用户名: 密码: 验证码:
高性能胆红素吸附材料和表面印迹材料的制备与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆红素是血红素代谢降解的产物,是一种内源性毒素,血液中过高浓度的胆红素会导致梗阻性黄疸,甚至发生急性肾功能衰竭。同时,血液中胆红素含量的高低,是判断肝功能正常与否的一项重要指标,根据血液中胆红素的含量可诊断各种肝脏疾病。因此,清除血液中过高浓度的胆红素及胆红素含量的检测工作尤为重要。本研究依据材料分子设计的基本思想,研究制备了2种对胆红素具有良好吸附性能的功能材料,并制备了2种对胆红素分子具有特异识别性能的表面分子印迹材料,考查了它们对胆红素的吸附性能及分子识别特性,以期最终能分别应用于病患者血液中过高浓度胆红素的清除(血液净化吸附剂)与血液中胆红素浓度的检测(构建化学传感器)。
     首先以甲基丙烯酸缩水甘油酯(GMA)为单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,聚乙烯醇(PVA)为分散剂,偶氮二异丁腈(AIBN)为引发剂,采用悬浮聚合法制备了以GMA为主单体的二元共聚物交联微球CPGMA;考察了分散剂用量、搅拌速度、油水两相比例、交联剂用量、NaCl用量等因素对成球性能及微球粒径的影响规律。研究结果表明,通过控制各反应条件,可以制备出球形度极好、粒径可控的交联微球CPGMA,并确定了制备粒径在100μm左右的CPGMA微球的最佳条件。
     通过胺基与环氧键之间的开环反应,用己二胺、多乙烯多胺等小分子胺化试剂对CPGMA微球进行改性,制得了胺基化交联微球CPGMA,并研究了该功能微球对胆红素的吸附特性,考察了胺化试剂的分子结构、介质pH值、离子强度及温度等因素对其吸附性能的影响,较深入地研究了吸附机理。结果表明,胺基化微球对胆红素具有强吸附作用,吸附容量可达17.8 mg/g。胺化微球与胆红素分子之间的作用力以静电作用为主,同时也存在氢键作用与疏水相互作用。在pH=6时静电作用最强,胆红素吸附容量最高;高离子强度不利于静电相互作用,盐度增大使吸附容量减小。温度升高有利于疏水相互作用而不利于氢键作用,两种作用中占优势者主导温度对吸附容量的影响。用己二胺改性的微球,由于疏水相互作用的强化以及较长连接臂导致较小的空间位阻,使其对胆红素的吸附能力明显高于多乙烯多胺改性的微球。
     同样利用胺基与环氧键之间的开环反应,将聚胺大分子聚乙烯亚胺(PEI)偶合接枝在微球表面,制得了功能微球PEI-CPGMA,重点研究了功能微球对胆红素的吸附性能,考察了接枝度、介质pH值、离子强度等因素对微球吸附性能的影响。静态吸附实验结果表明,凭借强烈的静电相互作用与氢键相互作用,功能微球PEI-CPGMA对胆红素具有强吸附能力,饱和吸附量可达14.1 mg/g;介质的pH值对微球吸附性能有很大的影响,在近中性(pH=6)溶液中,接枝微球对胆红素的吸附能力最强;离子强度对吸附作用表现出微弱的增效作用;微球表面PEI的接枝度越高,吸附能力越强。
     采用溶液聚合法将甲基丙烯酸(MAA)接枝(逐步接枝)于硅胶微粒表面,制得了复合型吸附材料PMAA/SiO_2,并通过静态吸附实验研究了该功能微粒对胆红素的吸附性能。实验结果表明,接枝微粒PMAA/SiO_2对胆红素具有较强吸附作用。因此,在此基础上以胆红素为模板分子,乙二醇二缩水甘油醚(EGDE)为交联剂,对接枝在硅胶表面的PMAA大分子链进行了胆红素分子印迹,成功制备了胆红素表面分子印迹材料MIP-PMAA/SiO_2;采用静态与动态两种方法研究了MIP-PMAA/SiO_2对胆红素的结合特性。实验结果表明,印迹材料MIP-PMAA/SiO_2对胆红素分子具有特异的识别选择性与优良的结合亲和性,同时也具有优良的解吸性能,以EDTA与NaOH混合溶液作为洗脱液,10个床体积内解吸率可达99.48%。以γ-氯丙基三甲氧基硅烷为偶联剂,将大分子聚乙烯亚胺(PEI)接枝(偶合接枝)在硅胶微粒表面,成功地制备了复合型吸附材料PEI/SiO_2,通过静态吸附实验考察了接枝微粒PEI/SiO_2对胆红素的吸附性能,探索了各因素对其吸附能力的影响规律。实验结果表明,PEI/SiO_2对胆红素具有强的吸附能力,吸附体系的pH值、离子强度及PEI接枝度对PEI/SiO_2的吸附容量都有影响,其中以pH值的影响最为显著,在中性吸附体系中,PEI/SiO_2对胆红素的吸附量可达13.17 mg/g。因此,在此基础上以胆红素为模板分子,EGDE为交联剂,成功制备了胆红素表面分子印迹材料MIP-PEI/SiO_2;采用静态与动态两种方法研究了其对胆红素的结合特性。结果表明,印迹材料MIP-PEI/SiO_2对胆红素分子具有特异的识别选择性与优良的结合亲和性,同时也具有优良的解吸性能,11个床体积内解吸率可达99.39%。
Bilirubin is a principal degradation product of heme catabolisma. High bilirubin concentration may cause obstructive jaundice, and further may results in acute renal failure. At the same time, serum bilirubin is an important index for judging the liver's functions and identifying a variety of liver diseases. Therefore, the removal of high concentrations bilirubin and detection of bilirubin level are particularly important. In this study, based on the molecular design of materials, two kinds of functional materials with good adsorption properties for bilirubin and two kinds of bilirubin surface molecular imprinted polymers were prepared. And these materials were hoped to be applied in the removal of high concentrations of bilirubin (Hemoperfusion adsorbents) and testing (building of chemical sensors), respectively.
