用户名: 密码: 验证码:
新型功能化吸附材料的制备及其分离富集痕量组分的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济和工业生产的快速发展,导致重金属离子和有毒有机小分子的消耗和排放与日俱增,造成日趋严重的环境污染。准确测定地质、生物和环境样品中的痕量元素是分析化学中的一项十分重要的研究内容。虽然现代分析仪器有了很大的发展,但在进行地质、生物、环境、农业和工业等样品中的痕量和超痕量组分分析时,由于方法的灵敏度不够及大量共存元素的干扰,直接测定常常很困难。所以在分析实践中,复杂样品需要经过一定的预处理——富集分离以后才能进入分析仪器进行准确的测定。而样品的富集分离通常需要借助选择性高、吸附容量大的各种吸附材料和合适的分离方法。因此,本论文以建立痕量组分的富集分离及分析为目的,合成了几种功能化吸附分离材料,并对材料的选择性吸附性能开展了系统研究。同时,对纳米氢氧化镍电极材料进行了研究。主要进行了以下几方面的研究工作。
     1.应用硅胶表面印迹技术,以Fe(Ⅲ),Ni(Ⅱ)和Al(Ⅲ)为印迹离子、3-氨基丙基-三乙氧基硅烷为功能单体,制备了Fe(Ⅲ),Ni(Ⅱ)和Al(Ⅲ)的氨基功能化表面印迹聚合物。研究了印迹聚合物和非印迹聚合物对Fe(Ⅲ),Ni(Ⅱ)和Al(Ⅲ)的分离富集特性。结果如下:(1)相比传统吸附剂和非印迹材料,Fe(Ⅲ)印迹聚合物对Fe(Ⅲ)具有较好的选择性和吸附容量。Fe(Ⅲ)印迹聚合物和非印迹聚合物的最大静态吸附容量分别是25.21和5.10mg g~(-1);在Fe(Ⅲ)和Cr(Ⅲ)的相同浓度的混合溶液中,Fe(Ⅲ)印迹硅胶对Fe(Ⅲ)的最大选择性系数为451,Fe(Ⅲ)/Cr(Ⅲ)的相对选择性因子为49.9。Fe(Ⅲ)印迹硅胶固相萃取痕量铁的检出限为0.34μg L~(-1),方法的相对标准偏差为1.5%,将该法用于水样和植物样品中痕量Fe(Ⅲ)的测定,得到满意的结果。(2)相比传统吸附剂和非印迹硅胶,Ni(Ⅱ)印迹吸附剂对Ni(Ⅱ)具有很高的吸附选择性和吸附容量。Ni(Ⅱ)印迹聚合物和非印迹聚合物的最大静态吸附容量分别是12.61和4.25mg g~(-1);在Ni(Ⅱ)和干扰离子具有相同浓度的混合溶液中,Ni(Ⅱ)/Cu(Ⅱ),Ni(Ⅱ)/Co(Ⅱ),Ni(Ⅱ)/Zn(Ⅱ)和Ni(Ⅱ)/Pd(Ⅱ)的相对选择性因子分别为45.99,32.83,43.79和28.36。Ni(Ⅱ)印迹硅胶固相萃取痕量Ni(Ⅱ)的检出限为0.16μg L~(-1),该方法的相对标准偏差为1.48%,将该法用于水样和植物样品中痕量Ni(Ⅱ)的测定,得到满意的结果。(3)相比传统吸附剂和非印迹硅胶,Al(Ⅲ)印迹吸附剂对Al(Ⅲ)具有很高的吸附选择性和吸附容量。Al(Ⅲ)印迹聚合物和非印迹聚合物的最大静态吸附容量分别是11.46mg g~(-1)和6.28mg g~(-1);在Al(Ⅲ)和干扰离子Cr(Ⅲ)具有相同浓度的混合溶液中,Al(Ⅲ)/Cr(Ⅲ)的相对选择性因子分别为6.73。Al(Ⅲ)印迹硅胶固相萃取痕量Al(Ⅲ)的检出限为0.36μg L~(-1),该方法的相对标准偏差为3.2%。
     2.以丙烯酰胺为功能单体、季戊四醇三丙烯酸酯为交联剂、偶氮二异丁腈做引发剂,以姜黄素分子作模板分子制备了姜黄素分子的印迹聚合物,研究了印迹聚合物和非印迹聚合物对姜黄素分子的选择吸附性能。结果表明,经过印迹的聚合物对模板分子具有很好的特异性结合能力,为复杂样品中的姜黄素物质的选择性富集及快速检测提供了新的途径。
     3.采用加表面活性剂于缓冲溶液中的化学沉淀法直接合成了具有纳米结构特征的氢氧化镍/碳纳米管(CNTs)粉末。分析了不同直径和含量的CNTs对Ni(OH)_2电化学性能的影响。首先,CNTs被分散在氢氧化钠溶液中,然后在合成纳米Ni(OH)_2的过程中引入CNTs,经过化学反应形成复合材料。本实验中,分别选用了10-20nm、20-40nm、60-100nm质量百分含量分别为2wt%、5wt%、10wt%、25wt%和50wt%的CNTs,结果发现合成过程中用20-40nm 25wt%的CNTs的复合材料电化学性能最好。其放电比容量可以达到280mAh/g,而且比较稳定,循环寿命长。同时将超声波条件引入合成过程中,可以使电极在充放电效率、放电比容量、活性物质利用率、放电电压、抗膨胀能力及高速率放电性能等方面得到明显改善和提高。
The rapid development of science, technology and proceeding industrializationleads to the consumption and draining of heavy metals and organic substance. Thepollution caused by heavy metals and poisonous organic substance become more andmore serious. The accurate determination of trace element in geological, biologicaland environmental samples is very important in analytical chemistry. Although manyinstrument analysis methods have been developed recently and reached trace level orsuper trace level sensitivity, the direct analysis is still difficult because of the highcomplexity of samples and severe interference caused by matrix effects. So, variouspre-treatment procedures are necessary before the more accurate measurement byanalytical instruments. It is obvious that the pre-treatment procedures of traceelements depend on appropriate separation methods and different functionaladsorption materials with higher selectivity and adsorption capacity. This papermainly described the preparation of several adsorption materials based on thepre-concentration and separation of trace components. The behaviors of thesematerials that have high selectivity for targets have been studied systematically anddetailedly. At the same time, study on nano-scale nickel hydroxide-CNTs composedmaterial used as electrode material has been done by me. The more detailed noveltyof this work can be categorized as follows:
     1. The imprinted and non-imprinted amino-functionalized silica gel adsorbents forFe(Ⅲ), Ni(Ⅱ) and Al(Ⅲ) were obtained by a surface imprinting technique forselective extraction of Fe(Ⅲ), Ni(Ⅱ) and Al(Ⅲ) prior to its determination byICP-AES. The results are: (1) Compared with the traditional solid sorbents andnon-imprinted sorbent, the Fe(Ⅲ)-imprinted amino-functionalized silica gel adsorbentexhibited excellent selectivity and adsorption capacity for Fe(Ⅲ). The maximumstatic adsorption capacity of the Fe(Ⅲ)-imprinted and non-imprinted sorbent forFe(Ⅲ) was 25.21 and 5.10 mg g~(-1), respectively. The largest selectivity coefficient of the Fe(Ⅲ)-imprinted sorbent for Fe(Ⅲ) in the presence of Cr(Ⅲ) that is the sameconcentration with Fe(Ⅲ) was 451. The relatively selective factor (ar) value ofFe(Ⅲ)/Cr(Ⅲ) was 49.9, which were greater than 1. The detection limit (3σ) of themethod was 0.34μg L~(-1). The relative standard deviation (R.S.D.) was 1.5 %. Theproposed method has been successfully applied to the determination and speciation ofiron in biological and water samples with satisfactory results. (2) Compared with thetraditional solid sorbents and non-imprinted sorbent, Ni(Ⅱ)-imprinted sorbent presentshigher selectivity and adsorption capacity for Ni(Ⅱ). The maximum static adsorptioncapacity of the ion-imprinted and non-imprinted sorbent for Ni(Ⅱ) was 12.61 and 4.25mg g~(-1), respectively. The relatively selective factor (α_r) values of Ni(Ⅱ)/Cu(Ⅱ),Ni(Ⅱ)/Co(Ⅱ), Ni(Ⅱ)/Zn(Ⅱ) and Ni(Ⅱ)/Pd(Ⅱ) were 45.99, 32.83, 43.79 and 28.36,which were greater than 1. The detection limit (3σ) of the method was 0.16 ng mL~(-1).The relative standard deviation of the method was 1.48 %. The method wassuccessfully applied to the determination of trace nickel in plants and water sampleswith satisfactory results. (3) Compared with the traditional solid sorbents andnon-imprinted sorbent, Al(Ⅲ)-imprinted sorbent presents higher selectivity andadsorption capacity for Al(Ⅲ). The maximum static adsorption capacity of theion-imprinted and non-imprinted sorbent for Al(Ⅲ) was 11.46 and 6.28 mg g~(-1),respectively. The relatively selective factor (α_r) value of Al(Ⅲ)/Cr(Ⅲ) was 6.73. Therelative standard deviation of the method was 3.2 %. The detection limit (3σ) of themethod was 0.36 ng mL~(-1).
