle ten-day of July, the last ten-day of Aug. to the middle ten-day of Sep.The occurrence pattern of codling moth,Cydia pomonella(L.) was three generation annually. The imago population was in the summit period in the last ten-day of April, the last ten-day of May to the frist ten-day of June, the last ten-day of June to the middle ten-day of July.
     7. The comprehensive control and management strategies to main pest in apricot orchard
     According to the results of the outhor himself and the predecessor’s, the agricultural, biological, physical and chemical prevention and control techniques to main insects in apricot orchard were summarized in this paper, the annual management plan of the main pest in apricot orchard were established.
引文
[1]于希志,廖新宇,张加延.新疆杏的资源特点与开发利用前景[J].落叶果树,1998,(增) :60~62.
    [2]张加延.2004年全国优质李杏评选结果与述评[J].西南园艺,2004,32(6):51~53.
    [3]《新疆杏产业发展规划专题研究》课题组.新疆杏产业发展研究[J].新疆社会科学,2005,(5):37~43.
    [4]晁海,张大海,徐林,等.杏棉间作系统小气候水平分布特征研究[J].新疆农业大学学报,2007,30(1):35~39.
    [5]新疆维吾尔自治区统计局.新疆统计年鉴2005[M].北京:中国统计出版社,2005 :387.
    [6]热依曼·牙森,玉苏甫·阿布里提甫.新疆杏资源及其开发利用[J].新疆农业科学,2005,42(增):49~51.
    [7]陆承志.新疆杏树优良品种介绍[J].山西果树,2004,102(6):26~27.
    [8]库热什,阿依夏木.新疆杏的产业现状、优势、存在的问题及问题解决对策[J].农业科技通讯,2008,(7):15~16.
    [9]姚源松.新疆棉花高产优质高效理论与实践[M].乌鲁木齐:新疆科技出版社,2004 :8~43.
    [10]杨森,吐逊娜依·吐拉克,李剑.新疆杏树害虫的发生与危害[J].新疆农业科学,2005,42(5):363~365.
    [11]张孝羲.昆虫生态及预测预报[M].北京:中国农业出版社,2002.
    [12] Mac Anhur R. Fluctuations of animal pulations and a msure of cornmunity stability[J]. Ecology, 1955, 36: 533~536.
    [13] Elton CS.The ecology of invasions by animals and Plants[J]. London: Chapman and Hall, 1958, 143~153.
    [14] May R.M. Will a large complex system be stable[J].Nature, 1972, 238: 413~414.
    [15]黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,2001,9(l):l~7.
    [16]侯茂林,盛承发.农田生态系统植物多样性对害虫种群数量的影响[J].应用生态学报,1999,10 (2):245~250.
    [17] Risch S J, Andow D A, Altteri M A. Agroecosystem diversity and pest control: data tentative conclusion and new research directions[J]. Environ. Entomol, 1983, 12: 625~629.
    [18] Root R B. Organization of plain arthropod association in simple and diverse habitats: The fauna of collards (B. oleracea) [J]. Ecolmonog, 1973, 43: 95~124.
    [19] Russell E P. Enemies hypothesis:A review of the effect of vegetational diversity on predatory insects and parasitiods[J]. Environ Entomol, 1989, 18 (4): 590 ~ 599.
    [20] Altieri M A, Lewis W J, et al. Chemical interaction between plants and Trichogramma wasps in Georgia soybean fields[J].Prot . Ecol., 1981, 3 :259 ~ 263.
    [21] Altieri M A, Lewis W J, et al. Chemical interaction between plants and trichogramma wasps in Georgia soybean fields[J].Prot . Ecology, 1981, 3: 259~263.
    [22] Fowler C, Mooney P, Shattering Food. Politics and the Loss of Gene Diversity[M]. University of Arizoon Press, Tucson, 1990.
    [23]吕昭智,李进步,田卫东,等.生物多样性在害虫控制中的生态功能与机理[J].干旱区研究,2005,22(3):400~404.
    [24] Fisher R A A, A S Corbel&C B Williams. The relation between the number of speeies and the number of individuals in a sample from on animal population[J]. Anim Ecol, 1943, 12: 42~58.
    [25] Simpson E H.Measurement of diversity[J].Nature, 1949, 163~688.
    [26]侯茂林,盛承发.害虫研究与防治中的生态学尺度[J].应用生态学报,1998,9(2):213~216.
