用户名: 密码: 验证码:
干细胞标志CD133在肝癌组织中的表达及阳性亚群耐药特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着对肿瘤和干细胞生理研究的深入,越来越多的证据表明:肿瘤包含有一部分比例很小的肿瘤干细胞,这些肿瘤干细胞具有无限增殖、自我更新和多向分化潜能,并且驱动肿瘤生长。目前,已从多种肿瘤细胞系及肿瘤组织(包括白血病、神经胶质瘤、前列腺癌、结肠癌、胰腺癌、肺癌及乳腺癌等)中分离出肿瘤干细胞。根据肿瘤干细胞学说,这些肿瘤干细胞具有正常干细胞类似的特性,决定着肿瘤起始和增殖,因而可能影响临床肿瘤耐药、复发及转移等行为。因此,肿瘤干细胞的分离和鉴定成为肿瘤研究的新热点。
     原发性肝细胞癌是我国常见恶性肿瘤之一,其死亡率在所有恶性肿瘤中居第三位。在过去的几十年里,尽管在肝癌诊断及传统治疗上取得了巨大的进步,但肝癌患者长期生存率仍然很低,这主要是由于肝癌术后的高复发和高转移。因此,对肝癌的发病机理及其生物学特性的研究尤为必要。
     肝癌组织具有明显的形态学多样性,表达一系列谱系标志,同时肝癌细胞和干细胞存在某些共性。实际上,多个实验已经证实肝干细胞广泛的参与肝癌的发生和发展的各个阶段;尤其是最近,以CD133为标志成功从多个肝癌细胞系分离出肝癌干细胞:CD133~+亚群具有无限增殖、自我更新和多向分化潜能,决定着肝癌的发生和发展,进一步支持CSC学说。此外,在大鼠大部分肝切除模型中检测到CD133的重新激活,表明CD133和肝细胞的增殖密切相关,可能和肝癌的发生有关。因此,展开以CD133为标志的肝癌干细胞的研究对于阐明肝癌的发病机理、揭示肝癌的耐药、复发和转移的机制具有重要的意义,并为肝癌的治疗提供一个新的策略。
     目的:
     1)检测干细胞标志CD133在临床肝癌组织标本中的表达情况,并分析CD133的表达和临床肝癌病理特征、病程进展及术后预后关系;
     2)检测化疗药物对肝癌细胞的杀伤作用,探讨转运蛋白ABCG2在CD133~+肝癌CSC耐药中的作用。
     方法:
     1)采用免疫组织化学法检测63例肝癌癌组织CD133的表达,分析CD133表达与临床病理特征、肝癌进展及预后的相关性;
     2)流式检测CD133在肝癌细胞系中的表达;
     3)化疗药物对肝癌细胞杀死作用的研究;
     4)应用半定量RT-PCR检测ABCG2在CD133~+及CD133~-细胞的表达。
     结果:
     1)所有的63例肝癌标本中均检测到CD133表达,其中增强的CD133表达占26例(41.3%),4例胎肝组织CD133染色阳性,但正常肝组织CD133不表达;
     2)增强的CD133表达和肝癌的临床分期(P﹤0.01)、病理分级(P﹤0.01)及血浆AFP水平(P﹤0.05)密切相关;
     3) Kaplan–Meier分析表明:和低表达的CD133相比,增强者生存时间更短(P﹤0.01)而肝癌复发率增高(P=0.01);多参分析提示:增强的CD133表达是肝癌患者长期生存(相对危险度RR=2.443,P=0.017)及肝癌复发(相对危险度RR=2.445,P=0.011))的一个独立预后因子;
     4)流式检测结果显示:CD133分子的表达在肝癌细胞系普遍存在,其含量是0.1-61%;
     5)化疗药物对CD133~-肝癌细胞有选择性杀伤作用;
     6)半定量RT-PCR结果都证实ABCG2优先表达于CD133~+肝癌CSC(P﹤0.05);
     结论:
     1)重新激活的CD133~+CSC在临床肝癌标本中普遍存在; 2) CD133~+ CSC不仅参与了肝癌的起始,而且可能在肝癌进展中扮演着重要的角色;
     3) CD133的表达倾向于恶性程度较高的肝癌,因此可能影响肝癌患者的预后,这些结果进一步支持CSC假说;
     4) ABCG2的优先表达可能是CD133~+CSC耐药机制之一;因此,除了抗凋亡通路的激活,CD133~+CSC耐药可能和多个通路异常有关。
With great advances in stem cell and tumor biology, more and more evidences indicate that cancer may be maintained by a rare fraction of cancer stem cells (CSCs) that are able to self-renew, differentiate into multiple cell lineages, and drive tumor continuous growth. The existence of CSCs was well documented in many different cancers including acute myeloid leukemia, breast cancer, and brain cancer. Cancer stem cell hypothesis asserts that CSCs share many properties of normal stem cells and thus account for the clinical outcomes such as recurrence, metastasis and multi-drug resistance. Therefore, the isolation and identification of cancer stem cell has been become a new hot spot in tumor research.