     2. A molecularly imprinted polymer was prepared by molecular imprintingtechnique using aerylamide (AA) as monomer, curcumin as template molecule, alarge excess of pentaerythritol triacylate (PETRA) as the cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) as the initiator. The bulk polymer obtained wasinvestigated in equilibrium binding experiments to evaluate the molecular recognitionand binding characteristics of the curcumin molecularly imprinted polymer. Thesubstrate selectivity of imprinted polymers and non-imprinted polymers wereinvestigated. The results showed that the imprinted polymers exhibited much higher affinity for curcumin among the tested compounds. It is possible to be a goodadsorption and binding material in the selective enrichment and determination of tracecurcumin in complex biosamples.
     3. Nanometer Ni(OH)_2 were prepared by chemistry-deposition method with addingthe buffer solution and surfactant. Firstly, carbon nanotubes (CNTs) were dispersed inNaOH solution, then CNTs were chemically synthesized with nanometer Ni(OH)_2. Inthis experiment, 10-20 nm, 20-40 nm, 60-100 nm of 2 wt%, 5 wt%, 10 wt%, 25 wt%and 50 wt% CNTs were used to study the electrochemical performances ofNi(OH)_2/CNTs composed electrode. The results showed that Ni(OH)_2/CNTscomposed electrode presents the best performance with using 20-40 nm of 25 wt%CNTs. The specific capacity is 280 mAh/g. And the electrode using ultrasoniccondition has a better cycling stability, a higher charging efficiency, greater specificdischarge capacity, higher discharge voltage, better high-rote capability and superiorcycling stability.
引文
[1] 王彤,刘雪静,仪器分析与实验,青岛出版社,青岛,2000.
    [2] 谷学新,邹洪,朱若华,分析化学中的分离技术,分析实验室,2001,20:69.
    [3] Siriraks A, Kingston H M, Riviello J M, J.Anal.Chem.1990, 62: 1185.
    [4] 汪尔康,21世纪的分析化学,科学出版社,北京,1999.
    [5] 周春山,化学中的分离与富集方法及应用,中南工业大学出版社,长沙,2000.
    [6] Vasconcellos M E, Queiroz C A S, Abr(?)o A, J.J Alloy Com., 2004, 374: 405.
    [7] 谢素原,边归国,硫化物沉淀分离富集原子吸收法测定钢铁废水中的铋,分析实验室,1996.15:76.
    [8] 苏耀东,程祥圣,共沉淀分离富集法的应用与进展,理化检验-化学分册,1999,35:236.
    [9] 冯尚斌等,理化检验(化学分册),1999,35:380.
    [10] Tompselt S C, Analyst, 1968, 93: 740.
    [11] 水池敦[日]著,李记欣译,无机痕量分析的富集技术,中国环境科学出版社,北京,1986.
    [12] 胡之德,范必威,分离科学与技术概论,四川科学技术出版社,成都,1994.
    [13] David N B, et al., J.Anal.Toxicol., 1984, 8: 26.
    [14] 刘永文,新型螯合试剂的制备和痕量重金属的分离富集,博士学位论文,兰州大学,兰州,2005年.
    [15] Font G, Molto J C, Pico Y, J.Chromatogr., 1993, 642: 135.
    [16] Dressier M, J Chromatogr., 1979, 165: 167.
    [17] Dimson P, et al., American Laboratory, 1986, 10: 82.
    [18] 上海市医学化验所,临床生化检验(上),上海科技出版社,上海,1979.
    [19] Arthur C L, Pawlisz Y N, Anal.Chem., 1990, 62: 2145.
    [20] 冯尚斌等,理化检验(化学分册),1999,36(5):231.
    [21] 申河清等,分析化学,1996,24(1):110.
    [22] 余体芳等,光谱学与光谱分析,1997,17(6):118.
    [23] 杨丙雨等,冶金分析,1998,15(6):27.
    [24] Haupt K, Analyst, 2001, 126: 747.
    [25] Haupt K, Mosbach K, Chem.Rev., 2000, 100: 2495.
    [26] 唐波等,分析科学学报,2000,16(4):345.
    [27] Rao T P, Daniel S, Gladis J M, Trac-Trend.Anal.Chem., 2004, 23: 28.
    [28] 马娜,陈玲,固相萃取技术及其研究进展,上海环境科学,2002,21:181.
    [29] Robert Koeber, Claudia Fleiseher, Francesa Lanza, Anal.Chem., 2001, 73: 2437.
    [30] Crescenzi C, Bayoudh S, Cormack P A G, Klein T, and Ensing K, Anal.Chem., 2001, 73: 2171.
    [31] Caro E, Marc(?) R M, Cormack P A G, Sherrington D C, Borrull F, Analytica Chimica Acta, 2005, 552: 81.
    [32] Poole C F, Trac-Trend.Anal.Chem., 2003, 22: 362.
    [33] Birlik E, Ers(o丨¨)z A, Denizli A, Say R, Anal.Chim.Acta, 2006, 565: 145.
    [34] 刘俊亭,新一代萃取分离技术-固相微萃取,色谱,1997,15(2):118.
    [35] 姚磊明,陆光汉,吴晓刚等,固相微萃取及其在环境分析中的应用,环境科学与技术,1999,85(2):23.
    [36] 王立,汪正范,牟世芬等,色谱分析样品处理,化学工业出版社,北京,2002.
    [37] Poole C F, Trac-Trend.Anal.Chem.2003, 22: 362.
    [38] Bidik E, Ers(o丨¨)z A, Denizli A, Say R, Anal.Chim.Acta 2006, 565: 145.
    [39] 张海霞,朱彭龄,固相萃取,分析化学,2000,28(9):1172.
    [40] 连宁,新型固相萃取吸附剂的制备及其分离富集痕量组分的应用研究,博士学位论文,兰州大学,兰州,2006年.
    [41] Rodriguez-Mozaz S, Lopez de Alda M J, Barcel(?) D, J.Chromatogr.A, 2007, 1152: 97.
    [42] Caro E, Marc(?) R M, Borrull F, Cormack P A G, Sherrington D C, Trac-Trend.Anal.Chem., 2006, 25: 143.
    [43] 苏继新,聂玉伦,王仲鹏,固相萃取技术及其在环境上的应用,山东化工,2005,34:13.
    [44] Delaunay-Bertoncini N, Hennion M C, J.Pharmaceut.Biomed., 2004, 34: 717.
    [45] 朱坚,汪国权,食品中危害残留物的现代分析技术,同济大学出版社,上海,2003.