    [27]郝树广,张孝羲,程遐年.稻田节肢动物群落营养层及优势功能集团的组成与多样性动态[J].昆虫学报,1998,41(4):343~352.
    [28]金翠霞,吴亚,王冬兰.稻田节肢动物群落的多样性[J].昆虫学报,1990,33(3):287~295.
    [29]金翠霞,吴亚.群落多样性测定及其应用的探讨[J].昆虫学报,1981,24(l):28~33.
    [30]吴亚,金翠霞.草甸昆虫群落及其空间与时间结构[J].昆虫学报,1980,23(2):156~163.
    [31]吴亚,金翠霞..高寒草甸土壤生态系统结构及昆虫群落的某些特征[J].生态学报,1982,2(2):151~156.
    [32]吴亚,金翠霞.稻田蜘蛛群落结构及其动态的初步研究生态学杂志[J].1986,5(4):6~11.
    [33]黄建群.生态系统内的物种多样性对稳定的影响//生物多样性研究的原理与方法[C].北京:中国科学技术出版社,1994:66~67.
    [34]万方浩,陈常铭.综防区和化防区稻田害虫——天敌群落组成及多样性研究[J].生态学报,1986,6(2):159~170.
    [35]蒋国芳,周志权.钦州地区红树林昆虫群落及其多样性初步研究[J].西北农林科技大学学报,1999,12(3):50~53.
    [36]牟吉元.昆虫生态与农业害虫预测预报[M].北京:中国农业科技出版社,1997.
    [37]谭济才,邓欣,袁哲明.南岳茶场害虫——天敌群落结构及季节动态[J].植物保护学报,1997,24(4):341~346.
    [38]韩宝瑜,江昌俊,李卓民.间作、密植和单行茶园节肢动物群落的多样性稳定性[J].生态学报,2001,21(4):132~137.
    [39]邹运鼎,毕守东,陈高潮,等.各种天敌对棉蚜种群数量影响程度的研究[J].应用生态学报,1998,9(5):499~502.
    [40]邹运鼎.害虫管理中的天敌评价理论与应用[M].北京:中国林业出版社,1997.
    [41]邹运鼎,王弘法.农林昆虫生态学[M].合肥:安徽科学技术出版社,1989.
    [42]庞雄飞,尤民生.昆虫群落生态学[M].北京:中国农业出版社,1996:104~127.
    [43] Pfadt R E. Density and diversity of grasshoppers (OrthoPtera:Aerididae) in an out break on Arizona gangland[J].Environ Entomol, 1982, 11(3): 690~694.
    [44] Hurtubia J. Trophic diversity measurement in sympatrie predatory speeies[J]. Ecology, 1973, 54(4): 885~890.
    [45] MaeArthur R. Environment factors affeeting birds Peeies diversity[J].Amer Natur, 1964, 98: 387~397.
    [46] Schering J F. Spatial and temporal Patterns in Iowa shore fly diversity[J]. Environ Entomol, 1979, 8(5): 879~882.
    [47] Pielou E C. Ecologocal diversity[M]. New York: John Wbley Son. 1975.
    [48] Heyer WR. Studies in larval Phibian habitat Partitioning[J]. SmithsonianContrib, 2001, 1976, 242: l~27.
    [49]尤民生.群落多样性的研究进展[J].福建农业大学学报,1998,27(4):432~439.
    [50]马克平.生物群落多样性的测度方法.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994:141~165.
    [51]巫厚长.烟田节肢动物群落动态及烟蚜与其主要大敌相互作用关系的系统研究[D].南京:南京农业大学博士学位论文,2000.
    [52]马世骏.农作物害虫动态分析及控制途径的商榷[J].植物学报,1962,1(4):337~339.
    [53]马世骏.谈农业害虫的综合防治[J].昆虫学报,1976,19(2):129~141.
    [54]马世骏.谈农业害虫测报的展望[J].昆虫学报,1978,21(2):113~131.
    [55]朱弘复.治理有害生物的战略和策略——主要以中国棉田为讨论材料[J].昆虫学报,1978,21(3):279~306.
    [56]邹运鼎,王弘法.农林昆虫生态学[M].合肥:安徽科学技术出版社,1989.
    [57]邹运鼎.害虫管理中的天敌评价理论与应用[M].北京:中国林业出版社,1997.
    [58]吴进才.稻田中性昆虫对群落食物网的调控作用[J].生态学报,1994,14(4):381~382.
    [59]李志胜.施肥对稻田节肢动物群落的影响[D].福州:福建农林大学硕士学位论文,2005.