     Hepatocellular carcinoma (HCC) is one of the most common tumors in our country, and is currently the third-leading cause of cancer death among men in China. Although advance of conventional clinical treatment for HCC has been achieved, the mortality has not been improved significantly over the past several decades, which is largely the result of a high rate of recurrence or metastasis after operation. Therefore, it is necessarry to enforce the studies of the molecular mechanisms of hepatocarcinogenesis and the biologic behaviors of HCC.
     In HCC, morphologically diverse cells express a variety of hepatic lineage markers and share the similar properties with adult stem cell in many characteristics. In fact, many studies have shown that stem/progenitor cells are involved in hepatocarcinogenesis in certain rodent models and activated stem/progenitor cells are present in human HCC. More recently, a CD133~-positive subpopulation of multipotent cells with extensive proliferative and self-renewal abilities was identified as CSCs in several HCC cell lines, and was proven to contribute to the initiation and growth of HCC, supporting the cancer stem cell hypothesis. Furthermore, re-expression of CD133 has been reported in regenerating rat liver, indicating that CD133 is associated with liver cell proliferation, a possible link to HCC. Thus, isolation and identification of CD133~+ CSCs could elucidate the cellular origin of HCC tumor cells, providing insight into the molecular mechanisms of carcinogenesis, recurrence and metastasis of HCC, and a new strategy for HCC therapy
     Object:
     1) To investigate the expression of stem cell marker CD133 in HCC, and then examine the potential prognostic value of CD133 expression in patients with HCC;
     2) To detect the the sensivities of CD133~+ CSCs to chemotherapic drugs. Furthermore, investigate the expression of ABCG2 in CD133~+ CSCs for helping understand the mechanism of drug resistance.
     Method:
     1) Sixty-three resected specimens were collected from HCC patients. The expression of CD133 protein was analyzed by immunohistochemistry, and the association of CD133 expression with clinicopathological characteristics, tumor recurrence and survival of the patients was evaluated.
     2) The expression of CD133 was explored using flow cytometry in HCC cell lines.
     3) The killing effects of chemotherapic drugs were performed in HuH-7 cell line in vitro.
     4) The ABCG2 mRNA expression was determined by semi-quantitative reverse transcription-PCR in CD133~+ and CD133~- subpopulations of HuH-7 cell lines.
     Result:
     1) Immunohistochemical analysis of 63 HCC tissue specimens revealed that CD133 positive tumor cells were frequently present in HCC. Increased CD133 immunostaining was found in 26 specimens (41.3%).
     2) Increased CD133 expression levels were correlated with increased tumor grade (P﹤0.01), advanced disease stage (P﹤0.01), and elevated serum alpha-fetoprotein (AFP) levels (P﹤0.05).
     3) Kaplan–Meier analysis indicated that patients with increased CD133 levels had shorter overall survival (P﹤0.01)and higher recurrence (P=0.01) rates compared to patients with low CD133 expression. Multivariate analyses revealed that increased CD133 expression was an independent prognostic factor for survival(RR=2.443, P=0.017) and tumor recurrence(RR=2.445, P=0.011) in patients with HCC.
     4) CD133~+ cells are frequently present in alll of HCC cell lines contain and it ranges from 0.1% to 61%.
     5) The chemosensivity of drugs showed that CD133~- cells were preferential killed after 24h and 48h of incubation with Dox and 5-Fu compared with CD133~+ cells.
