用户名: 密码: 验证码:
蛇床子素对帕金森病防治作用的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease PD)是影响中老年人身体健康的主要神经退行性疾病,其病因仍然不清。左旋多巴一直是治疗PD的经典药物。然而,左旋多巴在连续用药后会发生诸多副作用,而且左旋多巴治疗并不能延缓多巴胺神经元的进行性死亡。因此,临床上急需研究疗效好、副作用小的治疗PD的药物。许多研究证实中药治疗PD的效果是确切的,但都为复方制剂,用量大,作用机理和有效成分均不十分清楚。因此,研究疗效可靠的中药单体药物及其作用机理具有重要的临床应用意义。
     中药蛇床子是伞形科植物蛇床Cnidiumm monnier(L.)Cusson的干燥成熟果实,具有开窍祛痰、醒神益智、理气活血等功效,在治疗帕金森病的中药复方中频繁出现。现代研究表明,蛇床子可增强脑细胞耐缺氧能力、改善脑循环,并有减少自由基损害的作用。蛇床子素(Osthole,OST)是蛇床子中最重要的活性单体成分,是一种很好的天然抗氧剂,具有抗氧化、抗衰老、抗血栓、促进学习记忆的作用。但其对帕金森病的治疗作用和机理方面的研究尚未见报道。
     针对临床需要,本文对蛇床子中OST进行了深入研究,为将其开发成防治PD的新药奠定了理论基础。
     第一部分蛇床子中OST的提取分离方法研究
     目的:建立一种方便、高效的从蛇床子中提取分离有效成分OST的方法。
     方法:分别采用有机溶剂萃取法、微波萃取和浊点萃取法从蛇床子中提取OST,再取蛇床子提取物用无水乙醇进行多次重结晶纯化,最后得到OST纯品(纯度>98%)。
     结果与结论:
     首次采用环保型液液萃取技术-浊点萃取法提取OST,并对其进行了HPLC定量分析。经三种方法比较,浊点萃取法萃取率最高。中药传统的提取法多为有机溶剂萃取,均不同程度地存在有机溶剂用量大、处理时间长、步骤多、杂质多、环境污染严重等缺点。而浊点萃取法不使用有机溶剂,克服了以上缺点。本实验证明浊点萃取法代替传统有机溶剂提取工艺提纯OST效率和纯度高,且有较高重现性。
     第二部分OST体内药代动力学的研究
     目的:测定给药后大鼠血浆和脑中OST浓度的动态变化及药动学参数。考察OST透过血脑屏障的行为,为OST的临床合理用药提供可靠依据。
     方法:取SD大鼠灌胃OST 40.0 mg/kg后,在给药后不同的时间点采取血浆和脑组织,经浊点萃取处理后,经HPLC测定药物含量。平均药物含量-时间数据用DAS 2.0程序拟合,按非房室模型的统计矩法进行统计。
     结果:大鼠灌胃OST的药代动力学特点符合一级消除的二室开放模型,主要血浆药代动力学参数分别C_(max):2.72μg/mL;t_(1/2):5.26h;AUC_(0-t):10.49μg/h/mL;AUC_(0-∞):11.27μg/h/mL;t_(max):0.56h。脑组织中OST达峰时间为0.56h,即在脑和血浆中同时达到峰值浓度,C_(max):1.06μg/mL,且其浓度在0.5-6h内没有显著性变化,其药物下降幅度仅为48%。
     结论:1.浊点萃取法应用于OST体内药代动力学的研究中样品的预处理过程方法简便、可行。
     2.从时间-浓度曲线中观察到血浆中OST迅速分布,且消除较缓慢,说明OST能透过血脑屏障,且能在脑组织中停留较长时间。
     第三部分OST对MPTP诱导C57BL小鼠PD的保护作用初步研究
     目的:观察OST对MPTP诱发PD模型小鼠的行为学及多巴胺能神经元的影响,以探讨OST对黑质多巴胺能神经元的保护作用。
     方法:小鼠随机分为模型组、美多芭组、OST高(100 mg/kg)、中(50 mg/kg)、低剂量(25 mg/k)三组,另设正常对照组。腹腔注射MPTP复制PD小鼠模型,在造模前5d灌胃OST,连续13d持续到造模结束,并观察OST对小鼠协调运动能力、TH阳性神经元细胞数及黑质多巴胺含量的影响。
     结果:OST高、中剂量组、美多芭组给药第2d后小鼠的协调运动能力均有不同程度恢复,与模型组比较(P<0.05);低剂量OST对PD小鼠协调运动能力改善不显著(P>0.05),模型组小鼠与治疗前比较协调运动能力有显著降低(P<0.05),正常组小鼠行为则无变化;免疫组化显示OST高、中剂量脑黑质TH阳性神经元数量高于模型组(P<0.05),而低于美多芭组(P<0.05),但均低于正常组(P>0.05);高效液相色谱-电化学检测结果表明,模型组大鼠中脑DA、DOPAC、HVA含量均低于OST高、中剂量组、美多芭组(P<0.05或P<0.01),但均低于正常组。低剂量OST的DA、DOPAC和HVA含量与模型组比较差异不显著。
     结论:OST可通过减轻PD模型小鼠脑黑质细胞的受损程度,促进其修复,并升高DA、DOPAC及HVA水平和改善协调运动能力以达到防治帕金森病的作用。
     第四部分OST对PC12细胞氧化应激损伤模型保护作用研究
     目的:利用H_2O_2造成PC12细胞直接氧化应激损伤,探讨OST在神经细胞中的抗氧化机制。利用观测MPP~+介导的PC12细胞间接氧化应激损伤程度,探讨OST在神经细胞中的抗凋亡机制。
     方法:以神经毒素MPP~+和H_2O_2诱导PC12细胞凋亡即为PD体外细胞模型。采用形态学观察、荧光染色、透射电镜超微结构分析、流式细胞技术、DNA片断化、RT-PCR和Western blot蛋白印迹技术,在抗氧化、抗凋亡等方面,探讨OST保护PC12细胞氧化应激损伤的作用机制。
     结果:1.在H_2O_2介导的PC12细胞直接氧化应激损伤模型中,OST剂量依赖地减少了细胞中LDH的漏出;通过细胞核的形态观察以及流式细胞仪的分析,OST可以减少H_2O_2介导的PC12细胞凋亡性死亡;OST抗H_2O_2氧化应激损伤的保护作用与细胞内SOD、CAT、GSH-Px和MDA等抗氧化酶的活性密切相关。
     2.在MPP~+介导的PC12细胞间接氧化应激损伤模型中,LDH分析证明能够保护质膜的完整性而抑制MPP~+介导的LDH漏出;形态观察及流式细胞仪的分析,同样证实OST可显著抑制MPP~+介导的细胞凋亡;而且,OST能够剂量依赖地降低凋亡/坏死细胞的比例。OST抑制MPP~+介导的细胞凋亡可通过阻止膜电位(MMP)的丧失,抑制ROS的产生,减少GSH的耗竭,促进SOD和CAT的激活和上调Bcl-2蛋白的表达,降低Bax/Bcl-2的比率,抑制Caspase-3激活和Cytochrome C的释放及下调核转录因子NF-кB P65蛋白。
     结论:1.在受活性氧(ROS)介导的氧化应激损伤时,OST可以有效的保持PC12细胞内的抗氧化防御体系处于正常的水平,从而抑制细胞的功能衰蝎而死亡。
     2. OST可能通过调节线粒体的通透性而抑制氧化应激所致的细胞凋亡。
     结论和意义:
     1.本课题首次将浊点萃取法应用于蛇床子中有效成分OST的提取分离和体内药代动力学研究中样品的预处理过程,并分别进行了实验优化,结果表明,该方法间便、高效、环保、适于规模操作,是一种非常有前途的分离和样品预处理方法。
     2.首次证明OST对MPTP所致PD模型小鼠的行为有明显改善作用,并对MPTP所致小鼠脑中多巴胺及其代谢产物的降低有提高作用,并可保护H_2O_2和MPP~+介导的PC12细胞氧化应激引起的损伤和凋亡。通过体内、外实验研究,首次从细胞和分子水平阐明OST治疗PD的作用机制,即OST的治疗作用与维持线粒体膜电位,相应保持线粒体正常功能,抑制线粒体凋亡途径的激活及调节细胞凋亡相关蛋白的表达有关。该研究结论不仅为OST的新药创制提供实验依据,同时澄清了中药蛇床子可用于治疗PD的物质基础。
Parkinson's disease (PD) is a progressive neurodegenerative disease which defining pathological features are selective loss of dopaminergic neurons in substantia nigra pars compacta and subsequent decrease of dopamine levels in the striatum, the main target innervated by these neurons. It ranked the second common neurodegenerative disorder after Alzheimer’s disease and affected people primarily in mid and late life. Although the etiopathogenisis of PD still remains to be elucidated, the evidence strongly suggested that mitochondrial dysfunction and oxidative stress should be related to the disease. The auto-oxidation and the enzymatic oxidation of dopamine can generate ROS. Oxidative stress and/or mitochondrial impairment are believed to culminate in the activation of an apoptotic cascade which ultimately resulted in the loss of dopaminergic cells. Therefore, the regulation of intracellular ROS and modification of the apoptotic cascade may be important to prevent pathological apoptosis in PD. The L-dopamine (L-DA) is the classical strategy for the PD therapy. However, it can only improve clinical symptoms but can not retard the course of the disease. Moreover, severe side effects will appear in the long-time treatment. New drugs with good curative effect and fewer side effects are eagerly needed. Recently, a new concept for pharmecotherapy of PD called neuroprotective strategy has been proposed.