    [60]吴进才,胡国文,唐健,等.稻田中性昆虫对群落食物网的调控作用[J].生态学报,1994,14(4):381~386.
    [61]郭玉杰,王念英,将金炜,等.中性昆虫在稻田节肢动物群落中作为捕食者营养桥梁作用的研究[J].中国生物防治,1995,l1(l):5~9.
    [62]郝树广,张孝羲,程遐年,等.稻田节肢动物群落营养层其优势功能集团组成及多样性动态[J].昆虫学报,1995,41(4):343~353.
    [63]韩宝瑜,崔林,董文霞.有机、无公害和普通茶园管理方式对节肢动物群落和主要害虫的影响[J].生态学报,26(5):1438~1443.
    [64]李建荣,石万成.防治策略对苹果园昆虫天敌昆虫群落结构的影响[J].西南农业大学学报,1992,21(3):279~306.
    [65]李建荣,石万成,刘旭.防治措施对苹果园昆虫群落结构和生态控制的研究[J].山东农业大学学报,1997,13(2):121~125.
    [66]牟吉元,李照会,郑方强,等.苹果主要害虫及天敌群落结构和生态控制的研究[J].山东农业大学学报,1997,28(3):121~126.
    [67]师光禄,刘贤谦,王满全,等.枣树昆虫群落结构及其综合治理效果的研究[J].林业科学,1998,34 (2):58~64.
    [68]师光禄,曹挥,戈峰,等.不同类型枣园节肢动物群落营养层及优势功能集团的组成与多样性时序动态[J].林业科学,2002,38(6):79~56.
    [69]师光禄,曹挥,戈峰,等.不同类型枣园生态系统中昆虫群落及其多样性[J].林业科学,2002,38(3):94~101.
    [70]杨本立,宋家雄,严乃胜,等.昭通市苹果园昆虫群落时间格局与害虫防治[J].云南大学报,1999,14(4):358~360.
    [71]李生才.果园节肢动物群落生态学研究[D].太原:山西农业大学博士学位论文,2004.
    [72]梁子宁,张永强.龙眼园节肢动物群落结构及其时空格局[J].生态学报,2007,27(4):1542~1549.
    [73]师光禄,曹挥,戈峰,等.不同类型枣园节肢动物群落营养层及优势功能集团的组成与多样性时序动态[J].林业科学,2002,38(6):79~85.
    [74]师光禄,常宝山,黄敏佳,等.枣园间种牧草对节肢动物群落营养层与优势功能团的影响[J].生态学报,2006,26(2):399~409.
    [75]师光禄,王有年,张铁强.综合防治与常规防治下枣园节肢动物群落多样性的比较[J].生态学杂志,2007,26(2):233~237.
    [76]邹运鼎,毕守东,周夏芝,等.桃园害虫及天敌群落动态研究[J].应用生态学报, 2003, 14(5):717~720.
    [77]邹运鼎,李磊,毕守东,等.石榴园棉蚜及其天敌之间的关系[J].应用生态学报,2004,15(12):2325~2329.
    [78]邹运鼎,丁程成,毕守东,等.李园节肢动物群落时间动态的聚类分析[J].应用生态学报,2005,16(4):631~636.
    [79]邹运鼎,李昌根,毕守东,等.群落结构特征参数对葡萄园节肢动物群落作用的比较[J].应用生态学报,2006,17(6):1075~1080.
    [80]黄保宏,邹运鼎,毕守东,等.梅园节肢动物群落优势种分析[J].安徽科技学院学报,2007,21(1):27~30.
    [81]毕守东,甘德俊,周夏芝,等.桃园节肢动物群落的结构和组织学研究[J].安徽农业大学学报,2003,30(1):34~39.
    [82]汪飞,王虹,徐遥,等.套作油菜对杏-麦间作果园节肢动物群落影响初探[J].新疆农业科学,2007,44(4):453~ 456.
    [83]阿地力·沙塔尔,叶尔江,张新平,等.不同管理措施对杏园昆虫群落结构的影响[J].林业科学研究,2007,20(4):510~514.
    [84] Montagnes D.J. S. The annual cycle of heterotrophic Planktonic ciliates in the waters surrounding the lsles of shoals, Gulf of Maine: Anassessment of their trophic role[J]. Mar Biol, l988, 99:21~30.
    [85] Martin K. C. Herpetofauna of anorthern Australian Monsoon rain forest: relationship to adjacent habitats[J].Trop Eeol, 1988, (4): 227~238.