     6) The result of semi-quantitative RT-PCR showed a preferential expression of ABCG2 mRNA in CD133~+ CSCs cells than CD133~- cells(P﹤0.01)).
     Conclusion:
     1) These findings suggest that reactivated CD133 positive cells are frequently present in HCC;
     2) CD133~+ CSCs not only take part in the initiation of hepatocarcinogeneis but also play an import role in the progression of HCC;
     3) Increased CD133 expression corresponds with higher stage tumors in HCC, thus indicating a poor prognosis for patients. These data support the cancer stem cell hypothesis;
     4) There is a preferential expression of ABCG2 in CD133~+ CSC cells. Thus, multi-pathways may take part in multidrug resistance of CD133~+ CSCs except for the activation of anti-apoposis pathway.
引文
1 Blanco-Aparicio C, Renner O, Leal JF, et al. PTEN, more than the AKT pathway. Carcinogenesis, 2007,28:1379-86.
    2 Fuster JJ, Sanz-Gonzalez SM, Moll UM, et al. Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med, 2007,13:192-9.
    3 Nowell PC. The clonal evolution of tumor cell populations. Science, 1976,194:23-8.
    4 Gournay J, Auvigne I, Pichard V, et al. In vivo cell lineage analysis during chemical hepatocarcinogenesis in rats using retroviral-mediated gene transfer: evidence for dedifferentiation of mature hepatocytes. Lab Invest, 2002,82:781-8.
    5 Heppner GH. Tumor heterogeneity. Cancer Res, 1984,44:2259-65.
    6 Aubele M, Werner M. Heterogeneity in breast cancer and the problem of relevance of findings. Anal Cell Pathol, 1999,19:53-8.
    7 Marx J. Cancer research. Mutant stem cells may seed cancer. Science, 2003,301: 1308-10.
    8 Milas L, Raju U, Liao Z, et al. Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol, 2005,32:S78-81.
    9 Brawley OW, Kramer BS. Cancer screening in theory and in practice. J Clin Oncol, 2005,23:293-300.
    10 Mimeault M, Hauke R,Batra SK. Recent Advances on the Molecular Mechanisms Involved in the Drug Resistance of Cancer Cells and Novel Targeting Therapies. Clin Pharmacol Ther, 2007.
    11 Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001,414:105-11.
    12 Dean M, Fojo T,Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer,2005,5:275-84.
    13 Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 2004,51:1-28.
    14 HEWITT HB. Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br J Cancer, 1958,12:378-401.
    15 BRUCE WR, VAN DER GAAG H. A QUANTITATIVE ASSAY FOR THE NUMBER OF MURINE LYMPHOMA CELLS CAPABLE OF PROLIFERATION IN VIVO. Nature, 1963,199:79-80.
    16 Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science, 1977,197:461-3.
    17 Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest, 1994,70:6-22.
    18 Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature, 2001,411:349-54.
    19 Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 2000,6:1278-81.
    20 Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 2003,423:302-5.
    21 Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003,423:255-60.
    22 Nozoe T, Takahashi I, Baba H, et al. Relationship between intracellular localization of p34cdc2 protein and differentiation of esophageal squamous cell carcinoma. J Cancer Res Clin Oncol, 2005,131:179-83.
    23 Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma: genetics and biology of agrave matter. Genes Dev, 2001,15:1311-33.
    24 Li L, Liu F,Ross AH. PTEN regulation of neural development and CNS stem cells. J Cell Biochem, 2003,88:24-8.
    25 Mizrak D, Brittan M,Alison MR. CD133: molecule of the moment. J Pathol, 2008,214:3-9.
    26 Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996,183:1797-806.
    27 Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res, 2006,312:3701-10.
    28 Tu SM, Lin SH,Logothetis CJ. Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol, 2002,3:508-13.
    29 Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 2005,23:879-94.
    30 Vogel G. Stem cell research. Rat brains respond to embryonic stem cells. Science, 2002,295:254-5.
    31 邵世宏, 姚运红. 干细胞、肿瘤干细胞与肿瘤的关系. 现代肿瘤医学, 2005.
    32 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997,3:730-7.
    33 Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003,100:3983-8.
    34 Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A, 2003,100:15178-83.
    35 Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer, 2007,120:1444-50.
    36 Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133+ hepatocellularcarcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun, 2006,351:820-4.
    37 Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005,65:10946-51.