     Osthole (7-methoxy-8- isopentenoxy-coumarin), which is extracted from Cnidium monnieri (Chinese name: She Chuang Zi) and has long been used in traditional Chinese medicine, has been reported to have various pharmacological properties including anti-platelet activity, anti-tumor, anti-allergic effect, anti-apoptosis, anti-oxidation, estrogen-like-effects, anti-osteoporosis, hepato- protective effect and anti-inflammation. It is a potential antioxidant that has been reported to have significant scavenging effects on oxygen free radicals and inhibit lipid peroxidation. Thus, this indicates that OST possibly has the therapeutic effect on PD.
     In the present study, the protective effect of OST on dopaminergic neurons in substantia nigra pars compacta (SNC) was investigated in the PD model mice treated with MPTP in vivo. The neuroprotective effect of OST on MPP+ and H2O2-induced cytotoxicity in PC12 cells was performed in vitro. HPLC, immunohistochemistry staining, RT-PCR, Flow cytometric detection, western blot analysis, transmission electron microscope, and so on were performed in order to probe into the effect of OST on DA neurons, and identify its antioxidation and anti-apoptosis mechanism. Our studies provide strong evidences that OST is useful to the treatment of PD. Experiments were divided into five parts as follows:
     Part one: the extraction and separation of OST from Cnidium monnieri
     Objective:
     The extract and separate technique of OST from Cnidium monnieri was improved, and the contents of OST in the extract were determined by HPLC.
     Methods:
     The feasibility of employing non-ionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) as an alternative and effective solvent for the extraction of osthole in Cnidium monnieri was studied for the first time. Various experimental conditions were investigated to optimize the extraction process. Under optimum conditions, i.e. 10% Genapol X-080 (w/v), liquid/solid ratio of 100:1 (mL/g), ultrasonic-assisted extraction for 30 min, and the extraction recovery reached the highest value. For the preconcentration of osthole and imperatorin by cloud point extraction (CPE), the solution was incubated in a thermostatic water bath at 60℃for 30 min, and 2.0 moL/ L sodium chloride was added to the solution to facilitate the phase separation and increase the preconcentration factor during the CPE process.
     Results:
     the extraction efficiency is more than 39 percent that of conventional extraction solvent-methanol
     Conclusion:
     The cloud-point extraction technique is a low cost, simple and sensitive method with high cleanup effect. Finally, the method was successfully applied to separate and determine osthole from C. monnieri, respectively.
     Part second: Pharmacokinetic Study of Osthole in Rat
     Objective:
     This research aims at systematical study on the pharmacokinetics, tissue distribution, which offers a study base to next clinical trial.
     Method:
     A new straightforward method based on cloud-point extraction (CPE) was developed to determine osthole in rat plasma and brain tissue by reversed phase high performance liquid chromatography. The drug concentrations were analyzed by the non-compartment model method statistical moment method of DAS 2.0 software.
     Results:
     The experiment results on rat implyed that the plasma concentration-time curve was fitted as second-compartmentmodel. The main pharmacokinetic parameters at dose (30 mg/kg) are as follows.
     C_(max): 2.72μg/mL, t_(1/2): 5.26h, AUC_(0-t): 10.49μg h mL~(-1), AUC_(0-∞): 11.27μg h mL~(-1), t_(max): 0.56h. The peak concentration of OST in mouse plasma was 1.06μg/mL. The concentration of OST in mouse brain at 0.5-6h no significant changes in their drug drop of only 48%.
     Conclusion:
     The results indicated that OST readily penetrated the blood-brain barrier and could be stay in the brain for a long time.
     Part three: Protective effect of OST on PD model mice treated with MPTP
     Objective:
     The protective effect of OST on dopaminergic neurons in substantia nigra pars compacta was investigated in the PD model mice treated with MPTP
     Method:
     Behaviors, HPLC, immunohischemistry technique were used to observe the damage of substantia nigral neurons respectively.
     Results:
     1. In the coordination exercise test, the model group mice demonstrated dyskinesia, scores obtained from the behavioral tests were decreased significantly compared to control group (P<0.05), while the scores in pretreatment groups (hight, middle) showed a marked increase to some degree (P<0.05).
     2. The level of DA, DOPAC and HVA in the OST high dose group, middle dose group and madopar group were higher than that of the model group (P<0.05or P<0.01), but lower than that of normal group,the level of DA, DOPAC and HVA in OST low dose group were not significantly changed.
     Conclusion:
     The results suggest that OST may provide a protective effect against MPTP-induced neuronal death in parkinsonian model by reduceing DA neuron loss and increasing the level of DA, DOPAC and HVA.
     Part four: Protectvie effect of OST on MPP+ and H_2O_2 induced injury in dopaminergic PC12cells
     Objective:
     To study the protect effects of OST on MPP+ and H_2O_2 induced injury in dopaminergic PC12cells.
     Method:
     The neuroprotective effects of OST on MPP+ and H_2O_2-induced oxidative stress in cultured PC12 cells were investigated. HPLC, immunohisto- chemistry staining, RT-PCR, Flow cytometric detection, western blot analysis, transmission electron microscope, and so on were performed in order to probe into the effect of OST on DA neurons, and identify its antioxidation and anti-apoptosis mechanism.
     Results:
     1. The neuroprotective effects of OST on H_2O_2-induced direct oxidative stress in cultured PC12 cells were investigated. Exposure of PC12cells to H_2O_2 induced a leakage of lactate dehydrogenase (LDH), which was accordant in cell viability denoted by MTT assay. By observing the nuclear morphological changes and flow cytometric analysis, pretreatment with OST markedly elevated H_2O_2-induced cell survival and antioxidant enzyme activities (GSH-Px、SOD and CAT) and decreased the level of MDA in a dose-dependent manner.
     2. The neuroprotective effects of OST on MPP+-induced indirect oxidative stress in cultured PC12 cells were investigated. Treatment with OST significantly protected against MPP+-induced apoptosis observed the nuclear morphological changes and measured using flow cytometric analysis. The apoptosis in MPP+-induced PC12cells was associated with loss of mitochondrial merebrane potential, the formation of ROS, GSH depletion, suppressions of SOD and CAT, activation of caspase-3 and Cytochrome c, down-regulation of NF-кB P65、Bcl-2 and the increase in Bax/Bcl-2 ratio, and the generation of intracellular reactive oxygen species. In contrast, treatment of PC12 cells with OST remarkably reversed above-mentioned mitochondrial dysfunction.
     Conclusion:
     1. These results suggest that OST is very effective in preventing oxidative stress triggered by deterioration of cellular functions to reduce ROS levels. OST can protect PC12cells against oxidative stress probably due to stimulating endogenous antioxidant defense mechanisms.
     2. These results suggest that OST may have the capacity to counteract the toxicity of MPP+ by attenuating change of the mitochondrial membrane permeability that is associated with oxidative stress damage.
     Conclusion and significance
     1. The method of cloud point extraction was used to the extraction separation of OST and the sample pretreatment of pharmacokinetics study in first time. Experimental results show that the method was convenience, efficience, environment protection, and for the scale of operation. It is a very promising method of separation and sample preparation.