    [46] Pehkonen S O, Zhang Q, Crit.Rev.Env.Sci.Tec., 2002, 32(1): 17.
    [47] Eisert R, Levsen K, Fresenius J.Anal.Chem., 1995, 361(6): 555.
    [48] Boyd-Boland A A, Magdic S, Pawliszyn J, Analyst, 1996, 121: 929.
    [49] 孙静,刘耀,封世珍,固相萃取法提取净化生物检材中三类农药的实验研究,环境化学,1995,14(3):221.
    [50] 康跃惠,张干,固相萃取法测定水源水中的有机磷农药,中国环境科学,2000,20(1):1.
    [51] Lopez-Blanco M C, Reboreda-Rodrlguez B, et al., J.Chromatogr.A, 2002, 976: 293.
    [52] 许建华,应用固相萃取富集环境空气中痕量有机化合物,环境监测管理与技术,1997,9(6):14.
    [53] Raggi M A, Bugamelli F, Mandrioli R, et al., Chromatogr., 1999, 49: 75.
    [54] Moriyama M, Furuno K, Oishi R, et al., J.Pharm.Sci., 1994, 83(12): 1751.
    [55] 周淑光,徐婉,固相萃取技术在生物样品中微量毒物分析的研究与应用,中国法医学杂志,1995,10(2):126.
    [56] Chen H J, Zhang L, Cox J, et al., Chem.Res.Toxicol., 1998, 11(12): 1474.
    [57] Deforce D L, Lemiere F, Hoes L, et al., Carcinogenesis, 1998, 19(6): 1077.
    [58] Zhizhina G P, Blyukhterova N V, Biochemistry (Mosc), 1997, 62(1): 88.
    [59] Saris C P, Damman S J, Van den En A M, et al., IARC Sci.Publ., 1993, 124: 127.
    [60] Gliar M, Belenky A, Wang B H, J.Chromatogr.A, 2001, 921 (2): 3.
    [61] Bonner A G, Udell LM, Creasey W A, et al., J.Pept.Res., 2001, 57(1): 48.
    [62] Vinson J, et al., J.Anal.Toxicol., 1985, 9: 6.
    [63] Seno H, et al., Forensic Science International, 1991, 50(2): 239.
    [64] Hold K M, Wilkins D G, Rollins D E, et al., J.Chromatogr.Sci., 1998, 36 (3): 125.
    [65] 姜会书,徐会君,固相萃取技术在农药分析中的应用,农业与技术,1999,35(19):3.
    [66] Fiori M, Pierdminici E, Longo F, J.Chromatogr.A, 1998, 807(2): 219.
    [67] Skog K, Solyakov A, Arvidsspn P, J.Chromatogr.A,1998, 803(1-2): 227.
    [68] 李青,固相萃取高效液相色谱法测定粮食中的五氯硝基苯,中国公共卫生,1996,12(4): 168.
    [69] 黄艳,贵金属离子和蛋白质的相互作用研究,硕士学位论文,兰州大学,兰州,2005年.
    [70] Camel V, Spectrochim.Acta B, 2003, 58:1177.
    [71] Zougagh M, Cano Pav(?)n J M, et al., Anal.Bioanal.Chem., 2005, 381:1103.
    [72] 《湿法冶金》编辑部,离子交换技术,冶金工业出版社,北京,1986.
    [73] 秦启宗等,化学分离法,原子能出版社,北京,1984.
    [74] 杨亚玲,杨国荣,胡秋芬,杨光宇,尹家元,固相萃取富集-高效液相色谱法测定4种中草药中的重金属元素,药物分析杂质,2004,24(4):441.
    [75] 王爱霞,张宏,刘琳琳,流动注射在线分离富集火焰原子吸收法测定环境样品中的铅和镉,分析化学,2001,29(11):1284.
    [76] 董学畅,戴云,胡秋芬,杨光宇,食品中微量汞的固相萃取光度法测定研究,云南化工,2004,31(2):33.
    [77] Simpson N J K, Solid Phase Extraction-Principle, Strategies and Applications, Marce Dekker, New York, 1998.
    [78] Nilsson U J, J.Chromatogr.A, 2000, 885(1/2): 305.
    [79] Marie-Claire H, J.Chromatogr.A,2000, 885 (1/2): 73.
    [80] Steven A B, J.Chromatogr.A, 2000, 885 (1/2): 115.
    [81] Krystyna P, Marek T, Crit.Rev.Anal Chem., 1999, 29(4): 313.
    [82] Hennion M C, J.Chromatogr.A, 1999, 856(1-2): 3.
    [83] Garg B S, Sharma R K, Bhojak N, Mittal S, Microchem.J., 1999, 61(2): 94.
    [84] Leon-Gonzalez M E, Perez-Arribas L V, J.Chromatogr.A, 2000, 902(1): 3.
    [85] Andersson L I, J.Chromatogr.B, 2000, 739(1): 163.
    [86] Shan G, Stoutamire D W, Wengatz I, Gee S J, et al., Agric.Food Chem., 1999, 47(5): 2145.
    [87] Lanza F, Sellergren B, Anal.Chem., 1999, 71(11): 2092.
    [88] Olsen J, Wilson I D, Jones G R, Martin P, Analyst, 1999, 124(4): 467.
    [89] Mullett W M, Lai E P C, Guo H S, et al., Anal.Chim.Acta, 2000, 414(1-2): 123.
    [90] Martin P, Jones G R, Wilson I D, J.Chromatogr.A, 2000, 889(1-2): 143.
    [91] Girod C, Staub C, Forensic Science International, 2000, 107(1-3): 261.
    [92] Valcarcel M, Arce L, Rios A, J.Chromatogr.A, 2001, 924(1-2): 3.
    [93] Scarano G, Grasso L, Soprano V, Oliviero G, Esposito H, Analyst, 1998, 123(12): 2551.
    [94] Colume A, Gallego M, Valcarcel M, Cardenas S J, Agric.Food Chem., 2001, 49(3): 1109.
    [95] Sutra J F, Cadiergues M C, Dupuy J, Franc M, et al., Veterinary Research, 2001, 32(5): 455.
    [96] David T R, Nanyan Z, J.Chromatogr.A, 2000, 885(1/2): 97.
    [97] 何炳林,黄文强,离子交换与吸附树脂,上海科技教育出版社,上海,1995.
    [98] Mohammad Saeid Hosseini, Haidar Raissi, Sara Madarshahian, Reactive and Functional Polymers, 2006, 66: 1539.
    [99] Memon Q S, Hasany S M, Bhanger M I, Khuhawar M Y, Journal of Colloid and Interface Science, 2005, 291: 84.
    [100] Sabrina Boussetta, Catherine Branger, Andr(?) Margaillan, Jean-Luc Boudenne, Bruno Coulomb, Reactive and Functional Polymers, 2008, 68: 775.
    [101] Marcos A B, Walter dos Santos N L, Valfredo A L, Kom A M G, Ferreira S L C, Journal of Hazardous Materials, 2007, 148: 334.
    [102] Valfredo Azevedo Lemos, Elenir Souza Santos, Ednilton Moreira Gama, Separation and Purification Technology, 2007, 56: 212.
    [103] Singh B N, Maiti B, Talanta, 2006, 69: 393.
    [104] Saima Q, Memon M, Iqbal Bhanger S M, Hasany M Y, Khuhawar, Talanta, 2007, 72: 1738.
    [105] Valfredo Azevedo Lemos, Douglas Goncalves da Silva, Anaildes Lago de Carvalho, D(?)bora de Andrade Santana, Geisiane dos Santos Novaes and Adenilde Souza dos Passos, Microchemical Journal, 2006, 84: 14.
    [106] Guo Y, Din B, Liu Y, Chang X, Meng S, Tian M, Analyst Chimica Acta, 2004, 504(2): 319.