     First, the crosslinking microbeads CPGMA with controllable size were synthesized by suspension polymerization of glycidyl methacrylate (GMA) and ethylene glycol dimethylacrylate (EGDMA). The effects of various factors, such as disperser PVA weight percentage(wt%), agitating rate, the ratio of oil phase to water phase, the weight percentage(wt%) of EGDMA and NaCl, on the sphericity and diameter of the microbeads were examined. The experimental results show that the sphericity of crosslinking microsbeads CPGMA is excellent and various factors the above-mentioned can all influence the particle diameter. And the optimal condition for prepareing CPGMA microsbeads with diameter about 100μm is determined.
     The crosslinking microspheres of CPGMA were modified chemically with aminating agents, hexanediamine and three kinds of multi-ethylene multi-amine. The effects of various factors, such as the chemical structures of the aminating agents, pH values of the medium, ionic strength and temperature, on the adsorption property of the functional microsphers for bilirubin were examined. The adsorption mechanism of the aminated microspheres towards bilirubin was studied more in depth. The experimental results show that the aminated microspheres has strong adsorption ability for bilirubin and the adsorption capacity can reach 17.8mg/g. Between the aminated microspheres and bilirubin molecules, electrostatic interaction is dominative, meanwhile, there are hydrogen bonding and hydrophobic interaction. As pH=6, the electrostatic interaction is the strongest, leading to the highest adsorption capacity. Higher ionic strength is disadvantageous to the electrostatic interaction, and the increasing of salinity conduces to the decreasing of the adsorption capacity. The rising of temperature is advantageous to the hydrophobic interaction, whereas is unfavorable to hydrogen bonding, and the predominated one between them dominates the effect of temperature on the adsorption capacity. The adsorption ability of the aminated microspheres modified with hexanediamine is stronger than that modified with multi-ethylene multi-amine owing to strengthening the hydrophobic interaction and smaller steric hindrance which comes from longer spacer.
     Polyethylenimine (PEI) was grafted on the surface of the CPGMA in the couple graft manner via the ring-opening reaction between the epoxy groups and the amino groups, and grafting microsphere PEI-CPGMA was obtained. The adsorption property of PEI-CPGMA for bilirubin was mainly studied, and the effects of various factors, such as pH value, ionic strength of the medium and the grafting degree of PEI, on the adsorption property were examined. The static adsorption experiment results show that PEI-CPGMA has a strong adsorption action towards bilirubin. The pH value of the aqueous solution has great effect on the adsorption property of PEI-CPGMA. In near neutral solution (pH=6), there is maximum adsorption amount. The ionic strength of the medium exhibits little influence on the adsorption property of PEI-CPGMA. The higher the grafting degree of PEI on the microsphere surface, the stronger the adsorption capacity.
     PMAA was grafted onto the surface of silica gel particles via the coupling effect of MPS, and the grafting particle PMAA/SiO_2 was prepared. Then, using novel molecular surface imprinted technique, the molecular imprinted polymethylacrylic acid on the surface of silica gel, MIP-PMAA/SiO_2, was prepared with bilirubin as a template molecule and EGDE as crosslinking agent. Both static and dynamic methods were adopted to study the binding properties of MIP-PMAA/SiO_2 for bilirubin. The experiment results show that MIP-PMAA/SiO_2 have higher selectivity ability and excellent combination property for bilirubin. Besides, MIP-PMAA/SiO_2 has excellent elution property, with the mixed solvent of EDTA and NaOH as the eluent, the desorption ratios of bilirubin reach 99.48 % in 10 bed volumes.
     Polyethyleneimine (PEI) was grafted onto the surface of silica gel particles via the coupling effect of CP, and the grafted particle PEI/SiO_2 was prepared. Then, the molecular imprint polyethyleneimine on the surface of silica gel, MIP-PEI/SiO_2, was prepared with bilirubin as a template molecule and EGDE as crosslinking agent by using novel molecular surface imprinting technique. Both static and dynamic methods were adopted to study the identification properties of MIP-PEI/SiO_2 for bilirubin. The experimental results show that MIP-PEI/SiO_2 has higher selectivity ability and excellent combination property for bilirubin. Besides, MIP-PEI/SiO_2 has excellent elution property, with the mixed solvent of EDTA and NaOH as the eluent, the desorption ratios of bilirubin reach 99.39% in 11 bed volumes.
引文
[1]Ahmad N, Arif K, Faisal S M, et al.PLGA-microsphere mediated clearance of bilirubin in temporarily hyperbilirubinemic rats: An alternate strategy for the treatment of experimental jaundice [J], Biochimica et Biophysica Acta, 2006, 1760(2): 227-232.
    [2]Vanstapel F, Blankaert N, Tavaloni N, et al.Physiology and Pathophysiology[M], New York: Raven Press, 1993:447-448.
    [3]Gourley G R.Adv.Pediatrics [M], 1997, 44: 173-229.
    [4]Hansen T W, Bratlid R D.Bilirubin and Brain Toxicity[J], Acta Pediatr.Scand,1986, 75(4):513-522.
    [5]袁直,魏斌,何炳林等.固载β-环糊精吸附剂对胆红素吸附机理的探讨[J],高等学校化学学报,2000, 21(5): 731-733.
    [6]Shiomi T, Matsui M, Mizukami F, et al.A method for the molecular imprinting of hemoglobin on silica surfaces using silanes [J], Biomaterials, 2005, 26(27): 5564-5571.
    [7]Asano T, Tsuru K, Hayakawa S, et al.Bilirubin adsorption property of sol-gel-derived titania particles for blood purification therapy [J], Acta Biomaterialia, 2008, 4(4):1067-1072.
    [8]Baydemir G, Bereli N, Anda M, et al.Bilirubin recognition via molecularly imprinted supermacroporous cryogels [J], Colloids and Surfaces B: Biointerfaces, 2009, 68(1):33-38.