     2. The first demonstration that OST given orally significantly improved the abnormal behavior and increased the content of DA and its metabolites in striatum in MPTP model mice. Moreover, OST also has remarkably protective effects on MPP+ and H_2O_2-induced injury in PC12cells may be ascribed to its anti-oxidative properties, anti-apoptotic activity via maintaining normal mitochondrial function, inhibiting the activation of mitochondrial pathways of apoptosis and regulating apoptosis-related protein expression. These results indicated that OST might provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative disease such as Parkinson's disease.
引文
1. Youdim MB, Riederer P. Understanding Parkinson's disease. Sci Am. 1997, 276(1):52-59.
    2. Stoessl AJ, Etiology of Parkinson's disease. Can J Neurol Sci.1999, 26 suppl 2: S 5-12.
    3. Selly ML. (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson's disease. Free Radic Bio Med. 1998, 25(2):169-174.
    4. Kosel S, Hofhaus G, Maasse A, Vieregge P, Graeber MB. Role of mitochondria in Parkinson's disease. Biol Chem. 1999, 380(7-8):865-870.
    5. Parker WD, Swerdlow RH. Mitochondrial dysfunction in idiopathic Parkinson's disease. Am J Hum Genet. 1998, 62(4):758-762.
    6. France Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M. Mitochondrial free radical signal in creamide-dependent apoptosis:a putative mechanism for neuronal death in Parkinson's Disease. J Neurochem.1997, 69 (4):1612-1621.
    7. Dexter DT, Marsden CD, Jenner P, Daniel SE, Wells FR, et al. Increased levels of lipid hydroperoxides in the Parkinson substantia nigra:an HPLC and ESR study. Mov Disord. 1994, 9(1):92-97.
    8. Gatto EM, Poderoso JJ, Llesury S, Fernandez Pardal MM, Repetto M, Reides C. et al. Neutropil function nitric oxide and blood oxidative stress in Parkinson's Disease. Mov Disord. 1996, 11(3):261-267.
    9. Jnner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology. 1996, 47(6 supp13):161-170.
    10. Hirsch EC. Dose oxidative stress participates in nerve cell death in Parkinson's disease. Eur Neurol. 1993, 33 suppl: 52-59.
    11. Jerner P, Altered mitochondrial function, irons metabolism and glutathione levels in Parkinson's disease. Acta Neurol Scand. 1993,146 suppl: 6-13.
    12. Kalra J, Prasad K, Chaudchary AK, Mantha SV, Rajput AH. Oxygen free radical producing activity of polymorphonuclear leukocytes in patients with Parkinson's disease. Mol Cell Biochem. 1992, 112 (2):181-186.
    13. Sian J, Dexter D, Lees A, Daniel S, Agid Y, et al. Alterations in glutathione levels in Parkinson's Disease and other neurodegenerative disorders affecting the basalganglia. Ann Neurol. 1994, 36:348-355.
    14. Sanchez Ramos JR, Overvik E, Ames BN. A marker of oxyradi- cal-mediated DNA (8-hydroxy-2'-deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration.1994, 3:1997-204.
    15. Lai CT, Yu PH. Doapmine and L-β-3,4-dihydroxyphenylalanine h ydrochloride (L-dopa) induced cytotoxicity towards catecholamine- ergic neuroblastoma SH-SY5Y cells effects of oxidative stress and antioxidstive factors. Biochem Pharmacol. 1997, 53:363-372.
    16. Martignoni E, Blandini F, Godi L, Desideri S, Pacchetti C, Mancini F, et al. Peripheral markers of oxidative stress in Parkinson's Disease:The role of L-DOPA. Free Radi Biol Med. 1999, 27(3):428-437.
    17. Freeman TB, Vawter DE, Leaverrton PE, Godbold JH, Hauser RA, Gotez CG, et al. Therapy in Parkinson's Disease:Surgery, pharmacyand sugery again. But with a spark?ANJR.
    18. Kelly PJ, Gillingham FJ. The long-term results of stereotaxic surgery and L-doap therapy in patients with Parkinson's disease, A 10-year follow-up study. J Neurosurg. 1980, 53(3):332-337.
    19. Simon DK, Standaert DG. Neuroprotective therapies. Med Clin North AM. 1999, 83(2):509-523.
    20. Jellinger KA. The role of iron in neurooegeneration:prospects forpharmacotherapy of Parkinson's Disease. Drugs Aging. 1999, 14 (2):115-140.
    21. Marsden CD, Olanow CW. The causes of Parkinson’s disease are being unraveled and rational neuroprotective therapy is close to reality. Ann Neurol. 1998, 44(3suppel):S189-196.
    22. Heikkila RE, Manzino L, Felicitos S, Duvoisin CRC. Protection against the dopaminergic neurotoxicity of 1-methy-4-phenyl-1,2,3,6- terahydropyridine by monoamine oxidase inhibitors. Nature. 1984, 311:467-469.
    23. Arial NK, Misuqi Y, Goshima YM. Evaluation of a 1-methyl-4-phenyl -1,2,3,6-tetrahydropyrinde (MPTP)-treated C57 Black mouse model for Parkinsonism. Brain Res. 1990, 515:57-63.
    24. Hallman H, Lange J, Olson L, Stromberg I, Jonsson G. Neurochemical and histochemical characterization of neurotoxic effects of 1-methy-4-phenyl -1,2,3,6-terahydropyridine on brain catecholamine neurons in the mouse. J Neurochem. 1985, 44:117-127.
    25. Syder SH, Damato RJ. MPTP: a neurotoxin relevant to the pathophsiology of Parkinson's disease the 1985 George C Cotzias lecture. Neurology. 1986, 36(2):250-258.
    1.肖培根,连文琰主编.中药植物原色图鉴,第一版.北京:中国农业出版社, 1999:343
    2.向仁德,傅晓红.蛇床子化学成分的研究(Ⅰ).中草药,1984, 15(9):14
    3.向仁德,傅晓红.蛇床子化学成分的研究(Ⅱ).中草药,1986, 17(2):6
    4.向仁德,彭中芳,贾白玲等.蛇床子挥发油化学成分的初步研究.中国药科大学报,1989, 20(2):92
    5.王海波,葛发欢,李菁等.超临界CO2萃取蛇床子挥发性成分的研究.中药材, 1996, 19(2):84
    6.程大敦,赵俊.蛇床子中香豆素类的含量测定.药物分析杂志, 1987, 7(1): 112
    7.向仁德,张新勇,韩英,等.中药蛇床子水提物活性成分研究中草药, 1999; 30(11):813-815
    8.连其深,胡晓,上官珠. OST镇静作用的研究.中药新药与临床药理, 2000,11(4):244-245
    9.周俐,上官珠,连其深,等OST抗心律失常作用实验研究.现代应用药学, 1996, 13(2):11-13
    10.李乐,庄斐尔,杨玉林,等.OST对离体豚鼠心房的作用.中国药理学报, 1995, 9(2):108
    11.李乐,庄斐尔,赵更生等.OST对家兔主动脉条的钙拮抗作用.中国药理学通报, 1992, 8(3):227
    12. Ko FN, Wu TS, Liou MJ, et al. Vasorelaxation of rat thoracic aorta caused by Osthole isolated from Angelica pubescens. Eur J Pharmacol. 1992,219(1):29-34
    13. Guh JH, Yu SM, Ko FN, et al. Antiproliferative effect in rat vascular smooth muscle cells by Osthole, isolated from Angelica pubescens. Eur J Pharmacol.1996, 298 (2):191–197
    14.陈志春,段晓波,刘荣. OST抗变态反应的研究.药学药报, 1988, 23 (2):96
    15.刘桦,蒋韵,韩英. OST对小鼠免疫药理作用的研究.中草药, 1997, 28 (9):543
    16. Matsuda H, Tomohiro N, Ido Y, et al. Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, OSThol. Biol Pharm Bul. 2002, 25 (6):809-812
    17.连其深,周俐,叶和扬,等. OST抗炎作用的实验研究.赣南医学院学报, 1999, 19(3):165
    18.刘桦,蒋韵,韩英. OST对小鼠免疫药理作用的研究中草药, 1997, 28(9):543
    19.连其深,周俐,叶和扬,等. OST抗炎作用的实验研究赣南医学院学报, 1999, 19(3):165
    20.秦路平,王洪斌,张家庆,等. OST和蛇床子总香豆素对肾阳虚小鼠免疫功能的影响.中国中西医结合杂志, 1995, 15(9):547