    [107] GuoY, Din B, Liu Y, Chang X, Meng S, Liu J, Talanta, 2004, 64(1): 209.
    [108] 苏致兴,高分子螯合剂在分析化学中的应用,离子交换与吸附,1994,10(5):453.
    [109] 刘瑞霞,张宝文,汤鸿雷,多配位基螯合离子交换纤维的研究及其进展,环境科学进展,1996,4(5):1.
    [110] 刘春明,赵晓亮,二硫代氨基甲酸盐纤维微柱富集多种痕量元素的ICP-AES测定,分析试验室,1997,16(2):78.
    [111] 郭伊荇,刘春明,8-羟基喹啉纤维柱分离富集-ICP-AES同时测定多种痕量稀土元素,高等学校化学学报,1996,17(4):55.
    [112] 吴之传,陶庭先,高红军等,偕胺肟基纤维对Sm(Ⅲ)、Nd(Ⅲ)、Pr(Ⅲ)的吸附与富集,稀土,2002,23(5):26.
    [113] 吕瑶姣,刘跃龙,张季爽,螯合纤维的合成及其吸附重金属离子的研究,环境与开发,2001,16(2):23.
    [114] 刘瑞霞,王亚雄,汤鸿宵,新型离子交换纤维去除水中痕量砷酸根离子的研究,环境 科学,2002,23(5):88.
    [115] 陈中兰,巯基苯丙咪唑螯合纤维对重金属离子的吸附速率方程,光谱学与光谱分析,2002,22(5):865.
    [116] Chang Xi-Jun, et al., Journal of Analytical Chemistry, 1994, 349(6): 438.
    [117] Chang X, Su Z, Luo X, Zhan G, Talanta, 1993, 40(4): 527.
    [118] Xijun Chang, Guangyao Zhan, et al., Microchimica Acta, 1994, 112(5-6): 245.
    [119] Xijun Chang, Xiulan Yang, et al., Analytica Chimica Acta, 2001,450(1-2): 231.
    [120] Xijun Chang, Xiulan Yang, Bingtao Wang, Journal of Applied Polymer Science, 2001, 81(11): 2656.
    [121] Xijun Chang, Qingqiao Su, et al., Microchimica Acta, 2001, 137: 209.
    [122] Xijun Chang, Qingqiao Su, et al., Talanta, 2002, 57: 253.
    [123] Xijun Chang, Yuman Wang, Ran Zhao, Analytical and Bioanalytical Chemistry, 2003, 377: 757.
    [124] Chang X J, Yang X L, Wei X J, Wu K B, Analytica Chimiea Acta, 2001, 450(1-2): 231.
    [125] Xijun Chang, Qingqiao Su, et al., Microchimica Acta, 2001, 137(3-4): 209.
    [126] Xijun Chang, Qingqiao Su, et al., Talanta, 2002, 57(2): 253.
    [127] 王予曼,硕士学位论文,新型聚丙烯腈螯合纤维的合成及其对痕量金属离子的吸附性能和机理的研究,兰州大学,2003.
    [128] 梁冬英,硕士学位论文,新型聚丙烯腈螯合纤维的合成及其对水溶液样品中痕量金属离子的预富集-分离和ICP-AES测定的研究,兰州大学,2003.
    [129] 赵冉,硕士学位论文,新型吸附剂的合成及吸附性能研究,兰州大学,2004.
    [130] 郭永涛,硕士学位论文,聚丙烯腈螯合纤维的合成及其对痕量元素的吸附性能研究,兰州大学.2004.
    [131] Fazhi Xie, Xucong Lin, Xiaoping Wu, Zenghong Xie, Talanta, 2008, 74: 836.
    [132] Mohammad Reza Jamali, Yaghoub Assadi, Farzaneh Shemirani, Masoud Salavati-Niasari, Talanta, 2007, 71: 1524.
    [133] Jing Fan, Yuxia Qin, Cunling Ye, Pingan Peng, Chunlai Wu, Journal of Hazardous Materials, 2008, 150: 343-350.
    [134] Zhang S, Pu Q, Liu P, Sun Q, Su Z, Analytica Chimica Acta, 2002, 452(2): 223.
    [135] Liu P, Su Z, Wu X, Pu Q, Journal of Analytical Atomic Spectrometry, 2002, 17(1): 125.
    [136] Michael Speding, Xiu-ping Yan, Bernhard Welz, J.Spectrochim Acta B, 1996, 51(14): 1875.
    [137] Dressier V L, Pozebon D, Curtius A J, J.Spectrochim Acta B, 1998, 53(11): 1527.
    [138] Garbo(?) S, Rzepeeka M, Bulska E, Hulanicki A, J.Spectrochim Acta B, 1999, 54(5): 873.
    [139] G(o丨¨)kt(u丨¨)rk G, Delzendeh M, Volkan M, J.Spectrochim Acta B, 2000, 55(7): 1061.
    [140] Ekinci C, K(o丨¨)kl(u丨¨) (U丨¨), J.Spectrochim Acta B, 2000, 55(9): 1491.
    [141] Shamsipur M, Avanes A, Rofouei M K, Sharghi H, Aghapour G, Talanta, 2001, 54(5): 863.
    [142] Wittaya Ngeontae, Wanlapa Aeungmaitrepirom and Thawatchai Tuntulani, Talanta, 2007, 71: 1075.
    [143].Jal P K, Patel S, Mishra B K, Talanta, 2004, 62: 1005.
    [144] 彭怡,古昌红,傅敏,活性炭改性的研究进展,重庆工商大学学报,2007,24:577.
    [145] Ensafi A A, Shiraz A Z, Journal of Hazardous Materials, 2008,150: 554.
    [146] Starvin A M, Prasada Rao T, Talanta, 2004, 63: 225.
    [147] (U丨¨)cer A, Uyanik A, Ayg(u丨¨)n S F, Separation and Purification Technology, 2006, 47:113.
    [148] Lotfi Monser, Nafa(?) Adhoum, Journal of Hazardous Materials, 2009, 161: 263.
    [149] Ensafi A A, Ghaderi A R, Journal of Hazardous Materials, 2007, 148:319.
    [150] Starvin A M, Prasada Rao T, Journal of Hazardous Materials, 2004, 113: 75.
    [151] Jun Yin, Zucheng Jiang, Gang Chang, Bin Hu, Analytica Chimica Acta, 2005, 540: 333.
    [152] Pei Liang, Taqing Shi, Hanbing Lu, Zucheng Jiang, Bin Hu, Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58: 1709.
    [153] Pei Liang, Yongchao Qin, Bin Hu, Tianyou Peng, Zucheng Jiang, Analytica Chimica Acta, 2001,440: 207.
    [154] Pei Liang, Lanhao Yang, Bin Hu, Jiang Z C, Analytical Sciences, 2003, 19:1167.
    [155] Yunhui Zhai, Xijun Chang, Yuemei Cui, Ning Lian, Shoujun Lai, Hong Zhen and Qun He, Microchim Acta, 2006, 154: 253.
    [156] Xiaoguo Ma, Bei Huang, Meiqing Cheng, Rare Metals, 2007, 26: 541.
    [157] Attinti Ramesh, Bobba Apama Devi, Hiroshi Hasegawa, Teruya Maki, Kazumasa Ueda, Microchemical Journal, 2007, 86:124.
    [158] Pauling L J A, J.Am.Chem.Soc, 1940, 62(3): 2643.
    [159] Wuff G, Sarhan A, Zabrocki K, Tetrahedron Letters, 1973, 44: 4329.
    [160] Norrlow O, Glad M K, Journal of Chromatography, 1984, 299 (1): 29.
    [161] 郑红,博士学位论文,兰州大学化学化工学院,2006.
    [162] Yu H C, Fung K Z, Materials Research Bulletin, 2003, 38(2): 231.
    [163] Yongwen Liu, Xijun Chang, Sui Wang, Analytica Chimica Acta, 2004, 519(2): 173.