    38 Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 2005,65:9328-37.
    39 Clarke MF. A self-renewal assay for cancer stem cells. Cancer Chemother Pharmacol, 2005,56 Suppl 1:64-8.
    40 Wu XZ. Origin of cancer stem cells: the role of self-renewal and differentiation. Ann Surg Oncol, 2008,15:407-14.
    41 Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene, 2004,23:7274-82.
    42 Kondo T, Setoguchi T,Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A, 2004,101:781-6.
    43 Fuchs E, Tumbar T,Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004,116:769-78.
    44 Polyak K, Hahn WC. Roots and stems: stem cells in cancer. Nat Med, 2006,12:296-300.
    45 Galderisi U, Cipollaro M,Giordano A. Stem cells and brain cancer. Cell Death Differ, 2006,13:5-11.
    46 Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res, 2006,66:4553-7.
    47 Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 2004,23:7150-60.
    48 Peerani R, Rao BM, Bauwens C, et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J, 2007,26:4744-55.
    49 Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary.Science, 2000,290:328-30.
    50 Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003,425:836-41.
    51 Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 2004,103:3258-64.
    52 Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 2006,24:506-13.
    53 Hermann PC, Huber SL,Heeschen C. Metastatic cancer stem cells: a new target for anti-cancer therapy?. Cell Cycle, 2008,7:188-93.
    54 Csete M. Oxygen in the cultivation of stem cells. Ann N Y Acad Sci, 2005,1049:1-8.
    55 Sullivan M, Galea P,Latif S. What is the appropriate oxygen tension for in vitro culture?. Mol Hum Reprod, 2006,12:653.
    56 Ezashi T, Das P,Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A, 2005,102:4783-8.
    57 Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006,66:7843-8.
    58 Platet N, Liu SY, Atifi ME, et al. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett, 2007,258:286-90.
    59 Tavaluc RT, Hart LS, Dicker DT, et al. Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle, 2007,6:2554-62.
    60 Xie T, Li L. Stem cells and their niche: an inseparable relationship. Development, 2007,134:2001-6.
    61 Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol, 2007,20:19-27.
    62 Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007,11:69-82.
    63 Gottesman MM, Fojo T,Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, 2002,2:48-58.
    64 Dean M, Hamon Y,Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res, 2001,42:1007-17.
    65 Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994,77:491-502.
    66 Zhou S, Zong Y, Lu T, et al. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques, 2003,35:1248-52.
    67 Zhou S, Morris JJ, Barnes Y, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 2002,99:12339-44.
    68 Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A, 2002,99:15649-54.
    69 Scharenberg CW, Harkey MA,Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002,99:507-12.
    70 Raaijmakers MH, de Grouw EP, Heuver LH, et al. Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin Cancer Res, 2005,11:2436-44.
    71 Ho MM, Hogge DE,Ling V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp Hematol, 2008,36:433-42.
    72 Zhou J, Wang CY, Liu T, et al. Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J Gastroenterol, 2008,14:925-30.
    73 van Stijn A, van der Pol MA, Kok A, et al. Differences between the CD34+ and CD34- blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica, 2003,88:497-508.
    74 Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 2000,14:1777-84.
    75 Wang CY, Mayo MW,Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996,274:784-7.
    76 Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998,281:1680-3.
    77 Grumont RJ, Rourke IJ, O'Reilly LA, et al. B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J Exp Med, 1998,187:663-74.
    78 Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, 2001,98: 2301-7.
    79 Terpstra W, Ploemacher RE, Prins A, et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood, 1996,88:1944-50.
    80 Knutsen T, Mickley LA, Ried T, et al. Cytogenetic and molecular characterization of random chromosomal rearrangements activating the drug resistance gene, MDR1/P-glycoprotein, in drug-selected cell lines and patients with drug refractory ALL.Genes Chromosomes Cancer, 1998,23:44-54.
    81 Montanaro F, Liadaki K, Schienda J, et al. Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp Cell Res, 2004,298: 144-54.
    82 Warner JK, Wang JC, Hope KJ, et al. Concepts of human leukemic development. Oncogene, 2004,23:7164-77.
    83 Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res, 2005,65:6207-19.
    84 Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007,445:111-5.
    85 Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001,7:1028-34.
    86 Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 2000,287:1442-6.
    87 Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003,63:5821-8.