    [9]Huang C Y, Syu M J, Chang Y S, et al.A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting [J], Biosensors and Bioelectronics, 2007,22(8): 1694-1699.
    [10]Syu M J, Nian Y M, Chang Y S, et al.Ionic effect on the binding of bilirubin to the imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate)[J], Journal of Chromatography A, 2006, 1122(1-2): 54-62.
    [11]Adham M.Extracorporeal liver support: waiting for the deciding vote [J], Asaio J, 2003,49(6):621-632.
    [12]马建标.功能高分子材料[M],北京:化学工业出版社,2000, P91-92.
    [13]王质刚.血液净化学[M],北京:北京科学技术出版社,1992, P226.
    [14]Yatzidis H.A convenient hemoperfusion micro-apparatus over charcoal for the treatment of endogeneus and exogenous intoxications [J], Proc Eur.Dial Transplant Assoc, 1964, 1:83-86.
    [15]Chang T M S.Semipermeable microcapsule containing catalase for enzyme replacemen-t in ucatalasemicmile [J], Canadian J Physical Pharmal, 1969(47): 1043-1050.
    [16]Chang T M S.Stabilization of enzymes by microencapsulation with aconcentrated protein solution or by microencapsulation followed by crosslinking with glutaraldehyde[J], Trans Amer.Soc.Artif.Inter.Organs, 1970, 16: 141-148
    [17]Rosenbaum J L.Hemoperfution for Acute drug intoxication [J], Kidney Int, 1970, 18 (10): 106.
    [18]陈跃明,汤先觉,徐昌喜等.解毒用血液灌流吸附剂研究-交联琼脂包膜活性炭微囊的制备和性能[J],生物医学工程学杂志,1990, 3: 68-74.
    [19]钮振,徐昌喜,贾树人.人工肝辅助装置吸附的研究:交联琼脂糖包膜活性碳微囊血液 灌流的临床应用[J],重庆医科大学学报,1988, 4: 56-59.
    [20]虞颂庭,翁铭庆.生物医学工程的基础与临床[M],天津:天津科学技术出版社,1988,159, 164,167.
    [21]王虹,袁直,滕欣莲等.尿毒症中分子毒物吸附剂的研究(Ⅰ)——戊二醛交联壳聚糖吸附剂[J],高等学校化学学报,2002, 23(1): 75-77.
    [22]王虹,袁直,刘晓航等.尿毒症中分子毒物吸附剂的研究(Ⅱ)—交联剂链长对壳聚糖树脂吸附性能的影响[J],中国科学(B辑), 2001, 31(4): 298-304.
    [23]Yuan Z, Yu M, Li J H, et al.Endotoxin adsorbent using dimethylamine ligands[J],Biomaterials, 2005, 26(15):2741-2747.
    [24]Suzuki K, Shimazaki M, Kutsuki H.β_2-Microglobulin-selective AdsorbentColumn (Lixelle) for the Treatment of Dialysis-related Amyloidosis [J], Ther Apher Dial, 2003, 7 (1):104-107.
    [25]Fu C X, Yu Y T, Chen C Z.A Novel Immunoadsorbent for Rheumatoid Arthritis Therapy- Preparation and Efficacy Evaluation [J], Artif Cells Blood Substit Immobil Biotechnol, 2000, 28 (5):409-414.
    [26]Cheng Y, Wang S Q, Yu Y T, et al.In vitro, in vivo studies of a new amphiphilic adsorbent for the removal of low-density lipoprotein [J], Biomaterials, 2003, 24(13):2189 -2194.
    [27]Fang H, Wei J, Yu Y T.In vivo studies of endotoxin removal by lysine-cellulose adsorbents[J], Biomaterials, 2004, 25(23): 5433-5440.
    [28]黄蔚农,郑文徽,刘新三等.812树脂活性炭膜用于人工肝肾的初步报告[J],中国生物医学工程学报,1986, 3: 8-12.
    [29]杜雅菊,韩明子,宋艳燕等.血液灌流治疗慢性重型肝炎的近期临床观察[J],中国血液净化,2004, 9(3): 503-504.
    [30]陈文峰,杨越雄,张光明等.HA型大孔吸附树脂及活性炭对胆红素吸附性能的研究[J],离子交换与吸附,2001, 17(3): 230-235.
    [31]刘植昌,凌立成,吕春祥等.沥青基球状活性炭对胆红素吸附性能的初步研究[J],新型炭材料,1999, 14(2): 44-48.
    [32]徐涛.血液灌流法治疗肝昏迷[J],山东医药,1977, 5:26-30.
    [33]范山鹰,周培庆,徐荣南.血液灌流吸附剂的研究——DAC包膜活性炭的制备及性能[J],离子交换与吸附,1996, 12(6): 515-521.
    [34]陈跃明,汤先觉,徐昌喜等.解毒用血液灌流吸附剂研究:交联琼脂包膜活性炭微囊的制备和性能[J],生物医学工程学杂志,1990, 7(3): 173-178.
    [35]Peng A, Meng F Q, Sun L F, et al.Therapeutic efficacy of charcoal hemoperfusion in patients with acute severe dichlorvos poisoning[J], Acta Pharmacologica Sinica, 2004, 25(1): 15-21.
    [36]何炳林,黄文强.离子交换与吸附树脂[M],上海科技教育出版社,1995, 356-366.
    [37]Malik D J, Warwick G L, Venturi M, et al.Preparation of novel mesoporous carbons for the adsorption of an inflammatory cytokine(IL-1β )[J], Biomaterials, 2004, 24: 2933-2940.
    [38]兰娟.人工肝脏[M],浙江大学出版社,2001, P103.
    [39]Yang J B, Ling L C, Liu K, et al.Preparation and properties of phenolic resin-basedcarbon spheres with controlled pore size distribution [J], Carbon, 2002, 40:911-916.