    21. Qin LP, Zhang HM, Zhang WD. Effect of OSThol and tota coumarins of fructus cnidii on thyroid hormone an thyrotropic hormone in kidney–Yang deficiency rats. Zhongguo Zhong Xi Yi Jie He Za Zhi.1996, 16(9):552-553
    22. Teng CM, Lin CH, Ko FN, et al. The relaxant action of Osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn Schmiedbergs Arch Pharmacol. 1994, 349(2): 202-208
    23.沈丽霞,金乐群,张丹参. OST对AlCl3致急性衰老模型小鼠记忆障碍的保护作用.药学学报, 2002, 37(3):178-180
    24.沈丽霞,张丹参,张力等. OST对学习记忆的影响及其机制分析.药学学报, 1999, 34(6): 405-409
    25.王书华,安芳,张丹参. OST抗氧自由基清除作用的研究.中成药, 2004, 26 (12):1062-1063
    26.王书华,安芳,张丹参等. OST抗氧化作用的实验研究.中成药, 2005, 27 (4):488-489
    27.秦路平,石汉平,汪洪斌等.蛇床子香豆素对肾阳虚模型大鼠学习记忆和神经肽的影响.第二军医大学学报,1997, 18(2):147-149
    28.李乐,邱瑜. OST的局部麻醉作用.上海实验动物科学,1997,17(3):133
    29. Wu SN, Lo YK, Chen CC, et al. Inhibitory effect of the plant-extract Osthole on L-type calcium current in NG 108-15neuronal cells. Biochem Pharmacol. 2002, 63 (2):199-206
    30. Hsieh MT, Hsieh CL, Wang WH, et al. Osthole improves aspects of spatial performance in ovariectomized rats. Am J Chin Med. 2004, 32(1):11-20
    31. Li XX, Hara I,Matsumiya T.Effects of Osthole on pOSTmenopausal OSTeoporosis using ovariectomized rats comparison to the effects of estradiol. Biol Pharm Bull. 2002, 25(6):738-742
    32.李朝阳,吴铁,李青男,等. OST对去卵巢大鼠近侧胫骨代谢影响的定量研究.药学学报, 1996, 31(5):327
    33.秦路平,张汉明,张卫东,等. OST和蛇床子总香豆素对肾阳虚大鼠血清甲状腺激素和促甲状腺激素的影响.中国中西医结合杂志, 1996, 16(9):552
    34.秦路平,张家庆,石汉平,等.蛇床子总香豆素对肾阳虚大鼠模型腺垂体肾上腺皮质轴功能影响.中国中西医结合杂志, 1997,17(4):227
    35.牛锐,张剑勇,邓毅.敦煌残卷S.4433·10方药理作用实验研究.甘肃中医学院学报, 1990, 7(4):29-30
    36.张英姿,韩向阳,朱淑英,等.中药蛇床子对人类精子超微结构影响的研究.哈尔滨医科大学学报, 1995, 29(1):22-24
    37.朱淑英,韩向阳,任淑君,等.中药蛇床子杀精作用的实验研究.哈尔滨医科大学学报, 1992, 26(2):81-82
    38. Li L, Zhang FE, Yang L, et al. Effects of Osthole on isolated guinea pig heart atria. Zhongguo Yao Li Xue Bao. 1995, 16(3):251-254
    39. Teng CM, Ko FN, Wang JP, et al. AntihaemOSTatic and antithrombotic effect of some antiplatelet agents isolated from Chinese hearbs. J Pharm Pharmacol. 1991, 43(9): 667-669
    40. Ko FN, Wu TS, Liou MJ, et al. Inhibition of platelet thromboxane formation and phosphoinositides breakdown by Osthole from Angelica pubescens. Thromb HaemOST. 1989, 24, 62(3):996-999
    41. Yang LL, Wang MC, Chen LG, et al. Cytotoxic activity of coumarins form the fruits of Cnidium monnieri on leukemia cell lines. Planta Med. 2003, 69(12):1091-1095
    42. Kawaii S, Tomono Y, Ogawa K, et al. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines. Anticancer Res. 2001, 21(3B): 1905–1911
    43.段学军,向仁德,刘德祥,等.中药蛇床子水溶性提取物中化学成分的抗诱变性研究.癌变、畸变、突变, 1999, 11(2):65–67
    44.周俊,程维兴,许永华,等.OST对肺腺癌、肺鳞癌生长抑制作用的实验研究.癌变、畸变、突变, 2002, 14(4):231–233
    45. Hoult JR, Paya M. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol. 1996, 27(4): 713-722
    46. Lee RE, Bykadi G, Ritschel WA. Inhibition of prOSTaglandin biosynthesis by coumarin, 4-hydroxycoumarin, and 7-hydroxy coumarin. Arzneimiuel forschung. 1981,31:640-642
    47. Yang EB, Zhao YN, Zhang K, et al. Daphnetin,one of the coumarin derivatives,is a protein kinase inhibitor. Biochem Biophys Res Commum. 1999, 14; 260(3): 682-685
    48. Liu SX,Chiou GC. Effects of Chinese herbal products on mammalian retinal functions. Ocul Pharmacol Ther. 1996,12(3):377-386
    49. Hattori N. Etiology and pathogenesis of Parkinson's disease:from mitochondrial dysfunctions to familial Parkinson's disease. Rinsho Shinkeigaku. 2004, 44 (425): 241-262.
    50. Simon DK, L in M T, Zheng L, et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol Aging. 2004, 25: 71-81.
    51. Mawrin C, Kieches E, Krause G, et al. Region specific analysis of mitochondrial DNA deletions in neurodegenerative disorders in humans. Neurosci Lett. 2004, 357: 111-114.
    52. Autere J, M oilanen JS, Finnila S, et al. Mitochondrial DNA polym or phism s at risk factors for Parkinson's disease and Parkinson's disease dementia. Hum Genet. 2004, 115: 29-35.
    53. Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol. 1996, 40 (4): 663-671.
    54. Naoi M, Maruyam W. Cell death of dopamine neurons in aging and Parkinson's disease. Mech Ageing Dev. 1999,111(2-3):175.
    55. Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal. 2005, 7: 1140-1149.
    56. Soto Otero R, Mendez Alvarez E, Hermida Ameijeiras A, et al. Autoxidationand neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem. 2000, 74 (4): 1605-1612.
    57. De Erausquin GA. Transactivation of cell death signals by glutamate transmission in dopaminergic neurons. Crit Rev Neurobiol. 2004, 16 (122): 107-119.
    58. Kaneda K, Tachibana Y, Imanishi M, et al. Down-regulation of metabotropic glutamate receptor 1alpha in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci. 2005, 22 (12):3241-3254.
    59. Orr CF, Rowe DB, Halliday GM, et al. An inflammatory review of Parkinson's disease. Prog Neurobiol. 2002, 68 (5): 325-340.
    60.裴正斌,彭国光.神经营养因子与帕金森病.国外医学内科学分册, 2004, 31(6):252-255.
    61. Zappia M, Crescibene L, et al. Anti-GM1 ganglioside antibodies in Parkinson's disease. Acta Neurol Scand. 2002, 106(1):54-57.
    62.汪锡金,陈生弟,刘卫国,等.免疫机制与帕金森病关系的研究.临床神经病学杂志, 2004, 17 (4): 241-244.
    63. Nagatsu T, Mogi M, Ichinose H, et a1. Changes in cytokines and neurotrophins in Parkinson's disease. J Neurol Transm Suppl. 2000, 60: 277-290.
    64. Dawsoan TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science. 2003, 302(5646): 819-822.
    65. McNaught KS, lanow CW. Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol. 2003, 53 (3): 73-84.
    66. McNaught KS, Belizaire R, et a1. Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol. 2003, 179(1):38-46.
    67. Sidhu A, Wersinger C,M oussa CE,et al. The role of alpha-synuclein in both neuroprotection and neurodegeneration. Ann N Y Acd Sci. 2004, 1035:250-270.
    68. Goers J, M anning-Bog AB, McCorm ack AL, et al. Nuclear localization ofα-synuclein and its interaction with histones. Biochem. 2003, 42: 8465-8471.
    69.杨卉,陈生弟.帕金森病发病机制和早期诊断的新近展.中国处方药. 2003, 5:48-51.
    70. Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. 2005, 103: 1551-1560.
    71. Kowaltowski AJ, Fiskum G. Redox mechanisms of cytoprotection by Bcl-2. Antioxid Redox Signal. 2005, 7: 508-514.
    72. Rao RV, Bredesen DE. Misfolded proreins, endoplasm ic reticulum stress and neurodegeneration. Curr Opin in Cell Biol. 2004, 16:653-662.