    [164] Yongwen Liu, Xijun Chang, Dong Yang, Analytica Chimica Acta, 2005, 538(1-2): 85.
    [165] Sobhi Daniel, Prem E.J.Babu, T.Prasada Rao, Talanta, 2005, 65(2): 441.
    [166] Metilda P, Gladis J M, Prasada Rao T, Analytica Chimica Acta, 2004, 512(1): 63.
    [167] Sobhi Daniel, Mary Gladis J, Prasada Rao T, Analytica Chimica Acta, 2003, 488(2): 173.
    [168] Biju V M, Mary Gladis J, Prasada Rao T, Talanta, 2003, 60(4): 747.
    [169] Prasad K, Kala R, Prasada Rao T, Naidu G R K, Analytica Chimica Acta, 2006, 566: 69.
    [170] Biju V M, Mary Gladis J, Prasada Rao T, Analytica Chimica Acta, 2003, 478(1): 43.
    [171] Kala R, Mary Gladis J, Prasada Rao T, Analytica Chimica Acta, 2004, 518(1-2): 143.
    [172] Yunhui Zhai, Yongwen Liu, Xijun Chang, Senbin Chen, Xinping Huang, Analytica Chimica Acta, 2007, 593: 123.
    [173] Yunhui Zhai, Dong Yang, Xijun Chang, Yongwen Liu, Qun He, Journal of Separation Science, 2008, 31: 1195.
    [174] Li-Qin Lin, Ying-Chun Li, Qiang Fu, Lang-Chong He, Jing Zhang, Qian-Qian Zhang, Polymer, 2006, 47: 3792.
    [175] Sibel B(u丨¨)y(u丨¨)ktiryaki, R(?)dvan Say, Arzu Ers(o丨¨)z, Ebru Birlik, Adil Denizli, Talanta, 2005, 67: 640.
    [176] Handan Yavuz, R(?)dvan Say, Adil Denizli, Materials Science and Engineering: C, 2005, 25: 521.
    [177] Uezu K, Nakamura H, Goto M, Nakashio F, J.Chem.Eng.Jap.1994, 27: 436.
    [178] Dickey F H, Proc.Natl.Acad.Sci.,1949,35(5): 227.
    [179] Magnus Glad, Olof Norrl(o丨¨)w, B(o丨¨)rje Sellergren, Nils Siegbahn, Klaus Mosbach, Journal of Chromatography, 1985, 347:11.
    [180] Guo-Zhen Fang, Jin Tan, Xiu-Ping Yan, Anal.Chem., 2005, 77 (6): 1734.
    [181] Feng Li, Hongquan Jiang and Shusheng Zhang, Talanta, 2007, 71: 1487.
    [182] Nan Zhang, Jibrin Sabo Suleiman, Man He and Bin Hu, Talanta, 2008, 75: 536.
    [183] Xiaoman Jiang, Na Jiang, Haixia Zhang and Mancang Liu, Analytical and Bioanalytical Chemistry, 2007, 389: 355.
    [184] Baojiao Gao, Fuqiang An and Yong Zhu, Polymer, 2007, 48: 2288.
    [185] Zhefeng Fan, Talanta, 2006, 70:1164.
    [186] Genhua Wu, Zhuqing Wang, Jie Wang and Chiyang He, Analytica Chimica Acta, 2007, 582: 304.
    [187] Xinyan Bi, Rong Jia Lau, and Kun-Lin Yang, Langmuir, 2007, 23(15): 8079.
    [188] Nan Zhang, Bin Hu, Chaozhang Huang, Analytica Chimica Acta, 2007, 597: 12.
    [189] Koide Y, Senba H, Shosenji H, et al., Bull.Chem.Soc.Jap.,1996, 69(1): 125.
    [190] 张卫英,李晓,朱兰兰,表面分子印迹材料制备研究进展,现代化工,2005,25:20.
    [191] Piletsky S A, Dubey I Y, Fedoryak D M, Kukhar V P, Biopolym.Kletka., 1990,6: 55.
    [192] Sergeyeva TA, Matuschewski H, Ulbricht M, J.Chromatography A, 2001, 907: 89.
    [193] Malaisamy R, Ulbricht M, Seperation Purification Technology, 2004, 39: 211.
    [194] Malaisamy R, Ulbricht M, J.Membrane Sci., 2003, 217: 207.
    [195] Sergeyeva T A, Matuschewski H, Ulbricht M, J.Chromatography A, 2001,907: 89.
    [196] 马向霞,李文友,何锡文,化学学报,2005,63(18):1681.
    [197] 吴朝阳,张晓蕾,杨云慧,湖南大学学报(自然科学版),2005,32(3):10.
    [198] 李蓉,郝鹤,朱辉,张庆云,分子印迹聚合物应用研究进展,武警医学院学报,2007,16: 325.
    [199] 肖淑娟,李红霞,于守武,分子印迹聚合物在分离领域的应用,化工新型材料,2007.
    [200] 张毅,胡玉玲,李攻科,分子印迹技术在生化分离分析中的应用,分析测试学报,2008, 27:215.
    [201] 王荣艳,王培龙,王静,王锡昌,钟耀广,分子印迹技术的研究的新进展及应用,现代科学仪器,2008,1:11.
    [202] 宋全生,博士学位论文,天津大学化工学院,2001.
    [203] Gschneidenr J r KA, Rechargeable Hydride Batteries, J.R IC Insight, 1990, 3 (8): 1.
    [204] Geng M, Nothwood, J.Hydrogen Energy, 2003, (28): 633.
    [205] 陈俊强,李国栋,高活性氢氧化亚镍制备-烘干温度对其活性的影响,J.电池,1991,21 (4):13.
    [206] ZhangYun-Shi, Zhou Zhen, Yan Jie, Journal of Power Sources, 1998, 75:283.
    [207] 夏熙,魏莹.纳米级β-Ni(0H)2的制备和放电性能,无机材料学报,1998,13(5):674.
    [208] 储炜,吴晖,尤金跨,纳米科学技术在化学电源领域的新进展,电源技术,1998,22(6): 257.
    [209] Watanabe K, Koseki M and Kumagai N, J.Power Sources, 1996, 58: 23.
    [210] Unates M E,.Folquer M E, Vilche J R andArvia A J, J.Electrochem.Soc., 1992, 139: 2697.
    [211] Chen J, Bradhurst D H, Dou S X and Liu H K, J.Electrochem.Soc., 1999, 146: 3606.
    [212] Cordoba de Torresi S I, Provazi K, Malta M and Torresi R M, J.Electrochem.Soc., 2001, 148:A1179.
    [213] Tessier C, Faure C, Guerlou-Demourgues L, Denage C, Nabias G and Delmas C, J.Electrochem.Soc., 2002, 149:A1136.
    [214] Song Q S, Tang Z Y, Guo H T and Chan S L I, Trans.Tianjin Univ., 2004, 10: 47.
    [215] Fierro C, Zallen A, Koch J and Fetcenko M A, J.Electrochem.Soc., 2006, 153: A492.
    [216] Cheng FY, Chen J, Shen P W, J.Power Sources, 2005, 150: 255.
    [217] Tronel F, Guerlou-Demourgues L, Basterreix M and Delmas C, J.Power Sources, 2006, 158: 722.
    [218] Tanaka T, Kuzuhara M, Watada M and Oshitani M, J.Alloys Comp., 2006, 323: 408.
    [219] Kamath P V and Subbarma G N, J.Appl.Electrochem., 1992, 22: 478.
    [220] Acharya R, Subbaiah T, Anand S and Das R P, Mater.Chem.Phys., 2003, 81: 45.
    [221] Jayashree R S, Kamath P V and Subbanna G N, J.Electrochem.Soc., 2000, 147:2029
    [222] Deabate S, Fourgeot Fand Henn F, J.Power Sources, 2000, 87: 125.