    [40]杨俊兵,康飞宇.球形活性炭及其应用[J],材料导报,2002, 5(16): 59-61.
    [41]Schlabach T D, Chang S H, Gooding K M, et al.A continuous flow enzyme detector for liquid chromatography [J], Journal of Chromatography A, 1977, 134(1):91-106.
    [42]Alpert A J, Regnier F E.Preparation of a porous micro-particulate anion exchange chromatography support for protein[J], Journal of Chromatography A, 1979, 185:375-392.
    [43]Alpert A J.Cation-exchange HPLC of protein on poly(aspartte acid)-silica[J], Journal of Chromatography A, 1983, 266: 23-27.
    [44]Kato Y, Nakamura K.New ion-exchange for the separation of proteins and nucleic acid [J], Journal of Chromatography A, 1983, 266: 385-394.
    [45]Mikeo O, Kamihara T.Increase in cyclic AMP content with enhanced phosphatidylinositol turnover in the cells of Candida tropicalis during mycelial growth caused by ethanol[J], Journal of Chromatography A, 1983, 261:361-389.
    [46]Kato Y, Nakamura K, Hashimoto.Characterization of tsk-gel deae-toyopearl 650 ion exchanger[J],Journal of Chromatography A, 1982, 245: 193-211.
    [47]M(u|¨)ller W.New ion-exchangers for the chromatography of biopolymer [J], Journal of Chromatography A, 1990, 510: 133-140.
    [48]郭贤权,吴向东,徐家毅等.吸附型“人工肝”辅助材料的制备及其性能研究Ⅱ:免疫吸附剂的制备及其吸附性能[J],离子交换与吸附,1999, 15(1): 8-14.
    [49]郭贤权,吴向东,徐家毅等.吸附型“人工肝”辅助材料的制备及其性能研究(Ⅲ)SVD醇解物的功能基化反应及吸附性能[J],离子交换与吸附,1999, 15(2):151-155.
    [50]袁直,魏斌,何炳林.血液灌流用胆红素吸附剂的吸附性能研究[J],高等学校化学学报,1999, 20(6): 903-905.
    [51]徐建宽,何炳林.一种新型低密度脂蛋白吸附剂的制备[J],高等学校化学学报,2002,23(7):1421-1424.
    [52]Mikhalovsky S V.Emerging technologies in extracorporeal treatment: focus on adsorption [J], Perfusion, 2003, 18:47-54.
    [53]Otsubo O.Simplified three-cuff hamster-to-rat liver method in concordant xenotransplantation[J], Trans Amer Soc Artif Intern Organs, 1980, 26: 124.
    [54]Sideman S.Artigicial Kidney, Artificial Liver and Artificial cells [M], New York.Plenum Press, 1978, 173-184.
    [55]Sideman S.Chapter in Artificial Organs, Macmillan Press London, 1977, 413-434
    [56]Sideman S, Brandes J M, Lupovitch S, et al.Preparation of a biocompatible albumin-coated ion exchange resin for bilirubin removal from the blood of jaundiced newborns [J], Journal of Biomedical Materials Research, 1983, 17(1):91-107.
    [57]Zhu X X, Brown G.R, St-Pierre L E.Adsorption of Bilirubin with Polypeptide-Coated Resins[J], Biomat Art Cells Art Org.1990, 18(1): 75-93.
    [58]Idezuki Y, Hamaguchi M, Hamabe S, et al.Removal of bilirubin and bile-acid with a new anion-exchange resin-experimental background and clinical-experiences[J], Transactions American society for artificial internal organs.1981,27:428-433.
    [59]Idezuki Y, Hamabe S, Hamaguchi M, et al.A new PMMA plasma separatorits application in the hepatic assist system[J], Transactions American society for artificial internal organs.1982, 28:220-224.
    [60]Fukuei K.Hemocompatibility of heparin-fixed IONEX [J], Trans Amer.SocArtif.Intern.Organs, 1985, 31:451-459.
    [61]徐国风,何树初.一种用于人工肝的新型解毒剂-甲壳糖[J],生物医学工程杂志,1990,7(2): 131-135.
    [62]张越华,何炳林.新型交联甲壳糖吸附树脂对胆红素性能研究[J],高等学校化学学报,1995, 10(4): 643-648.
    [63]吴刚,沈玉华,谢安建等.壳聚糖对胆红素吸附性能的研究[J],安徽大学学报(自然科学版),2003, 027(1): 89-94.
    [64]Zhao X B, He B L.Sorption of unconjugated bilirubin by means of novel immobilizedp-cyclodextrin polymers [J], Reactive Polymers, 1994, 24(1):1-8.
    [65]卢玲,袁直,石可瑜等.聚甲基丙烯酸羟乙酯树脂对胆红素的吸附研究[J],离子交换与吸附,2002, 18(2): 105-109.
    [66]张克胜,孙君坦.交联聚乙烯醇对胆红素的吸附性能研究[J],离子交换与吸附,1998,14(4): 204-209.
    [67]卢玲,袁直,石可瑜等.含氨基聚甲基丙烯酸羟乙基树脂对胆红素的吸附性能研究[J],高等学校化学学报,2003, 24(3): 454-458.
    [68]李乃宏,鲁格,孙志敏等.新型吸附树脂用于人工肝支持装置去除胆红素的研究[J],中国生物医学工程学报,1982, 1(1): 40-44.
    [69]史林启,赵芬芝.微多相聚氨酷大孔树脂吸附胆红素的研究[J],离子交换与吸附,1997, 13(4): 367-371.
    [70]何炳林,赵晓斌.新型β-环糊精固载化高分子合成研究[J],中国科学(B辑),1992,22(12): 1240-1245.
    [71]史林启,何炳林.多嵌段聚大孔共聚物的制备[J],离子交换与吸附,1995, 11(5):424-429.
    [72]Yu Y H, He B L.A new type of ALSS-the preparation of crosslinked chitosan resins and its adsorption properties for bilirubin[J], Reactive and Functional Polymers, 1996, 31, (3):195-202.