    73. Stefan WR, Rex MT. Singlet molecular oxygen(102):a possible effecter of eukaryotic gene expression. Free Rad Biol Med. 1998, 24(9):1520-1534
    74.李芳生自由基的生成与消除、组织氧化损伤与膜疾病《自由基生命科学进展》第一集原子能出版社1993, 3.北京P.77
    75. Fahn S, Cohen G. The oxidative stress, glutamate and neuroprotective disorders. Science. 1993, 262: 804-812
    76. Dexter DT, Marsden CD, Jenner P, Daniel SE, Wells FR, et al. Increased levels of lipid hydroeroxides in Parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord. 1994, 9(1):92-97
    77. Gatto EM, Poderoso JJ, Llesury S, Fernandez Pardal MM,et al. Neutropil function nitric oxide and blood oxidative stress in Parkinson's disease. Mov Disord. 1996,11(3): 261-267
    78. Jnner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson'sdisease. Neurology. 1996, 47(6supp13): S 161-170
    79. Hirsch EC. Dose oxidative stress participates in nerve cell death in Parkinson's disease. Eur Neurol. 1993, 33supp11: 52-59
    80. Jerner P. Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson's disease. Acta Neurol Scand. 1993, 146suppl: 6-13
    81. Kalra J, Prasad K, Chaudchary AK, Mantha SV, Rajput AH. Oxygen free radical producing activity of polymorphonuclear leukocytes in patients with Parkinson's disease. Mol Cell Biochem. 1992,112(2):181-186
    82. Sian J,Dexter D,Lees A,Daniel S,et al. Alterations in glutathione levels in Parkinson's disease and other neuroprotective disorders affecting the basalganglia. Ann Naeurol. 1994,36:348-355
    83. Sanchez Ramos JR,Overvik E,Ames BN.A marker of oxyradical-mediated DNA (8-hydroxy-2'-deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration. 1994,3:197-204
    84. Acuna-Castroviejo D,et al. Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci. 1997, 60(2):23-29
    85. Nappi AJ, Vass E. The effect of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine. Biophys Acta .1994,1201: 498-504
    86. Jan H, Bjoerg A, Torgeir F. Genoration of reaction oxygen species by tyrosine hydroxylase: a possible contribution to the degeneration of dopamineorgic neuron? J Neurochem. 1997, 68(1):328-332
    87. Fornstedt B, Pileblad E, Carlsson A. In vivo antioxidation of dopamine in guinea pig striatum increase with age. J Neurochem. 1990,55: 655-659
    88. Binddi A, Rigobello MP, Deeble DJ. Biochemical and toxicdogical properties of the oxidation products of catecholamines. Free Rad Biol Med. 1992,13:391-405
    89. Hirsh EC. Why are nigral catecholaminirgic neurons more vulnerable than other cells in Parkinson's disease? Ann Neurol. 1992,32:588-593
    90. Korytowski W, Zarba M, Sarna T. Antoxidation action of neuromelanin: the mechanism of inhibitory effect on lipid peroxidation. Arch Biochem Biophys. 1995,319(1):142-148
    91. Jellingor K, Kienzl E, Rempelma G, Riederer P, Stacheberger H, Benshachar D, Youdim MBH. Iron-melanin complex in substantia nigra of Parkinsonian brain: An X-ray micranalysis. J Neurochem. 1992, 59: 1168 -1171
    92.赵卫华,徐建兴,陈清棠.脑线粒体抗氰呼吸的测定与衰老的电子漏学说.北京医科大学学报1997, 29(4): 37
    93.徐建兴.线粒体参与自由基代谢的功能生物化学与生物物理进展. 1996, 22(2)181-182
    94. Dykens JA. Isolationed cerebual and cerebellar mitochondria produce free radical when exposed to elevated Ca2+ and Na+ implications for neurodegenetation. J Neurochem. 1994, 64(2):581-591
    95. Mizuno Y, Ozawa T, Tanaka M, Mechizuki H. Role of mitochondria in the etiology and pathogenesis of Parkinson's disease. Biochim Biophys Acta. 1995,1271(1):165-174
    96. Shoffener JM, Wallace DC, Terreni A, Juncos IL,Watts RL. Mitochondria oxidative phasphorylation defects in Parkinson's disease. Ann Neurol. 1991,30(3):332-339
    97. Jenner P. Oxidative mechanism in nigral cell death in Parkinson's disease. Mov Disord. 1998,13suppll:24-34
    98. Riedl AG, Watts PM, Edwards RJ, Bobis AR, Jenner P, Marsden CD. Selective localization of P450 enzymes and NADP-P450 oxidored- uctase inrat basal gandlia using anti-peptide antisera. Brain Res. 1996, 743:324-328
    99. Lan J, Jiang DH. Desferrioxamine and Vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neurotransm.1997,104: 469-481
    100. Youdim MB, Lavie L. Selective MAO-Aand B inhibitor, radical scavengers and nitric oxide cynthase inhibitors in Parkinson's disease. Life Sci. 1994,55(25):2077-2082
    101. Dexter DT, Carayon A, Javoy-Agid F. Alteration in the levels of iron, ferritin and other trace in Parkinson's disease and other neurodegenerative disease afeecting the basal ganglia. Brain. 1991, 114:1953-1957
    102. Youdim MB, Riederer P, Ben-Shachar D. The passible role of iron in the etiopathology of Parkinson's disease. Mov Disord. 1993,8(1):1-12
    103. Levay G, Ye QP, Bodell WJ. Formation of DNA adducts and oxidative gase damage by copper mediated oxidation of dopamine and 6-Hydroxy- dopamine. Experi Neurol. 1997,146: 570-574
    104. Zeevalk Gail D, Bernard Laara P, Albers David S, Mirochnitchenko O, Nioklas William J, Sonsalla P. Energy stress-induced dopamine loss in gluthalhious peroxidase-overexpressing transgenic mice and in gluthathion -depleted. J Neurochem. 1997,68(1):4426-4429
    105. Drukarch B, Jongenelan CA, Schapens E, Langeveld CH, Stoof JC. Glautathione is involved in the granular stroge of dopamine in rat PC-12 pheochromocvtoma cells: implications for the pathogencis of Parkinson's disease. J Neuro Sci. 1996,16(19): 6038-6045
    106. Jenner P, Olanow CW. Oxidative stress and the Pathogenesis of Parkinson's disease. Neurology. 1996, 47(6suppl3): 61-70
    107. Owen AD, Schapira AH, Jenner P, Marsden CD. Oxidtive stress andParkinson's disease. Ann N Y Acad Sci.1996, 786: 217-223
    108. Kushleila J,Checkoway H,Woods JS,Moon JD,Smith WT, Franklin GM,Swanson PD. Selegiline and lymphocyte superoxide dismutase activities in Parkinson's disease. Ann Neurol. 1996, 39(3): 378-381
    109. Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MN, Rodriguez C. Melatonin prevents apoptosis induced by 6-hydroxydopamine in nenronal cells: implications for Parkinson's disease. J Pineral Res.1998, 24 (3):179-192
    110. Ni Y, Zhao B, Hou J, Xin W. Preventive effect of Ginkgo biloba extract on apoptosis in rat cerebellar neuronal cell induced by hydroxyl radical. Neurosci Lett. 1996, 214(2): 115-118
    111. Iacovitti L, Stull ND, Johnston K. Melatonin rescues dopamine neurons from cell death in tissue culture models of oxidative stress. Brain Res. 1997, 768(1): 317-326
    112. Seato TA, Cooper JM, Schapira AH. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res. 1997, 777(1):110-118
    113. Spencer JP, Halliwell B, Jenner P, Dexter DT, Aruoma OI, Butlov J. Evaluation of the prooxidant and antioxidant actions of L-Dopa and dopamine in vitro omplication for Parkinson's disease. Free Radic Res. 1996, 24(2): 95-105
    114. Offen D, Ziv L, Sternin H, Melamed E, Hochman A. Prevention of dopamine-induced cell death by Thiol antioxidants: Possible implications for treatment of Parkinson's disease. Exp Neurol. 1996, 141: 32-39