    [223] Ramesh T N, Jayashree R S and Kamath P V, Clays Clay Miner., 2003, 51: 570.
    [224] Ramesh TN, Jayashree R S and Kamath P V, J.Electrochem.Soc., 2003, 150: A520.
    [225] Ramesh T N, Kamath P V and Shivakumara C, J.Electrochem.Soc., 2005, 152: A806.
    [226] Ramesh T N, Kamath P V, J.Power Sources, 2006, 156: 655.
    [227] Sugimoto A, Ishida S and Hanawa K, J.Electrochem.Soc., 1999, 146: 1251.
    [228] Song Q S,.Tang Z Y, Guo H T and Chan S L I, J.Power Sources, 2002, 112:428.
    [229] Chen H, Wang J M, Pan T, Xiao H M, Zhang J Q and Cao C N, Int.J.Hydrogen Energy, 2003, 28: 119.
    [230] Casas-Cabanas M, Hernandez J C, Gil V, Soda M L and Palacin M R, J.Power Sources, 2004, 134: 298.
    [231] Song Q S, Chiu C H.and Chan S L I, J.Appl.Electrochem., 2006, 36: 97.
    [232] Song Q S, Chiu C H.and Chan S L I, Electrochim.Acta., 2006, 51: 6548.
    [233] 倪佩,陈延禧,添加剂及其对镍电极的作用机理,电池,1997,27(1):35.
    [234] Greaves C, Thomas MA and Turner M, J.Power Sources, 1984, 12: 195.
    [235] Jayashree R S, Kamath P V and Subbarma G N, J.Electrochem.Soc., 2000, 147: 2029.
    [236] Dai H J, Wong E W, Lieber C M, et al., J.Science, 1996, 272: 523.
    [237] Ebbesen T W, Lezec H J, Hiura H, et al., J.Nature, 1996, 382: 54.
    [238] Endo M, Kim YA, Hayashi T, et al., J.Carbon, 2001, 39: 1287.
    [1] Liu Y, Chang X, Wang S, Anal.Chim.Acta, 2004, 519: 173.
    [2] Junker-Bucheit A, Witzenbacher M, J.Chromatogr.A, 1996, 737: 67.
    [3] Pyrzynska K, Trojanowicz M, Crit.Rev.Anal.Chem., 1999, 29: 313.
    [4] Mary Gladis J, Prasada Rao T, Anal.Lett., 2002, 35: 501.
    [5] Poole C F, Trends Anal.Chem., 2003, 22: 362.
    [6] Pauling L J A, J.Am.Chem.Soc., 1940, 62: 2643.
    [7] Wuff G, Sarhan A, Zabrocki K, Tetrahedron Letters, 1973, 44: 4329.
    [8] Norrlow O, Glad M K, Journal of Chromatography, 1984, 299: 29.
    [9] Cameron A, Hakan S A, Lars I A, Richard J A, Nicole K, Ian A N, John O M, Michael J W, J.Mol.Recognit., 2006, 19: 106.
    [10] Andersson L I, J.Chromatogr.B, 2000, 745: 3.
    [11] Lin L Q, Zhang J, Fu Q, He L C, Li Y C, Anal.Chim.Acta, 2006, 561: 178.
    [12] Karsten H, Anal.Chem., 2003, 75: 377.
    [13] Caro E, Marce R M, Borrull F, Cormack P A G; Sherrington D C, Trends Anal.Chem., 2006 25: 143.
    [14] Alfonso F G, Laura G, Rosana B L, Marta Elena D G, Trends Anal.Chem., 2006, 25: 949.
    [15] Haupt K, Nat Biotechnol, 2002, 20: 884.
    [16] Andersson L I, J.Chromatogr.B, 2000, 739: 163.
    [17] Alexander C, Davidson L, Hayes W, Tetrahedron, 2003, 59: 2025.
    [18] Xu X J, Zhu L L, Chen L R, J.Chromatogr.B, 2004, 804: 61.
    [19] Alfonso F G, Laura G, Rosana B L, Marta Elena D G, Trends Anal.Chem., 2006, 25: 949.
    [20] Han D M, Fang G Z, Yah X P, J.Chromatogr.A, 2005, 1100: 131.
    [21] Markowitz M A, Deng G; Burleigh M C, Wong E M, Gaber B P, Langmuir, 2001, 17: 7085.
    [22] Yang H H, Zhang S Q, Tan F, Zhuang Z X,.Wang X R, J.Am.Chem.Soc., 2005, 127: 1378.
    [23] Fang G Z, Tan J, Yan X P, Anal.Chem., 2005, 77: 1734.
    [24] Gueguen C, Belin C, Thomas B A, Monna F, Favarger P Y, Dominik J, Anal.Chim.Acta, 1999, 386: 155.
    [25] Miranda Carlos E S, Reis B F, Baccan N, Packer A P, Gine M F, Anal.Chim.Acta, 2002, 453: 301.
    [26] Long G L, Winefordner J D, Anal.Chem., 1980, 52: 2242.
    [27] Long G L, Winefordner J D, Anal.Chem., 1983, 55: 712A.
    [1] Wang K, Nickel Trace Elements in Life Science, Chinese Measurement Press, Peking, China, 1991, 278-280.
    [2] Zerner B, Bioorg.Chem., 1991, 19:116.
    [3] Thauer R K, Science, 2001,293:1264.
    [4] Kalyakina O P, Kononova O N, Kachin S V, Kholmogorov A G, Bull. Korean Chem. Soc., 2003,24: 173.
    [5] Kristiansen J, Christensen J M, Henriksen T, Nielsen N H, Menne T, Anal. Chim. Acta, 2000, 403: 265.
    [6] Liu Y, Chang X, Wang S, Anal. Chim. Acta, 2004,519: 173.
    [7] Pyrzynska K, Trojanowicz M, Crit. Rev. Anal. Chem., 1999,29: 313.
    [8] Liu Y, Chang X, Yang D, Guo Y, Meng S, Anal. Chim. Acta, 2005, 538: 85.
    [9] Vassileva E, Proinova I, Hadjiivanov K, Analyst, 1996,121: 607.
    [10] Leyden D E, Luttrel G H, Anal. Chem., 1975,47: 1612.
    [11] Becker N, Unger K, Fresenius Z, Anal. Chem., 1980,304: 374.
    [12] Seshadri T, Dietz G, Haupt H, Fresenius Z, Anal. Chem., 1984, 319: 403.
    [13] Kocjan R, Garbacka M, Talanta, 1994,41: 131.
    [14] Mahmoud M E, Soayed A A, Hafez O F, Microchim. Acta, 2003,143: 6.
    [15] Makote R D, Dai S, Anal. Chim. Acta, 2001,435: 169.
    [16] Dickert F L, Hayden O, Anal. Chem., 2002,74: 1302.
    [17] Dai S, Burleigh M C, Ju Y H, Gao H J, Lin J S, Pennycook S J, Barnes C E, Xue Z L, J. Am. Chem. Soc., 2000,122: 992.
    [18] Haupt K, Analyst, 2001,126: 747.
    [19] Haupt K, Mosbach K, Chem. Rev., 2000, 100: 2495.
    [20] Bae S Y, Southard G L, Murray G M, Anal. Chim. Acta, 1999, 397: 173.
    [21] Daniel S, Babu P E J, Prasada Rao T, Talanta, 2005,65:441.
    [22] Han D M, Fang G Z, Yan X P, J. Chromatogr. A, 2005, 1100: 131.
    [23] Markowitz M A, Deng G, Burleigh M C, Wong E M, Gaber B P, Langmuir, 2001, 17: 7085.
    [24] Yang H H, Zhang S Q, Tan F, Zhuang Z X, Wang X R, J. Am. Chem. Soc, 2005,127: 1378.
    [25] Fang G Z, Tan J, Yan X P, Anal. Chem., 2005, 77: 1734.