    [73]魏斌,袁直等,何炳林.含氨基、羟基吸附剂对胆红素的吸附[J],离子交换与吸附,1997, 13(4): 373-377.
    [74]Zhu X X.A nitrongen-15 NMR study of bilirubin and some deribativesusing the inept pulse sequence[J],Canadian Journal of Spectroscopy, 1987, 32(3): 49.
    [75]Zhu X X.A study of the interaction of bilirubin with L-lysyl-L-lysine by NMR spinlattice retaxation time determination [J], Canadian J Spectroscopy, 1999, 33: 63-71.
    [76]Si S H, Si L.Study of Adsorption Behavior of Bilirubin on Human-Albumin crystal icrobalance [J], Journal of colloid and interface Science.2002, 253(1):47-53.
    [77]Kocakulak M, Denizli A.New sorbent for bilirubin removal from humanplasma:Cibacron Blue F3GA-immobilized poly(EGDMA-HEMA) microbeads [J], Journal of Chromatography B: Biomedical Sciences and Applications, 1997, 693(2): 271-277.
    [78]Xia B L, Zhang G L.Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic afinity membrane[J], Journal of Membrane Science, 2003, 226(1-2): 9-16.
    [79]张克胜,孙君坦,何炳林.含胍基交联聚乙烯醇的合成及其对胆红素吸附性能研究[J],高等学校化学学报,1999, 20(6): 965-970.
    [80]Wang H J, Ma J B, Zhang Y H, et al, Adsorption of bilirubin on the polymeric(β-cyclodextrin supported by partially aminated polyacrylamide gel[J].Reactive and Functional Polymers, 1997, 32(1):1-7.
    [81]Sung Cynthia.An enzymic system for the detoxification of bilirubin[J], Trans Amer.Soc.Artif.Intern.Organs, 1985, 31:264-272.
    [82]Hsieh R Y, Tsai H A, Syu M J.Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums[J], Biomaterials, 2006, 27(9):2083-2089.
    [83]Shinkai S, Takeuchi M.Molecular design of synthetic receptors with dynamic, imprinting,and allosteric functions [J], Biosensors and Bioelectronics, 2004, 20(6): 1250-1259.
    [84]O'Shannessy D J, Ekberg B, Andersson L I, et al.Recent advances in the use of molecularly polymers for enantiomeric resolution of amino acid derivatives [J],Journal of Chromatography A, 1989, 470(2): 391-399.
    [85]Kempe M, Mosbach K.Direct resolution of naproxen on a non-covalently molecularly-imprinted chiral stationary phase[J], Journal of Chromatography A, 1994, 664(2):276-279.
    [86]雷建都,谭天伟.酮洛芬分子印迹拆分及分离过程热力学研究[J],化学学报,2002,60(7): 1279-1283.
    [87]Sellergren B.Direct drug determination by selective sample enrichment on an imprinted polymer [J], Anal Chem, 1994, 66(9):1578-1582.
    [88]Zander A, Findlay P, Renner T.Analysis of nicotine and its oxidation production in nicotine chewing gum by molecularly imprinted solid-phase extraction [J], Anal Chem,1998, 70(7): 3304-3314.
    [89]李礼,胡树国,何锡文.应用分子印迹一固相萃取法提取中药活性成分非瑟酮[J],高等化学学报,2006, 27(4): 608-611.
    [90]雷启福,钟世安,向春艳.儿茶素活性成分的分子印迹聚合物的分子识别特性及固相萃取研究[J],分析化学,2005, 22(7): 857-860.
    [91]Hu S, Li L, He X W.Solid-phase extraction of escuetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymer r[J], Journal of Chromatography A, 2005, 1062(1):31-37.
    [92]Piletsky S A, Dubey I Y, Fedoryak D M.Substrate-selective polymeric membranes:selective transfer of nucleic acid compents[J], Biopolymer Kletka, 1990, 6:55-58.
    [93]Donato L, Figolio A, Drioli E.Novel composite poly(4-vinylpyidine)/ polypropylene membranes with recognition properties for (S)-naproxen[J], Pharmaceutical and Biomedical Analysis, 2005, 37(5):1003-1008.
    [94]Kuang H C, Lin C I.Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor application[J], Journal of Chromatography A, 2004, 1027 (1-2): 263-268.
    [95]Tan Y G, Yin J.A study of a new TSM bio-mimetid sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine[J], Bioelectrochem and Bioenergetic, 2001, 53(2):141-148.
    [96]Blanco-lopez M C, Lobo-Castarion M J. Electrochemical sensor based on molecularly imprinted polymers [J], Trends in Analytical Chemistry, 2004,23(1):36-48.
    [97]Tanya P D, Vladimir M, Mathias U, et al. Impedometic herbicide chemsensor based on molecularly imprinted polymers[J], Anal Chim Acta, 2001,435(1):157-162.
    [98]Tabushi I, Kurihara K, Naka K. Supermolecular sensor based on SnO_2 electrode modified with octadecysilyl monolayer having molecular binding sites[J], Tetra Letters,1987,28(37):4429-4432.
    [99]Ohkubo K, Sawakuma K, Sagawa T. Shape-and strero-selective esterase activities of cross-linked polymer with a transition-state analogue for the hydrolysis of amino acid asters[J], Molecular Catalysis A: Chemical, 2001, 165:1-7.
    [100]Ohkubo K, Sawakuma K, Sagawa T. Influence of cross-linking monomer and hydrophobic styrene comonomer on stereoselective esterase activity of polymer catalyst imprinted with a transition-state analogue for hydrolysis of amino acid estera[J],J. Polymer, 2001,42(5): 2263-2266.
    [101]Matsui J, Nicholls I, Karube I. Carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting: an artificial class Ⅱ aldolase[J],Org.Chem, 1996, 61(16):5414-5417.