    [86]郭依泉,赵志模,朱文炳.桔园昆虫群落季节格局的研究[J].西南农业大学学报,1987,1(1):27~32.
    [87]毕守东,邹运鼎,陈高潮,等.影响棉蚜种群数量的优势种天敌的灰色系统分析[J].应用生态学报,2000,11(3):417~420.
    [88] Lynch J F. Spatial and temporal variation in the abundance and diversity of ants (Hymentopter:Formieidae) in the soil and litter layers of a Maryland forest [J].Ameriean Midland Naturalist, 1988, 119: 31~44.
    [89] Evans E W. Community dynamics of prairies grasshoppers subjeeted to periodie fire: Predictable trajectories or random walk in time[J].Oikos, 1988, 52: 283~293.
    [90] Evans E W. Grasshopper assemblages of tall grass prairies: influence of fire frequency, topography, and vegetation[J].Can J zool, 1988, 66: 1459~1501.
    [91] Vargas J. A. The benthic community of an intertidal mud fiat in the Gulf on Nieoya, CostaRica[J].Rev Bio Trop, 1987, 35: 299~316.
    [92] Kikkawa J. Comparison of avian community between wet and semi-arid habitats of eastern Austrlian[J]. Australian Wildlife Researeh, 1974, (1): 106~116.
    [93] Kikkawa J. Ecological association strueture in wet tropical forests of Australia [J].Austr J Ecol, 1982, (7): 325~345.
    [94] Holmes RT, R E J Bonney, S.W Pacala. Guild strueture of the Hubbard Brook bird community: A multivariate approach[J].Ecology, 1979, 60: 512~520.
    [95]高宝嘉,中曙光,王正文,等.园林昆虫群落时间结构及动态研究[J].生态学报,1998,18(2):191~197.
    [96]杨森,徐兵强,吐尔逊娜依,等.南疆果树蚧壳虫综合防治技术研究[J].新疆农业科学,2008,45(3):456-461.
    [97]李军如,张建强,艾沙·吾曼.48%乐斯本乳油防治杏树蚧壳虫的试验[J].落叶果树,2005,(1):94-95.
    [98]杨森,徐兵强,李宏,等.塔里木盆地果树蚧虫种类、田间识别及生物学特性的研究[J].新疆农业科学,2008,45(2):276-281.
    [99]庞雄飞,梁广文.害虫种群系统的控制[M].广州:广东科学技术出版社,1995:24~30.
    [100]徐汝梅.昆虫种群生态学[M].北京:北京师范大学出版社,1987:61.
    [101] Stern V.M. The integrated control concept [J]. Hilgarolia, 1959, 29(2): 81-101.
    [102]盛承发,宣维健.正确理解和应用经济阈值[J].昆虫知识,2003,40(1):90-93.
    [103]汪世泽,夏楚贵.Holling-Ⅲ型功能新模型[J].生态学杂志,1987,(1):1-3.
    [104]胡金林,史文贵.新疆农区蜘蛛[M].济南:山东大学出版社,1989.
    [105]宋大祥.中国农区蜘蛛[M].北京:农业出版社,1987.
    [106]宋大祥,朱明生.中国动物志(蜘蛛目:蟹蛛科逍遥蛛科)[M].北京:北京科学出版社,1997.
    [107]李生才.草皮逍遥蛛对苹果黄蚜捕食作用的研究.蛛形学报[J].2004,13(1):28-32.
    [108]尹长民,王家福,朱明生,等.中国动物志(蛛形纲蜘蛛目圆蛛科)[M].北京:科学出版社,1997.
    [109]朱传典,周娜丽.新疆长突蛛属一新种(蜘蛛目:皿蛛科)[J].白求恩医科大学学报,1983(增刊):142-143.
    [110]朱明生.中国动物志(蜘蛛目:球蛛科)[M].北京:科学出版社,1998.
    [111]张宪政,陈凤玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994:94-97.
    [112]李合生.植物生理生化试验[M].北京:高等教育出版社,2000:1-3.
    [113]李江霖,张涛,李新唐,等.新疆果树多毛小蠹生物学特性及防治[J].植物保护,1995,21(1):8-10.
    [114]蒲晓娟,陈辉.小蠹类害虫发生危害的关键因素分析[J].西北林学院学报,2007,22(1):87-90.
    [115]闫争亮.小蠹科害虫化学信息物质及其对侵害寄主等行为的影响[J].西部林业科学,2006,35(3):22-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700