    88 Zhou J, Zhang H, Gu P, et al. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat, 2007.
    89 Phillips TM, Kim K, Vlashi E, et al. Effects of recombinant erythropoietin on breast cancer-initiating cells. Neoplasia, 2007,9:1122-9.
    90 Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 2006,25:1696-708.
    91 Lawson DA, Xin L, Lukacs RU, et al. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A, 2007,104:181-6.
    92 Bello-DeOcampo D, Kleinman HK, Deocampo ND, et al. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate, 2001,46:142-53.
    93 Zhong X, Li Y, Peng F, et al. Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas. Int J Cancer, 2007,121:2125-31.
    94 Bjerkvig R, Tysnes BB, Aboody KS, et al. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer, 2005,5:899-904.
    95 Tan BT, Park CY, Ailles LE, et al. The cancer stem cell hypothesis: a work in progress. Lab Invest, 2006,86:1203-7.
    96 Romano G. The role of adult stem cells in carcinogenesis. Drug News Perspect, 2005,18:555-9.
    97 Cozzio A, Passegue E, Ayton PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev, 2003,17:3029-35.
    98 Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 2006,442:818-22.
    99 Collins AT, Maitland NJ. Prostate cancer stem cells. Eur J Cancer, 2006,42:1213-8.
    100 Kopper L, Hajdu M. Tumor stem cells. Pathol Oncol Res, 2004,10:69-73.
    101 Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 2002,1:269-77.
    102 Rajaraman R, Rajaraman MM, Rajaraman SR, et al. Neosis--a paradigm of self-renewal in cancer. Cell Biol Int, 2005,29:1084-97.
    103 Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell, 2004,116:639-48.
    104 Camargo FD, Chambers SM,Goodell MA. Stem cell plasticity: from transdifferentiationto macrophage fusion. Cell Prolif, 2004,37:55-65.
    105 O'Malley K, Scott EW. Stem cell fusion confusion. Exp Hematol, 2004,32:131-4.
    106 Pomerantz J, Blau HM. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol, 2004,6:810-6.
    107 Weimann JM, Johansson CB, Trejo A, et al. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol, 2003,5:959-66.
    108 Blau HM, Blakely BT. Plasticity of cell fate: insights from heterokaryons. Semin Cell Dev Biol, 1999,10:267-72.
    109 Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 2003,425:968-73.
    110 Vassilopoulos G, Wang PR,Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature, 2003,422:901-4.
    111 Shemer G, Podbilewicz B. The story of cell fusion: big lessons from little worms. Bioessays, 2003,25:672-82.
    112 Ogle BM, Cascalho M,Platt JL. Biological implications of cell fusion. Nat Rev Mol Cell Biol, 2005,6:567-75.
    113 Farkas-Bargeton E, Barbet JP, Dancea S, et al. Immaturity of muscle fibers in the congenital form of myotonic dystrophy: its consequences and its origin. J Neurol Sci, 1988,83:145-59.
    114 Wockel L, Ketelsen UP, Stotter M, et al. Abundant minute myotubes in a patient who later developed centronuclear myopathy. Acta Neuropathol, 1998,95:547-51.
    115 Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta, 2000,21:597-602.
    116 Miyamoto T, Suda T. Differentiation and function of osteoclasts. Keio J Med,2003,52:1-7.
    117 Duelli D, Lazebnik Y. Cell fusion: a hidden enemy?. Cancer Cell, 2003,3:445-8.
    118 Pawelek JM. Tumour cell hybridization and metastasis revisited. Melanoma Res, 2000,10:507-14.
    119 Holmgren L, Szeles A, Rajnavolgyi E, et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood, 1999,93:3956-63.
    120 Bergsmedh A, Szeles A, Henriksson M, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A, 2001,98:6407-11.
    121 Bjerknes R, Bjerkvig R,Laerum OD. Phagocytic capacity of normal and malignant rat glial cells in culture. J Natl Cancer Inst, 1987,78:279-88.
    122 Bergsmedh A, Szeles A, Spetz AL, et al. Loss of the p21(Cip1/Waf1) cyclin kinase inhibitor results in propagation of horizontally transferred DNA. Cancer Res, 2002,62:575-9.