    [26] Gueguen C, Belin C, Thomas B A, Monna F, Favarger PY, Dominik J, Anal. Chim. Acta, 1999,386: 155.
    [27] Miranda Carlos E S, Reis B F, Baccan N, Packer A P, Gine M F, Anal. Chim. Acta, 2002, 453:301.
    [28] Ersoz A, Say R, Denizli A, Anal. Chim. Acta, 2004,502: 91.
    [29] Zhang Z, Dai S, Hunt R D, Wei Y, Qiu S, Adv. Mater., 2001,13: 493.
    [30] Lu Y K, Yan X P, Anal. Chem., 2004,76:453.
    [31] Andac M, Ozyapi E, Senel S, Say R, Denizli A, Ind. Eng. Chem. Res., 2006,45:1780.
    [32] Long G L, Winefordner J D, Anal. Chem., 1980,52: 2242.
    [33] Long G L, Winefordner J D, Anal. Chem., 1983, 55: 712A.
    [1] Sadler K, Lynam S, J.Fish Biol., 1987, 31: 209.
    [2] 雷建平,陈瑜,干宁,邹公伟,毕树平,无机化学学报,2000,16:13.
    [3] Debray M E, Kreiner A, J.A I P Conf.Proc., 1997, 392: 567.
    [4] Lewis T E, Environment al Chemistry and Toxicology of Aluminum, Michigan, LEWIS Publishers Inc: Chelsea., 1989.
    [5] 王慧琴,杨志斌,分析化学,1996,24(5):587.
    [6] Ahmed M J, Hossan J, Talanta, 1995, 42:1135.
    [7] Prownpuntu A, Titapiwatanakur U, Analyst, 1991, 116: 191.
    [8] Shu-Ying M A, Physical Testing and Chemical Analysis Part B: Chemica Analysis, 1998, 34(2): 68.
    [9] 杨岭,蔡汝秀,黄厚评,曾云鹗,高登云,高等学校化学学报,1992,13(3):30.
    [10] Capitan F, Avidad R, Navalon A, Capitan-Valvey L F, Microchim.Act a, 1992, 107: 65.
    [11] Carrillo F, Perez C, Camara C, Anal.Chim.Acta, 1991, 243: 121.
    [12] 杨维平,章竹君,李建中,分析化学,1992,20(1):11.
    [13] Maties R, Arias J J, Jimenez F, Roman M, Anal.Lett., 1992, 25: 851.
    [14] 肖林,程雅琴,中国生物制品学杂志,2001,14(3):178.
    [15] 曹洪奎,等,光谱学与光谱分析,1994,14(3):59.
    [16] 陈杭亭,曹淑琴,曾宪津,分析化学,2001,29(5):592.
    [17] Yang H, Zhang S, Yang W, Chen X, Zhuang Z, Xu J, J.Am.Chem.Soc., 2004, 126: 4054.
    [18] Haginaka J, Anal.Bioanal.Chem., 2004, 379: 332.
    [19] Zhang Z, Dai S, Hunt R, Wei Y, Qiu S, Adv.Mater., 2001, 13: 493.
    [20] Wulff G, Angew.Chem.Int.Ed.Engl., 1995, 34: 1812.
    [21] Wulff G, Sarhan A, Macromolecular Colloquium, Angew.Chem.Int.Ed.Engl., 1972, 11: 334.
    [22] Prasada Rao T, Sobhi Daniel, J.Mary Gladis, Trends in Analytical Chemistry, 2004, 23: 28.
    [23] Rao T P, Daniel S, Gladis J M, Trac-Trend.Anal.Chem., 2004, 23: 28.
    [24] Daniel S, Rao P P, Rao T P, Anal.Chim.Acta, 2005, 536: 197.
    [25] Zhang L, Cheng G, Fu C, React.Funct.Polym., 2003, 56: 167.
    [26] Liu Y, Chang X, Yang D, Guo Y, Meng S, Anal.Chim.Acta, 2005, 538: 85.
    [27] Prasad K, Kala R, Rao T P, Naidu G R K, Anal.Chim.Acta, 2006, 566: 69.
    [28] Ers(o丨¨)z A, Say R, Denizli A, Anal.Chim.Acta, 2004, 502: 91.
    [29] Birlik E, Ers(o丨¨)z A, Denizli A, Say R, Anal.Chim.Acta, 2006, 565: 145.
    [30] #12
    [31] B(u丨¨)yuktiryaki S, Say R, Ers(o丨¨)z A, Birlik E, Denizli A, Talanta, 2005, 67: 640.
    [32] Kala R, Gladis J M, Rao T P, Anal.Chim.Acta, 2004, 518: 143.
    [33] Araki K, Maruyama T, Kamiya N, Goto M, J.Chromatogr.B, 2005, 818: 141.
    [34] Wang S, Zhang R, Mierochim.Aeta, 2006, 154: 73.
    [35] Na J, Chang X, Hong Z, Qun H, Zheng H (2006) Anal Chim Acta, 577:225-231
    [36] Lars I A, Klaus M, J.Chromatogr., 1990, 516: 313.
    [37] Lars I A, Akiyoshi M, Daniel J O, Klaus M, J.Chromatogr., 1990, 516: 323.
    [38] Olof R, Lei Y, Klaus M, Chem.Biol., 1996, 3: 471.
    [39] Martin S, Lars I A, Klaus M, J.Agric.Food Chem., 1996, 44: 141.
    [40] Spivak D A, Adv.Drug Deliv.Rev., 2005, 57: 1779.
    [41] Han D M, Fang G Z, Yan X P, J.Chromatogr.A, 2005, 1100: 131.
    [42] Markowitz M A, Deng G, Burleigh M C, Wong E M, Gaber B P, Langrnuir, 2001, 17: 7085.
    [43] Yang H H, Zhang S Q, Tan F, Zhuang Z X, Wang X R, J.Am.Chem.Soc., 2005, 127: 1378.
    [44] Fang G Z, Tan J, Yan X P, Anal.Chem., 2005, 77: 1734.
    [45] Nan Zhang, Jibrin Sabo Suleiman, Man He and Bin Hu, Talanta 2008, 75: 536.
    [46] Xiaoman Jiang, Wei Tian, Chuande Zhao, Haixia Zhang and Mancang Liu, Talanta, 2007, 72: 119.
    [47] Xiaoman Jiang, Chuande Zhao, Na Jiang, Haixia Zhang, Mancang Liu, Food Chemistry, 2008, 108: 1061.
    [48] Linyuan Guo, Xiaoman Jiang, Cailing Yang, Haixia Zhang, Analytical and Bioanalytical Chemistry, 2008, 391: 2291.
    [1] 陈雁虹,秦波,张媛嫒,程伟,吕圭源,叶祖光,中国中医药信息杂志,2008,15:55.
    [2] 许丽丽,李来生,杨汉荣,色谱,2007,25:374.
    [3] 王玉玲,吴振,张喜轩,中国医科大学学报,2006,35:380.
    [4] 许刚,韩婷,陈宏,等,国外医学·生理、病理科学与临床分册,2003,23(2):237.
    [5] Rasmussen C, Kvist K, Planta Med., 2000, 66: 396.
    [6] Jentzseh k, Spiegl P, Kamitz R, Sci Pharm, 1970, 38: 50.
    [7] Alia.Sharmas N, J.Indian Drugs, 1990, 28: 33.
    [8] Janssen A, Gole Th.Chromatographia, 1984, 18: 546.
    [9] Cooray N F, J Natl Sci Coune Sri Lanka, 1988, 16: 39.
    [10] Sanagi M M, Ahmad U K, Smith R M, J Chromatogr.Sci., 1993, 31: 20.
    [11] Sun X, Gao C, Cao W, Yang X, Wang E, J.Chromatogr.A, 2002, 962:117.