    [102]Visnjevski A, Schomacker R, Yilmaz E, et al. Catalysis of a Diels-Alder cycloaddition with differently fabricate molecularly imprinted polymer Catalysis Com Diels-Alder[J], Catalysis Communications, 2005, 6:601-606.
    [103]Beach J, Shea K. Catalytical dehydrofullorin by molecularly imprinted polymers [J],Chem Soc, 1994,116:379-380.
    [104]Bruggemann O. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering [J], Biomolecular Engineering, 2001,18(1): 1-7.
    [105]Br(?)ggemann O. Chemical reaction engineering using molecularly imprinted polymeric catalysts [J], Analytica Chimica Acta, 2001,435(1):197-207.
    [106]Morihara K, Kurokawa M.Enzyme-like enantioselective catalysis over chiral “molecular footprint” cavities on a silica (alumina) gel surface[J], Chem Soc Chem Commun, 1992, 34:358-360.
    [107]Liu X C, Mosbach K.Studies towards a tailor made catalyst for the Diels Alder reaction using the technique of molecular imprinting[J], Macromol Chem Rapid Commun, 1997,18 (7):609-615.
    [108]Wulff G.Enzyme-like catalysis by molecularly imprinted polymers [J], Chem Rev, 2002,102 (1):1-27.
    [109]Wulff G.Molecular Recognition in Polymers Prepared by Imprinting with Template Polymeric Reagents and Catalytics[J], Acs Symposium Series, 1986, 308 (2):186-200.
    [110]Wulff G, Vesper W, Einsler R.G, et al.Sythetic Polymers with Chiral Cavities [J],Makromol Chem, 1977, 178(11):2799-2802.
    [111]Norrlow O, Glad M, Mosbach K.Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates [J], Journal of Chromatography A, 1984,299(1): 29-41.
    [112]Schirmer C, Meisel H.Synthesis of molecularly imprinted polymer for the selective solid-phase extraction of chloraphenicol from honey[J], Journal of Chromatography A,2006, 1132(1-2): 325-328.
    [113]Wang H Y, Jiang J G, Ma L Y.Synthesis of molecularly imprinted polymers and their molecular recognition study for benzotrizole[J], Reac&Func polym, 2006, 66(10):1081-1086.
    [114]严守雷,高志贤,房彦军.农药久效磷MIP的合成及其亲合性评估[J],高分子学报,2006, 1:160-163.
    [115]Sambe H, Hoshina K, Moaddel R.Uniformly-sized molecularly imprinted polymers for nicotine by precipitation polymerization[J], Journal of Chromatography A, 2006,1134(1-2): 88-94.
    [116]Lei Ye, Klaus M.Molecularly imprinted microspheres as antibody binding mimics[J], Reactive &Functional Polymers, 2001,48:149-157.
    [117]Sellergren B.Imprinting Dispersion Polymers: a New Class of Easily Accessible Affinities Stationary Phases [J], Journal of Chromatography A, 1994, 673(1): 133-141.
    [118]Berglund J, Nicholls I A, Lindbladh C, et al.Recognition in Molecularly Imprinted Polymer α_2adrenoreceptor Mimics [J], Bioorganic and Medicinal Chemistry Letters,1996, 6(18):2237-2242.
    [119]Dhal P K, Vidyasankar S, Arnold F H.Surface Grafting of Functional Polymers to Macrcporous Poly(trimethyllolpropane triethyacrylate)[J], Chemistry of Materials, 1995,7(1):154-162.
    [120]李保利,张敏,姜萍等.表面接枝分子印迹聚合物微球的合成及评价[J], 2007,65(10): 955-961.
    [121]Claudia S, B(a|¨)rbel R, Andrew J H, et al.Grafting of Molecularly Imprinted Polymer Films on Silica Supports Containing Surface-Bound Free Radical Initiators[J],Macromolecules, 2002,35(1):79-91.
    [122]Tae H K, Chang D K, Heesook C, et al.Facile Preparation of Core-Shell Type Molecularly Imprinted Particles: Molecular Imprinting into Aromatic Polyimide Coated on Silica Spheres[J], Macromo3779- lecules, 2005, 38(15): 6423-6428.
    [123]Natalia P M, Andrew G M.Noncovalent Imprinting in the Shell of Core-Shell Nanoparticles [J], Langmuir, 2004, 20(9): 3775-3779.
    [124]Jainamma M K, Shea K J.Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules [J], Journal of the American Chemical Society, 1996,118(34):8154-8155.
    [125]Volkmann A, Br(u|¨)ggemann O.Catalysis of an ester hydrolysis applying molecularly imprinted polymer shells based on an immobilised chiral template[J], Reactive and Functional Polymers, 2006, 66(12): 1725-1733.
    [126]Tatiana A S, Heike M, Sergiy A.Piletsky, et al.Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization[J], Journal of Chromatography A, 2001,907(1-2):89-99.
    [127]Lu Y, Zhao B H, Ren Y, et al.Water-assisted formation of novel molecularly imprinted polymer membranes with ordered porous structure[J], Polymer, 2007, 48(21): 6205-6209.
    [128]Carter S R, Rimmer S.Surface Molecularly Imprinted Polymer Core-Shell Particles [J],Advanced Functional Materials, 2004, 14(6): 553-561.
    [129]Panasyuk T L, MMirsky V, Piletsky S A, et al.Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors[J], Anal.Chem,1999, 71 (20): 4609-4613.
    [130]Shoji R, Takeuchi T, Kubo I.Atrazine Sensor Based on Molecularly Imprinted Polymer-Modified Gold Electrode[J], Anal.Chem., 2003, 75(18): 4882-4886.
    [131]Shi H Q, Tsai W B, Garrison M D, et al.Template-imprinted nanostructured surfaces for protein recognition[J], Nature, 1999, 398:593-597.
    [132]Yilmaz E, Haupt K, Angew K M.The Use of Immobilized Templates-A New Approach in Molecular Imprinting [J], Angewandte Chemie International Edition, 2000,39 (12): 2115-2120.