    123 Tunici P, Irvin D, Liu G, et al. Brain tumor stem cells: new targets for clinical treatments?. Neurosurg Focus, 2006,20:E27.
    124 Tysnes BB, Bjerkvig R. Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta, 2007,1775:283-97.
    125 Al-Hajj M, Becker MW, Wicha M, et al. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev, 2004,14:43-7.
    126 Plasschaert SL, Kamps WA, Vellenga E, et al. Prognosis in childhood and adult acute lymphoblastic leukaemia: a question of maturation?. Cancer Treat Rev, 2004,30:37-51.
    127 Dubey P, Wu H, Reiter RE, et al. Alternative pathways to prostate carcinoma activate prostate stem cell antigen expression. Cancer Res, 2001,61:3256-61.
    128 Gao CL, Dean RC, Pinto A, et al. Detection of circulating prostate specific antigen expressing prostatic cells in the bone marrow of radical prostatectomy patients by sensitive reverse transcriptase polymerase chain reaction. J Urol, 1999,161:1070-6.
    129 Zeppernick F, Ahmadi R, Campos B, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res, 2008,14:123-9.
    130 Maeda S, Shinchi H, Kurahara H, et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer, 2008.
    131 Oliver TG, Wechsler-Reya RJ. Getting at the root and stem of brain tumors. Neuron, 2004,42:885-8.
    132 Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med, 2006,12:1167-74.
    133 Feuring-Buske M, Frankel AE, Alexander RL, et al. A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res, 2002,62:1730-6.
    134 Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A, 2002,99:16220-5.
    135 Tung-Ping Poon R, Fan ST,Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg, 2000,232:10-24.
    136 Yeh CN, Lee WC, Chen MF, et al. Predictors of long-term disease-free survival after resection of hepatocellular carcinoma: two decades of experience at Chang Gung Memorial Hospital. Ann Surg Oncol, 2003,10:916-21.
    137 Ding X, Yang LY, Huang GW, et al. Role of AFP mRNA expression in peripheral blood as a predictor for postsurgical recurrence of hepatocellular carcinoma: a systematic review and meta-analysis. World J Gastroenterol, 2005,11:2656-61.
    138 Baumann U, Crosby HA, Ramani P, et al. Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell?. Hepatology, 1999,30:112-7.
    139 Libbrecht L, De Vos R, Cassiman D, et al. Hepatic progenitor cells in hepatocellular adenomas. Am J Surg Pathol, 2001,25:1388-96.
    140 周思朗,李鹏,曹漫明,等. 大鼠肝癌干细胞生物学行为研究. 中华肝脏病杂志, 2006.
    141 Yang ZF, Ngai P, Ho DW, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008,47:919-28.
    142 Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 2008,13:153-66.
    143 Nakayama J, Tahara H, Tahara E, et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet, 1998,18:65-8.
    144 Hussain SZ, Sneddon T, Tan X, et al. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res, 2004,292:157-69.
    145 Shibata T, Chuma M, Kokubu A, et al. EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology, 2003,38:178-86.
    146 Olsen CL, Hsu PP, Glienke J, et al. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer, 2004,4:43.
    147 张宁,窦科峰,李韧,等. 肝癌细胞系 MHCC97 亚群中甲胎蛋白的表达差异. 第四军医大学学报, 2006.
    148 Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology, 2001,33:738-50.
    149 Xiao JC, Jin XL, Ruck P, et al. Hepatic progenitor cells in human liver cirrhosis: immunohistochemical, electron microscopic and immunofluorencence confocal microscopic findings. World J Gastroenterol, 2004,10:1208-11.
    150 Strick-Marchand H, Morosan S, Charneau P, et al. Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts andhepatocytes. Proc Natl Acad Sci U S A, 2004,101:8360-5.
    151 Libbrecht L, Desmet V, Van Damme B, et al. Deep intralobular extension of human hepatic 'progenitor cells' correlates with parenchymal inflammation in chronic viral hepatitis: can 'progenitor cells' migrate?. J Pathol, 2000,192:373-8.
    152 Crosby HA, Hubscher S, Fabris L, et al. Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. Am J Pathol, 1998,152:771-9.
    153 Lee ES, Han EM, Kim YS, et al. Occurrence of c-kit+ tumor cells in hepatitis B virus-associated hepatocellular carcinoma. Am J Clin Pathol, 2005,124:31-6.