    115. Lai CT, Yu PH. Dopamine and L-β-3,4-dihydroxyphenylalanine Hydrochloride(L-Dopa)-induced cytoxicity towards catecholaminer- gicNeuroblastoma SH-SY5Y cells effects of oxidative stress and antioxidattive factors. Biochem Pharmacol. 1997,55:363-372
    116. Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D. Dopamine induced apoptosis-like cell death in cultured chick sympathetic neurons-a possible novel pathogenetic mechanism in Parkinson's disease. Neurosci Lett. 1994,170(1):136-140
    117. Ramassamy GF, Christen Y, COSTectin J. Ginkgo biloba extract EGB 761 or troloxe prevent the ascorbic acid/Fe2+ induced decrease in symaptosomal membrane fluidity. Free Res Comman. 1993,19(5):141-150
    118. Wallace DC. Mitochondrial DNA in aging and disease. Scientific America. 1997, 277(2): 40-47
    119. Wang GT, Nutter LM, Thayer SA. Insensitivity of cultured rat cortical neurons to mitochondrial DNA synthesis inhibitors: evidence for a slow turnover of mitochondrial DNA. Biochem Pharmacol. 1997, 54(1): 181-187
    120. Ozawa T. Mechanism of somatic mitochondrial DNA mutation associated with age and disease. Biochem Bioophys Acta. 1995,127(1): 177-189
    121. Schulz B, Bcal MF. Mitochondrial dysfunction in movement disorder. Curr Opin Neurol. 1994, 7(4): 333-339
    122. Chergill JK, Cammack R, Cooper CE, Cooper JM, Mann VM, Schapira AH. Detection of nitrosyl complexes in human substantia nigra, in relation to Parkinson's disease. Biophys Res Commun. 1996,228(2): 298-305
    123. Gerlach M, Riedrrer P, Youdin MBH. Molecular mechanisms for neurodegeneration: Synergism between reactive oxygen species, calcium and excitotoxic amino acids. Adav in Neurol, volum 69, P182-184, Lippincott-Raven Publishers Philadephia. 1996
    124. Padigla A, Medda R, Lorrai A. Modulation of 6-hydroxydopamine oxidativeby various proteins. Biochem Pharmacol. 1997, 53: 1065-1068
    125. Zang LY,Misra HP. EPR kinetic studies of superoxide radicals generated during the autoxidation of 1-methyl-4-phenyl-2-3-dihy- dropyridinium,a bioactivated intermediate of Parkinsonian-inducing neurotoxin 1-methyl- 4-1,2,3,6-etrahydro- pyridine. J Bio Chem. 1992, 267(33):601-608
    126. Naoi M, Maruyama W, Doctert P, Hashizum Y. N-methyl-(R) salsolinol as a dopaminergic neurotoxin from an animal model to early to marker of Parkinson's disease. J Neurol Trams Suppl. 1997,50:89-105
    127. Simonian NA, Coyle JT. Oxidative stress in neurodengerative disease. Ann Rev Pharmacol Toxicol. 1996, 36: 83-106
    128.赵迎春,陈生弟,刘振国.帕金森病的分子生物学机制及基因治疗研究进展国外医学·神经病学神经外科学分册. 1995, 22(5):225-228
    129. Brooks S, Kaur S, Starr BS, Starr MS. Motor actions of eliprodil in the normal and monamine-depleted mouse: a role in the treatment of Parkinson's disease. J Neurol Transm Gen Sect. 1996, 103(6): 737-748
    130. Sautter J. Degeneration of pre-labelled nigral neurons induced by intrastriatal 6-hydroxydopamine in the rat: behavioral and biochemical changes and pretreatment with the calcium-entry blocker nimodipine. Exp Brain Res. 1997, 117: 111-119
    131. Kupsch A, Gerlach M. Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral but not at the striatel level in mice. Neuro Report. 1995, 6: 621-625
    132. Gerlach M, Riederer P, Youdim MB, Dessor H. New horizons in molecular mechanisms underlying Parkinson's disease and in our understanding of the neuroprotective effects of selegilines. J Neurol Trams Suppl. 1996,48:7-21
    133. Bartus RT. The calpain hypothesis of neurodegeneration: Evidence for acommom cytotoxic pathway. The Neuroscientist. 1997,5:314-327
    134. Cerruti C,Walther DM, Kuhar MJ,Vhl GR. Dopamine transporter Mrna expression is intense in rat midbrain neurons and modest outside midbrain. Molecular Brain Res. 1993,18:181-186
    135. Pifl C, Giros B, Caron MS. Dopamine transporter expressing confers cytotoxicity to low dose of the Parkinsonism-inducing neurotoxin 1-methyl-4- phenylpyridinium. The J Neurosci. 1993, 13(10):4246-4253
    136. Liu YJ, Edwards RH. The role of vesicular transport proteins in synaptic transmission and neural degeneration. Anna Rev Neurosci. 1997, 20: 125-156
    1.刘孟渊,刘惠纯.益智中草药的研究概况.中国中西医结合杂志, 1995, 15: 59
    2.肖培根,连文琰主编.中药植物原色图鉴,第一版.北京:中国农业出版社, 1999:343
    3.梁汉明,孟青,关泽明,黄郁,冯毅凡.蛇床子的超临界提取工艺及成分分析.广东药学学报2007, 23(2):113-115
    4.张荣,方庆. OST提取制备工艺的研究.中医药学刊2003, 21(8):1336
    5. Carabias-Martinez R, Rodriguez-Gonzalo E, Moreno-Cordero B, et a1. Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J Chromatogr A. 2000, 902(1): 251-265
    6. Fricke B. Phase separation of nonionic detergents by salt addition and its application to membrane proteins. Anal Bio chem. 1993, 212: 154-159
    7. Mackay RA, Soluhilization A, Schick MJ. Nonionic Surfactants Phy sical Chemistry. New York and Basel: Marcel Dekker Inc 1987, 297-368
    8. Liu CL, Nikas YJ, Blankschtein D. Novel bioseparation using two- phase aqueous micellar system. Bioeng Biotechnol. 1996, 52 (2): 185-192
    9. Saitoh T, Tani H, Kamidate T, et a1. Phase separation in aqueous micellar solutions of nonionic surfactants for protein separation. Trends Anal Chem 1994, 14(5): 213-217.
    10. Johannsson HO, Persson J, Tjerneld F. Thermoseparating water/ polymer system: A novel one-polymer aqueous two-phase system for protein purification. Bioeng Biotechnol. 1999, 66(4): 247-257
    11. Quina FH, Hinze WL. Surfactant-mediated cloud point extractions: An environmentally benign alternative separation approach. Ind Eng Chem Res. 1999, 38(11):4150-4168
    12. Huddleston JG, Willauer HD, Griffin ST, et a1. Aqueous polymeric solutions as environmentally benigh liquid/liquid extraction media. Ind Eng Chem Res. 1999, 38(7): 2523-2539
    1.向仁德,傅晓红.蛇床子化学成分的研究(Ⅱ).中草药, 1986.17(2): 6
    2. Liu SX, Chiou GC. Effects of Chinese herbal products on mammalian retinal functions. Ocular Pharmacol Ther. 1996, 12: 377-865
    3.张巧艳,郑汉辰,秦路平. OST在植物界的分布及药理活性,国外医学植物药分册, 2002, 17(1):16-18
    4. Ko TN, Wu TS, Liou MJ, et al. Vasorelaxation of rat thoracic aorta caused by Osthole isolated from Angelica Pubescens. Eur J Pharmacol. 1992, 219: 29-34
    5. Teng CM, Lin CH, Ko FN, et al. The relaxant action of Osthole isolated from Angelica Pubescens in guinea-pig trachea. Naunyn Schmiede bergs Arch Pharmaco. 1994, 349:202-208
    6. Psillakis E, Kalogerakis N. Trend in anal chem 2003, 22 (10): 565-574
    7.钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志, 1996, 16(5):343~346
    8.姚彤炜等.体内药物分析.浙江大学出版社:72
    9.宋震玉,药物代谢研究-意义、方法、应用.北京:人民卫生出版社, 1990, 112-134
    10.马岳,阎哲,黄骏雄.浊点萃取在生物大分子分离及分析中的应用.化学进展, 2001, 13(1): 25-32.
    1. Arai N, Misugi K, Goshima Y, Misu Y. Evaluation of a 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57 black mouse model for parkinsonism. Brain Res.1990, 515(1-2):57-63.
    2. Donnan GA, Willis GL, Kaczmarczyk SJ, et al. Motor function in the l-methyl-Phenyl-l,2,3,6-tetrahydroPyridine-treated mouse. J Neurol Sci. 1987, 77(2):185-191.
    3. Haobam R, Sindhu KM, Chandra G, Mohanakumar KP. Swim-test as a function of motor impairment in MPTP model of Parkinson’s disease: a comparative study in two mouse strains. Behav Brain Res. 2005, 163(2):159-167.