    [133]周艳梅,徐文国,童爱军.硅胶表面牛血清白蛋白分子印迹聚合物的制备及分子识别性能[J],分析化学,2006, 34(11): 1551-1554.
    [134]罗勇,刘岚,李丽虹等.硅胶表面茶碱分子印迹聚合物的制备和性能研究[J],中山大学学报(自然科学版), 2005, 44(6): 49-53.
    [135]Menaa M L, Mart'inez-Ruizb P, Reviejo A J, et al.Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples[J],Analytica Chimica Acta, 2002, 451:297-304.
    [136]Gao B J, An F Q, Zhu Y.Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles[J], Poylmer,2007, 48(7): 2288-2297.
    [137]安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究[J],高分子学报,2007,4:366-373.
    [138]Syu M J, Deng J H, Nian M Y, et al.Binging specificity of a -bilirubin-imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) toward a -bilirubin[J],Biomaterials, 2005, 26: 4684-4692.
    [1] Rolland A, H(?)rault D, Touchard F, et al. Enantiopure poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate): a new material for supported catalytic asymmetric hydrogen transfer reduction [J], Tetrahedro:Asymmetry, 2001,12: 811-815.
    [2] Herault D, Saluzzo C, Duval R, et al. Enantiopure beads: a tool for asymmetric heterogeneous catalysis [J], Journal of Molecular Catalysis A: Chemical, 2002, 182-183:249-256.
    [3] Bicak N, Sherrington D C, Sungur S. A glycidyl methacrylate-based resin with pendant urea groups as a high capacity mercury specific sorbent [J], Reactive &Functional Polymers, 2003, 54:141-147.
    [4] Hainey P, Sherrington D C. Oligoamine-functionalised poly(glycidylmethacrylate-ethyleneglycol dimethacrylate) resins as moderate base extractants for gold from cyanide solutions[J], Reactive & Functional Polymers, 2000, 43:195-210.
    [5] Danisman T, Tan S, Kacar Y, et al. Covalent immobilization of invertase on microporous pHEMA-GMA membrane[J], Food Chemistry, 2004, 85:461-466.
    [6] Arica M Y, G(?)lay B. Invertase reversibly immobilized onto polyethylenimine-grafted poly(GMA-MMA) beads for sucrose hydrolysis[J], Journal of Molecular Catalysis B:Enzymatic, 2006, 38:131-138.
    [7] Bai Y X, Li Y F, Wang M T. Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization[J], Enzyme and Technology, 2006, 39:540-547.
    [8] Chung T H, Pan H C, Lee W C. Preparation and application of magnetic poly(styrene-glycidyl methacrylate) microspheres[J], Journal of Magnetism and Magnetic Materials,2007,311:36-40.
    [9] Niyazi Bicak, David C. Sherrington, Sana Sungur, et al. A glycidyl methacrylate-based resin with pendant urea groups as a high capacity mercury specific sorbent [J], Reactive & Functional Polymers, 2003, 54:141-147.
    [10]Asem A.Atia, Ahmed M.Donia, Ali E.Shahin.Studies on the uptake behavior of a magnetic Co3O4-containing resin for Ni(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ) from their aqueous solutions[J],Separation and Purification Technology, 2005, 46:208-213.
    [11]Asem A.Atia, Ahmed M.Donia, Saeda A.Abou-El-Enein, et al.Studies on uptake behaviour of copper(Ⅱ) and lead(Ⅱ) by amine chelating resins with different textural properties[J],Separation and Purification Technology, 2003, 33:295-301.
    [12]雷海波,高保娇,江立鼎.双油相悬浮聚合法制备MBA/AM/GMA交联微球的研究[J],化学研究与应用,2007, 19(1):56-59.
    [1]Xia B, Zhang G, Zhang F.Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane [J], Journal of Membrane Science, 2003, 226(1):9-20.
    [2]Yu Y H, He B L.A new type of ALSS—the preparation of crosslinked chitosan resins and its adsorption properties for bilirubin[J], Reactive and Functional Polymer, 1996, 31(3):195-200.
    [3]Gao B J, Jiang P F, Lei H B.Studies on adsorption property of novel composite adsorption material PEI/SiO2 for uric acid[J].Materials Letters, 2006, 60(28): 3398-3404.
    [4]G(u|¨)lay B, Yal(?)in E, Arica M Y.Characterization of polyethylenimine grafted and Cibacron BlueF3GA immobilizedpoly(hydroxyethylmethacrylate-co-glycydyl-methacrylate) membranes and application to bilirubin removal from human serum[J], Colloids and Surfaces A: Physicochemical Engineering Aspects, 2005, 264(1-3): 195-202.
    [5]Zhang L, Jin G.Novel method for bilirubin removal from human plasma within modified polytetrafluoroethylene capillary[J], Reactive & Functional Polymers, 2006, 66(10): 1106-1117.
    [6]Yang Z P, Si S H, Fung Y S. Bilirubin adsorption on nanocrystalline titania films [J], Thin Solid Films, 2007, 515(7-8): 3344-3351.
    [7]Wang H J, Ma J B, Zhang Y H, et al. Adsorption of bilirubin on the polymericβ-cyclodextrin supported by partially aminated polyacrylamide gel [J], Reactive and Functional Polymer, 1997,32(1): 1-7.
    [8]Shi W, Zhang F B, Zhang G L. Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes[J], Journal of Chromatography B, 2005, 819 (2):301-306.
    [9]Denizli A, Kocakulak M, Piskin E. Bilirubin removal from human plasma in a packed-bed column system with dye-affinity microbeads[J], Journal of Chromato-graphy B, 1998,707(1-2): 25-31.
    [10]Huang H M, Lin F Y, Chen W Y, et al. Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents[J], Journal of Colloid and Interface Science, 2000, 229(2): 600-606.