    [12] Liu Baoqi, Hu Xiaozhong, Wang Yuchun, Zhu Baoeheng, Ding Liang, Chinese Journal of Instrumental Analysis, 2004, 23: 109.
    [13] YUAN Kailong, WENG Qianfeng, ZHANG Hongying, XIONG Jianhui, Yang Jun, XU Guowang, Chinese Journal of Chromatography, 2004, 22: 609.
    [14] 陈逸红,张芬娥,王慧洁,HPLC测定如意金黄散中姜黄素的含量,中成药,2004,26: 1075.
    [15] 刘保启,胡孝忠,王玉春等,高效毛细管电泳法测定姜黄中姜黄素类化合物,分析测试 学报,2004,23:109.
    [16] 李跃红,高效液相色谱法测定保健食品中姜黄素的含量,中国卫生检验杂志,2006,16: 204.
    [17] 汤秋华,胡永狮,吴平,等,HPLC法测定姜黄、莪术、郁金中姜黄素的含量,海峡药学, 1998,10:30.
    [18] 贾海英,杜守强,李冬雪,等,高效液相色谱法测定黄丝郁金中姜黄素的含量,时珍国 医国药,2005,16:318.
    [19] 施冰,高效液相色谱法测定食品中姜黄素,福建分析测试,2008,17:28.
    [20] Toennesen H H, Karlsen J, J.Chromatogr., 1983, 259: 367.
    [21] Ireson C, Orr S, Jones D J L, Verschoyle R, Lim C K, Luo J L, Howells L, Plummer S, Jukes R, Williams M, Steward W P, Gesher A, Cancer Res., 2001, 61: 1058.
    [22] Khurana A L, Ho C T, J.Liq.Chromatogr., 1988, 11: 2295.
    [23] Heath D D, Pruitt M A, Brenner D E, Rock C L, J.Chromatogr.B, 2003, 783: 287.
    [24] Pauling L J A, J.Am.Chem.Soc., 1940, 62: 2643.
    [25] Wuff G, Sarhan A, Zabrocki K, Tetrahedron Letters, 1973, 44: 4329.
    [26] Norrlow O, Glad M K, Journal of Chromatography, 1984, 299: 29.
    [27] Cameron A, Hakan S A, Lars I A, Richard J A, Nicole K, Ian A N, John O M, Michael J W J Mol Recognit, 2006, 19: 106.
    [28] Andersson L I, J.Chromatogr.B, 2000, 745: 3.
    [29] Lin L Q, Zhang J, Fu Q, He L C, Li Y C, Anal.Chim.Acta, 2006, 561: 178.
    [30] Karsten H, Anal.Chem., 2003, 75: 377.
    [31] Caro E, Marce R M, Borrull F, Cormack P A G, Sherrington D C, Trends Anal.Chem., 2006, 25: 143.
    [32] Alfonso F G, Laura G, Rosana B L, Marta Elena D G, Trends Anal.Chem., 2006, 25: 949.
    [33] Haupt K, Nat Biotechnol, 2002, 20: 884.
    [34] Andersson LI (2000) J Chromatogr B 739:163-173
    [35] Alexander C, Davidson L, Hayes W, Tetrahedron, 2003, 59: 2025.
    [36] Xu X J, Zhu L L, Chen L R, J.Chromatogr.B, 2004, 804: 61.
    [37] Ping Wang, Wenming Hu, Weike Su, Anal.Chim.Acta, 2008, 615: 54.
    [38] Lancelot G, J.Am.Chem.Soc., 1977, 99: 7037.
    [39] Miyoshi M J, Takeuchi Y, et al., Anal.Chem., 1995, 67: 4404.
    [1] Beck F, Ruetschi P, Electrochim.Acta, 2000, 45: 2467.
    [2] Shukla A K, Venugopalan S, Hariprakash B, J.Power Sources, 2001, 100: 125.
    [3] Kohler U, Antonius C, Bauerlein P, J.Power Sources, 2004, 127: 45.
    [4] Taniguchi A, Fujioka N, Ikoma M, Ohta A, J.Power Sources, 2001,100:117.
    [5] ZhangYun-Shi, Zhou Zhen, Yan Jie, J.Journal of Power Sources, 1998, 75: 283.
    [6] 夏熙,魏莹,无机材料学报,1998,13:674.
    [7] 储炜,吴晖,尤金跨,电源技术,1998,22:257.
    [8] Watanabe K, Koseki M, Kumagai N, J.Power Sources, 1996, 58: 23.
    [9] Unates M E, Folquer M E, Vilche J R, Arvia A J, J.Eleetrochem.Soc., 1992, 139: 2697.
    [10] Chen J, Bradhurst D H, Dou S X, Liu H K, J.Electrochem.Soc., 1999, 146: 3606.
    [11] Cordoba de Torresi S I, Provazi K, Malta M, Torresi R M, J.Electrochem.Soc., 2001, 148: A1179.
    [12] Tessier C, Faure C, Guerlou-Demourgues L, Denage C, Nabias G, Delmas C, J.Electrochem.Soc., 2002, 149:A1136.
    [13].Song Q S, Tang Z Y, Guo H T, Chart S L I, Trans.Tianjin Univ., 2004, 10: 47.
    [14] Fierro C, Z, allen A, Koch J, Feteenko M A, J.Electrochem.Soc., 2006, 153: A492.
    [15] Cheng F Y, Chen J, Shen P W, J.Power Sources, 2005, 150: 255.
    [16] Tronel F, Guerlou-Demourgues L, Basterreix M, Delmas C, J.Power Sources, 2006, 158: 722.
    [17] Tanaka T, Kuzuhara M, Watada M, Oshitani M, J.Alloys Comp., 2006, 323: 408.
    [18] Kamath P V, Subbanna G N, J.Appl.Electrochem., 1992, 22: 478.
    [19] Acharya R, Subbaiah T, Anand S, Das R P, Mater.Chem.Phys., 2003, 81: 45.
    [20] Jayashree R S, Kamath P V, Subbanna G N, J.Electrochem.Soc., 2000, 147: 2029.
    [21] Deabate S, Fourgeot F, Henn F, J.Power Sources, 2000, 87: 125.
    [22] Ramesh T N, Jayashree R S, Kamath P V, Clays Clay Miner., 2003, 51: 570.
    [23] Ramesh T N, Jayashree R S, Kamath P V, J.Electrochem.Soc., 2003, 150: A520.
    [24] Ramesh T N, Kamath P V, Shivakumara C, J.Electrochem.Soc., 2005, 152: A806.
    [25] Ramesh T N, Kamath P V, J.Power Sources, 2006, 156: 655.
    [26] Sugimoto A, Ishida S, Hanawa K, J.Electrochem.Soc., 1999, 146: 1251.
    [27] Song Q S, Tang Z Y, Guo H T, Chan S L I, J.Power Sources, 2002, 112: 428.
    [28] Chen H, Wang J M, Pan T, Xiao H M, Zhang J Q, Cao C N, Int.J.Hydrogen Energy, 2003, 28: 119.
    [29] Casas-Cabanas M, Hernandez J C, Gil V, Soria M L, Palacin M R, J.Power Sources, 2004, 134: 298.
    [30] Song Q S, Chiu C H, Chan S L I, J.Appl.Electrochem., 2006, 36: 97.
    [31] Song Q S, Chiu C H, Chan S L I, Electrochim.Acta, 2006, 51: 6548.
    [32] 倪佩,陈延禧,电池,1997,27:35.
    [33] Greaves C, Thomas MA, Turner M, J.Power Sources, 1984, 12: 195.
    [34] Dai H J, Wong E W, Lieber C M, et al., Science, 1996, 272: 523.
    [35] Ebbesen T W, Lezec H J, Hiura H, et al., J.Nature, 1996, 382: 54.
    [36] Endo M, Kim YA, Hayashi T, et al., J.Carbon, 2001, 39: 1287.
    [37] SINGH D, J.Electrochem.Soc., 1998, 145: 116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700