    3. Matsuura K, Kabuto H, Makino H, Ogawa N. Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods.1997, 73(1):45-48.
    4. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y. A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol. 1985, 50(3):435-441.
    5. Kuribara H, Higuchi Y, Tadokoro S. Effects of central depressants on rotarod and traction performances in mice. JPn J Pharmacol.1977, 27(1):117-126.
    6. Mori A, Ohashi S, Nakai M, Moriizumi T, Mitsumoto Y. Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice. Neurosci Res. 2005, 51(3):265-274.
    7. Nieklas WJ, Vyas I, Heikkila RE. Inhibition of NADH- linked oxidation in brain mitoehondria by l-methyl-Phenyl-Pyridine, a metabolite of the neurotoxin, l-methyl-Phenyl-l,2,3,6-tetrahydro-Pyridine. Life Sci. 1985, 36 (26):2503-2508
    8.邹春林,孙异临. MPTP与帕金森病模型的研究进展.国外医学神经病学神经外科学分册, 2000, 27(6):330-333
    9. German DC, Nelson EL, et al. The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration,1996, 5(4):299-312
    10.张如意,张兰,叶翠飞,等. MPTP对小鼠行为学及脑纹状体多巴胺含量的影响.中国行为医学科学杂志, 2001,10(3):l64-l66
    11. Jenner P, Olanow CW. Oxidative stress and the Pathogenesis of Parkinson's disease. Neurology.1996, 47(suPP13):161-170
    1. Kadota T, Saito TY, AkitaY, et al. ExPression of dopamine transporter at the tips of growing neuritis of PC12 cells. J Histoehem Cytochem. 1996, 44: 989-996
    2. Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MN, Rodriguez C. Melatonin prevents apoptosis induced by 6-hydroxydopamine in nenronal cells: implications for Parkinson's disease. J Pineral Res. 1998, 24(3): 179-192
    3. Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease.Curr Med Chem. 2001, 8(7):721-738
    4. Satoh T, Skaai N, Enokido Y, et al. Free radieal-independent protection by nerve growth factor and Bcl-2 of PC12cells from hydrogen peroxide-triggered apoptosis. J Bioch (Tokyo).1996, 120(3): 540-546
    5. Satoh T, Skaai N, Enokido Y, et al. Suvrival factor-insensitive generation of reaetive oxygen species induced by serum deprivation in neuronal cells. Brain Res. 1996, 733(1):9-14
    6. Lotharius J, O’Malley KL. The parkinsonism-inducing drug 1-methyl -Phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem. 2000, 275 (49): 38581– 38588
    7. Kunikwoska G, Jenner P. Alterations in m-RNA expression for Cu, Zn-superoxide dismutase and glutathione Peroxidase in the basal ganglia of MPTP-treated marmosets and Patients with Parkinson’s disease. Brain Res. 2003, 968(2):206-218
    8. Kurosaki R, Murmaatsu Y, Miehimata M, et al. Role of nitric oxide synthase against MPTP neurotoxicity in mice. Neurol Res. 2002, 24 (7):655-666
    9. Mosmamr T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983,65(l-2):55-63
    10. Vina L, Vineent J, MaurinJ, et al. Comparison of three in cytotoxicity assays for estimating surfactant ocular irritation.Toxicol In Vitro. 1995, 9(2):185-190
    11. Seegal RF, Brosch K, Bush B, et al. Effects of Aroclor 1254 on dopamine and norepinephrine concentrations in pheochrmoocytoma (PC-12) cells. Neurotoxieology. 1989, 10(4):757-764
    12. Knathasmy AG, Borowitz LJ, Isom GE. Cynaide-induced increases in plasma catecholmaines: relationship to acute toxicitv. Neurotoxieology. 1991, 12(4): 777-784
    13. Shafer TJ, Atchison WD. Transmitter,ion chnnael and receptor properties of pheochrmoocytoma (PC12) cells: a model for neuron- toxicological studies. Neurotoxicology. 1991, 12(3):473-492
    14. Greene AL, Rein G. Release, storage and uptake of catecholamines by a clonal cell 1ine of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Res. 1977, 129(2):247-263
    15. Koide M, Cho AK, Howard DB. Characterization of xylamine binding to proteins of PC12 pheochromocytoma eells. J Neurochem. 1986, 47 (4):1277-1285.
    16. Hirata Y, Adaehi K, Kiuehi K. Activation of JNK pathway and induction of apoptosis by manganese in PC12cells. J Neurochem. 1998, 71(4):1607-1615
    17. LI X, Sun AY. Paraquat induced activation of transcription factor AP-1and apoptosis in PC12 cells. J Neural Tranm. 1999, 106(1):l-21
    18. Itano Y, KitmauraY, Nomura Y. l-methyl-4-phenylpyridinium (MPP+) -induced cell deathin PC12cells: inhibitory effects of several drugs. Neurochem Int. 1994, 25(5):419-424
    19. Jvaitch JA, D’Amato RJ, Strittmatter MS, et al. Parkinsonism- inducingneurotoxin, Nmethyl-4-Phenyl-1,2,3,6- tetrahydropyridine: Uptake of the metabolite N-methyl-4-Phenylpyridine by dopamine neurons explains selective toxicity. Proe Natl Acad Sci USA. 1985, 82(7):2173-2177
    1. Hoehn MM, Yahr MD. Parkinsonism: onset, Porgression and mortality. Neurology. 1967, 17(5):427-442
    2. Bosboom JL, Stoeffrs D, Wblters ECh. The role of acetyleholine and dopamine indementia and Psychosisin Parkinson's disease. J Neural Transm. SuPPl 2003, 65:185-195
    3. Hagell P, Cenci MA. Dyskinesias and dopamine cell replacement in Parkinson’s disease: a clinieal Perspective. Brain Res Bull.2005, 68(1-2):4-15
    4. Triahtou LC. Introduetion. Dopamine and Parkinson’s disease. Adv ExP Med Biol. 2002, 517:1-14
    5. Johnston TH, Bortchie JM. Durgs in development for Parkinson’s disease: an update. Curr Opin Investig Drugs. 2006, 7(1):25-32
    6. Gerlaeh M, Double K, Reiehmann H, Riederer P. Arguments for the use of dopamine receptor agonists in clinieal and Preclinical Parkinson’s disease. J Neural Transm. Suppl 2003, 65:167-183
    7. Ahlskog JE. Slowing Parkinson’s disease Progression: recent dopa- mine agonist trials. Neurology. 2003, 60(3):351-359
    8. Speneer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: Possible mechanisms of formation involving reactive oxygens Pecies. J Neuroehem. 1998, 71:2112-2122
    9. Przedborski S, Ischiropoulos H. Reaetive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson'disease. Antioxid Redox Signal. 2005, 7(5-6):685-693
    10. Hald A, Lotharius J. Oxidative stress andi nflammation in Parkinson’s disease:
    15 there a causal link? Exp Neurol. 2005, 193(2):279-290
    11. Olanow CW. Oxidation reactions in Parkinson’s disease. Neurology. 1990, 40 (Suppl)3:32-39
    12. Halliwell B, Gutteridge JMC. Hydrogen peroxide. In: Halliwell B, Gutteridge JMC, Eds. Free Radicals in Biology and Medicine. Oxford: Oxford University Press, 1999:82-83
    13. Gardner MA, Xu FH, Fady C, etal. Apoptotic vs. nonapoptotic cytot- oxicity induced by hydrogen peroxide. Free Radie Biol Med. 1997, 22(1-2):73-83
    14. Fiers W, Beyaert R, Deelereq W, et al. More than one way to die: apoptosis and necrosis and reactive oxygen damage. Oncogene. 1999, 18(54): 7719-7730
    15. Trevisan M, Browne R, Ram M ETAL. Correlates of markers of oxidative status in the general Population. Am J Epidemiol. 2001, 154(4):348-356
    16. Maier CM, Chan PH. Role of superoxide d ismutases in oxidative damage and neurodegenerative disorders. Neuroscientist. 2002, 8 (4):323-334
    17. Camp DM, Loeffler DA. L-dopa does not enhance hydroxyl radical formation in the nigrastriatal dopamine system of rats with a unilateral 6-OHDA lesion. Neurochem. 2000, 74(3):1229-1232
    18. Pong K. oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther. 2003, 3(1):127-139
    19. Radunovic A, Porto WG, Zeman S, et al. Increased mitochondrial superoxide dismutase11activity in Parkinson’s disease but not amyotrophic lateral sclerosis motor cortex. Neurosci Lett. 1997, 239(2-3):105-208
    20. BOSTantjopoulou S, Kyriazis G, Katsarou Z, et al. Superoxide dismu -tase activity in early and advanced Parkinson’s disease. Funct Neurol. 1997, 12(2):63-68
    1. Hartlev A, Stone MJ, Heron C, etal. Complex I inhibitors induce dose-dependent apoptosisin PC12 cells: relevance to Parkinson’s disease. J Neuro Chem. 1994, 63(5):1987-1990
    2. Marongiu ME, Piccardi MP, Bernardi F, et al. Evaluation of the toxicity of the dopaminergic neurotoxins MPTP and MPP in PC12 Pheoehromoeytoma cells: binding and biological studies. Neurosci Lett. 1988, 94(3):349-354
    3. Desole MS, Seiola L, Delo MR etal. Role of oxidative stress in the manganese and 1-methyl-4-(2’-ethylphenyl)-1,2,3,6-tetrhaydropyridine-induc -ed apoptosisin PC12 cells. Neuro chem Int. 1997, 31(2): 169-176
    4. Exner M, Hemrnna M, Hofbuaer R, et al. The salicylate metbaolite gentisic acid, butnot the Parent durg,inhibits glucose autoxidation -mdiated atherogenic modification of low density lipoprotein. FEBS Lett. 2000, 470 (1):47-50
    5. Kerr FJR, Hmaron VB. Definition and incidence of apoptosis: An historical persveetive. In:Tomei LD, Cope FO, Eds. The Molecular Basis of Cell Death. NewYork: Cold Spring Harbor Laboratory Press, 1991:5-31.