    154 Yamamoto T, Uenishi T, Ogawa M, et al. Immunohistologic attempt to find carcinogenesis from hepatic progenitor cell in hepatocellular carcinoma. Dig Surg, 2005,22:364-70.
    155 Forraz N, Pettengell R,McGuckin CP. Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells, 2004,22:100-8.
    156 Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997,90:5002-12.
    157 Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood, 1997,90:5013-21.
    158 Bhatia M. AC133 expression in human stem cells. Leukemia, 2001,15:1685-8.
    159 Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 2000,95:952-8.
    160 Corbeil D, Roper K, Hellwig A, et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions.J Biol Chem, 2000,275:5512-20.
    161 Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci, 2004,117:3539-45.
    162 Bussolati B, Bruno S, Grange C, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol, 2005,166:545-55.
    163 Yu Y, Flint A, Dvorin EL, et al. AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem, 2002,277:20711-6.
    164 Akihiro Shimosaka. Clinical Application of CD133+ Stem cells focused on the regenerative therapy. 第八次中华血液学学会, 2004,11.
    165 Klein WM, Wu BP, Zhao S, et al. Increased expression of stem cell markers in malignant melanoma. Mod Pathol, 2007,20:102-7.
    166 Auberger J, Dlaska M, Auberger T, et al. Increased CD133 expression in bone marrow of myelodysplastic syndromes. Leuk Res, 2005,29:995-1001.
    167 Corbeil D, Roper K, Fargeas CA, et al. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic, 2001,2:82-91.
    168 Fargeas CA, Joester A, Missol-Kolka E, et al. Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci, 2004,117:4301-11.
    169 Marzesco AM, Janich P, Wilsch-Brauninger M, et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci, 2005,118:2849-58.
    170 Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 2000,95:3106-12.
    171 Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002,109:337-46.
    172 Maw MA, Corbeil D, Koch J, et al. A frameshift mutation in prominin (mouse)-like 1causes human retinal degeneration. Hum Mol Genet, 2000,9:27-34.
    173 Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 2007,132:2542-56.
    174 Libbrecht L, Roskams T. Hepatic progenitor cells in human liver diseases. Semin Cell Dev Biol, 2002,13:389-96.
    175 Li HZ, Yi TB,Wu ZY. Suspension culture combined with anticancer regimens for screening breast cancer stem cells. Med Hypotheses, 2007,68:988-90.
    176 Wei C, Guo-min W,Yu-jun L. Apoptosis resistance can be used in screening the markers of cancer stem cells. Med Hypotheses, 2006,67:1381-3.
    177 Ma YH, Mentlein R, Knerlich F, et al. Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol, 2008,86:31-45.
    178 Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994,367:645-8.
    179 Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005,121:823-35.
    180 Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A, 2000,97:14720-5.
    181 Weigmann A, Corbeil D, Hellwig A, et al. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A, 1997,94:12425-30.
    182 Simonetti RG, Camma C, Fiorello F, et al. Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci, 1991,36:962-72.
    183 Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev, 2004,18:2315-35.
    184 Satyanarayana A, Manns MP,Rudolph KL. Telomeres and telomerase: a dual role in hepatocarcinogenesis. Hepatology, 2004,40:276-83.
    185 Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med, 2004,10:789-99.
    186 Sakariassen PO, Immervoll H,Chekenya M. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia, 2007,9:882-92.
    187 Mohan A, Kandalam M, Ramkumar HL, et al. Stem cell markers: ABCG2 and MCM2 expression in retinoblastoma. Br J Ophthalmol, 2006,90:889-93.
    188 Mangiola A, Lama G, Giannitelli C, et al. Stem cell marker nestin and c-Jun NH2-terminal kinases in tumor and peritumor areas of glioblastoma multiforme: possible prognostic implications. Clin Cancer Res, 2007,13:6970-7.
    189 Ma S, Lee TK, Zheng BJ, et al. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 2008,27:1749-58.
    190 O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007,445:106-10.
    191 Zen Y, Fujii T, Yoshikawa S, et al. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol, 2007,170:1750-62.
    192 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998,95:15665-70.
    193 Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003,22:7340-58.
    194 Kim M, Turnquist H, Jackson J, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res, 2002,8:22-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700