    6. Limrik MD, Zobrist R, Hatfield MD. Evidence supporting a role for progrmmed cell death in focal cerebral ischemia in rats. Stroke. 1993, 24 (12):2002-2008
    7. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995, 267(5203):1456-1462
    8. Portera-Cailliua C, Hedreen JC, Priee DL, et al. Evidence for apoptotie cell death in Huntingt on disease and excitotoxic animal models. J Neuro Sci. 1995, 15(5):3775- 3787
    9. Leblane A. Apoptosis and Alzheimer’s disease. In: Was co W, Tnazi RE, Eds.Molecular Mechanisms of Dementia. New Jersey: Humana Press 1996: 57-71
    10. Msttson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000, 1(2):120-129
    11. Mattson MP, Zhang Y, Bose S. Growth factors prevent mitochondrial dysfunction, loss of calcium homeOSTasis,and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol. 1993, 121(1):1-13
    12.司徒镇强,吴军正.细胞培养.世界图书出版社, 2008, p279-282
    13. Yazdani U, Gemran DC, LiangCL, Manzino L, Sonsalla PK, Zeevalk GD. Rat model of Parkinson's disease: Chronic central delivery of 1- methyl-4-PhenylPyridinium (MPP+ ). EXP Neurol. 2006, 16 (6):14-23
    14. Ueda H, Fujita R. Cell death mode switch for necrosis to apoptosis in brain. Biol Pharm Bull. 2004, 27(7):950-955
    15. Nagatsu T. Parkinson's disease: changes in apoptosis-related factor ssuggesting possible gene therapy. J Neural Transm. 2002, 109(5- 6):731-745
    16. Tatton WG, Chalmers-Redman R, Brown D, et al. Apoptosis in Parkinson's disease signals for neuronal degradation. Ann Neurol. 2003, 53(Suppl) 3:561-570
    17. Lev N, Melamed E, Offen D. Apoptosis and Parkinson's disease Pro Neuropsychopharmacol. Biol psychiatry. 2003, 27(2):245-250
    18. Blum D, Torch S, Lambeng, et al. Molecular Pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001, 65(2):135-17
    19. Hartmann A, Hunot S, Miehel PP, et al. Caspase-3: a vulnerability factor and final effector in apoptoticed death of dopaminergicc neurons in Parkinson's disease. Proc Natl Acad Sci USA. 2000, 97(6):2875-2880
    20. Tatton NA. Increase Caspase-3 and haximmunore activity nuclear; GAPDH translocation and neuronal apoptosis in Parkinson's disease. ExP Neurol. 2000, 166(l):29-43
    21. Dehmer T, Heneka MT, Sastre M, et al. Protection by Pioglitazone in the MPTP, model of Parkinson's disease Correlates with I kappa B alpha induction and blcok of NF kappa B and iNOS activation. J Neuro Chem. 2004, 88(2):494-501
    22. Maruyama W, Nitta A, Shamoto-Nagai M, et al. N-Propargyl-1(R)- aminoindan, rasagiline, increases glial cell line-derived neurotrophie factor (GDNF) in neuroblastoma SH-SYSY cells through activation of NF-kaPPa B transcription factor. Neuro chem Int. 2004, 44(6):393-400
    23. Ymaugehi H, Paranawihtnaa SR, Lee MW, et al. Epothilone B naalogue (BMS-247550)-mediated cytotoxicity throuhg induction of Bxa conofrmational change in hmuna bresast cancer cells. Cancer Res. 2002, 62 (2):466-471
    24. Chibing T, Pualina J, Dlugos Z, et al. Auto-activation of the apaoptosis Protein Bxa increases mitochondrial membrane Permeabaility and is inhibited by Bcl-2. J Biol Chem. 2006, 23(5):193-200
    25. Adams JM, Cory S. Life or death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001, 26: 61-66
    26. IsehiroPoulos H. Living and dying with reactive species. Focus on“Peroxynitrite induces apoptosis of H-L60 cells by activation of a caspase-3 a fmily Protease”. All J physiol. 1998, 274(4):C853-854
    27. Porter AQ Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6(2):99-104
    28. Abu-Qar AW, Abou-Donia MB. Biomarkers of apoptosis: release ofcytohcrome C, activation of caspase-3, induction of 8-hydroxy-2'- deoxyuganosine, increased 3-nitortyorsine, and alteration of P53 gene. J Toxicol Environ Health B Crit Rev. 2001, 4(3):313-332
    29. Lipton SA. Janus faces of NF-kB. Neurodestruetion versus neuroprotection. Nat Med. 1997, 3:20-22
    30. Griui M, Memorandum M. Nuclear factor-kaPPa B/Rel Proteins a Point of convergence of signalling Pathways relevant in neuronal funetion and dysfunction. Biochem Pharmaeol. 1999, 57:1-7
    31. Lezovaleh F, Sparani M, Behl C. N-Acetyl serotonin (normelatonin) and melatonin Protect neurons against oxidative challenges and suppress the activity of transcription factor NF-kaPPaB. J Pineal Res. 1998, 24:168-178
    32. Taylialatelaq K, aufman JA, Trevino A, et al. Central nervous system DNA fragmentation induced by the inhibition of nuelear factor kaPPaB. Neuroreport. 1998, 9:489-493
    33. Levites Y, Youdim MB, Maor G, et al. Attenuation of 6-hydroxy dopamine (6-OHDA)-induced nuclear factor-kaPPa B(NF-kappa B) activation and cell death by tea extracts in neuronal cultures. Biochem pharmacol. 2002, 63 (1):21-29
    34. Panet H, Barzilai A, Daily D, et al. Activation of nuclear transcription factor kaPPa B(NF-kaPPa B) is essential for dopamine induced apoptosis in PC12 cells. J Neuro Chem. 2001, 77(2):391-398
    35. Boissiere F, Hunot S, Faueheux B, et al. Nuclear translocation of NF-KB bisincreased in dopaminergic neurons of Patients with Parkinson’s disease. Proc Natl Acad Sci USA. 1997, 94:7531-7536
    36. Fleury C, Mingotte B, Vavssiere JL. Mitochondrial reactive oxygen species in cell death singaling. Biochimie. 2002, 84(2-3):131-141
    37. Lotharius J, Dugsn LL, O'MLley KL. Distinct mechanisms underlie neurotxoin-mediated cell death in cultured dopmainergic neurons. J Neurosci. 1999, 19(4):1284-1293
    38. Cassarino DS, Pakrs KJ, Pakrer WDJR, et al. The Parkinsoninan neuortoxin MPP+opens the mitochondrial Permeabaility transition Pore and releases cytochrome C in isolated mitochondria via an oxidative mechnaism. Biochim Biophys Acta. 1999, 1453(1):49-62
    39. Lee CS, Hna ES, Jnag YY, et al. Protective effect of hamralol and hmaraline on MPTP neurotoxicity in the mouse and dopamine -induced damage of brain mitochondria and PC12 cells. J Neuroehem. 2000, 75(2):521-531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700