    [11]Lin F Y, Chen C S, Chen W Y, et al. Microcalorimetric studies of the interaction mechanisms between proteins and Q-Sepharose at pH near the isoelectric point (pI):Effects of NaCl concentration, pH value, and temperature[J], Journal of Chromatography A, 2001, 912(2): 281-289.
    [12]Zhang L, Jin G. Bilirubin removal from human plasma by Cibacron Blue F3GA using immobilized microporous affinity membranous capillary method[J], Journal of Chromatography B, 2005, 821(5): 112-121.
    [13]Yang W B, Li A M, Zhang Q X, et al. Adsorption of 5-sodiosulfoisophthalic acids from aqueous solutions onto acrylic ester polymer YWB-7 resin[J], Separation and Purification Technology, 2005,46(5):161-167.
    [14]Yoon J Y, Kim J H, Kim W S. Interpretation of protein adsorption phenomena onto functional microspheres [J], Colloids and Surfaces B: Biointerfaces, 1998, 12(1): 15-22.
    [1]Amara M, Kerdjoudj H.Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions: Application to the separation of metallic ions[J], Talanta, 2003, 60(5): 991-1001.
    [2]Amara M, Kerdjoudj H.Modification of cation-exchange membrane properties by electro-adsorption of polyethyleneimine [J], Desalination, 2003, 155(1): 79-87.
    [3]Doretti L, Ferrara D.Covalently immobilized enzymes on biocompatible polymers for amperometric sensor applications[J], Biosensors and Bioelectronics, 1996, 11(4): 365-373.
    [4]Sabbatini L, Zambonin P G.XPS and SIMS surface chemical analysis of some important classes of polymeric biomaterials [J], Journal of Electron Spectroscopy and Related Phenomena, 1996, 81(3): 285-301.
    [5]Gao B J, Jiang P F, Lei H B.Studies on adsorption property of novel composite adsorption material PEI/SiO2 for uric acid[J], Materials Letters, 2006, 60(28): 3398-3404.
    [6]Yang W B, Li A M, Zhang Q X, et al.Adsorption of 5-sodiosulfo- isophthalic acids from aqueous solutions onto acrylic ester polymer YWB-7 resin[J], Separation and Purification Technology, 2005, 46(3): 161-167.
    [7]Xia B, Zhang G, Zhang F.Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane [J], Journal of Membrane Science, 2003,226(1): 9-20.
    [1]Huang C Y, Syu M J, Chang Y S, et al.A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting [J], Biosensors and Bioelectronics, 2007, 22(8): 1694-1699.
    [2] Syu M J, Nian Y M, Chang Y S, et al. Ionic effect on the binding of bilirubin to the imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate)[J], Journal of Chromatography A, 2006, 1122(1-2): 54-62.
    [3] Gao B J, An F Q, Zhu Y. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles[J], Polymer,2007,48(8): 2288-2297.
    [4] Gao B J, Wang J, An F Q, et al. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb[J], Polymer, 2008, 49(5):1230-1238.
    [5] Zhang H, Huang H, Lv R, et al. Micron-size crosslinked microspheres bearing carboxyl groups via dispersion copolymerization[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253(1-3): 217-221.
    [6] Liu W, Yang X, Huang W. Catalytic properties of carboxylic acid functionalized- polymer microsphere-stabilized gold metallic colloids[J], Colloid and Interface Science, 2006,304(1): 160-165.
    [7] Pyun J C, Beutel H, Meyer J U, et al. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer[J], Biosensors & Bioelectronics, 1998, 13(7-8):839-845.
    [8] Xiao X, Zhuo R, Xu J, et al. Effects of reaction temperature and reaction time on positive thermosensitivity of microspheres with poly(acrylamide)/poly(acrylic acid) IPN shells[J],European Polymer, 2006, 42(2): 473-478.
    [9] Aksoy S, Tumturk H, Hasirci N. Stability of α-amylase immobilized on poly(methyl methacrylate -acrylic acid) microspheres[J], Biotechnology, 1998, 60(1-2): 37-46.
    [10] Tamayo F G, Martin-Esteban A. Selective high performance liquid chromatography imprinted -stationary phases for the screening of phenylurea herbicides in vegetable samples [J], Chromatography A, 2005, 1098(1-2):1 16-122.
    [11] Husseman M, Malmstrom E E, McNamara M. Controlled Synthesis of Polymer Brushes by "Living" Free Radical Polymerization Techniques[J], Macromolecules, 1999, 2(5):1424-1431.
    [12] Bialk M, Prucker 0, R(?)he J. Grafting of polymers to solid surfaces by using immobilized methacrylates[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,198:543-549.
    [13]Tsubokawa N, Hayashi S, Nishimura J. Grafting of hyperbranched polymers onto ultrafine silica: postgraft polymerization of vinyl monomers initiated by pendant azo groups of grafted polymer chains on the surface[J], Progress in Organic Coatings, 2002, 44(1): 69-74.
    [14]Gao B J, Wang R X, Jiu H F, et al. A comparative study on effects of two kinds of polymerization methods on grafting of polymer onto silica surface [J], Applied Polymer Science, 2006, 102(6): 5808-5817.
    [15]G(?)lay B, Yalc(?)n E, Ar(?)ca M Y. Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly (hydroxyethylmethacrylate-co- glycydy lmethacrylate)membranes and application to bilirubin removal from human serum [J], Colloids and Surfaces A: Physicochemical Engineering Aspects, 2005, 264(1-3): 195-202.
    [1]卢玲,袁直,石可瑜等.含氨基聚甲基丙烯酸羟乙酯树脂对胆红素的吸附性能研究[J],高等学校化学学报,2003(3): 454-458.
    [2]G(u|¨)lay B, Yal(?)in E, Arica M Y.Characterization of polyethylenimine grafted and Cibacron BlueF3GAimmobilizedpoly(hydroxyethylmethacrylate-co-glycydyl-methacrylate) membranes and application to bilirubin removal from human serum [J], Colloids and Surfaces A: Physicochemical Engineering Aspects, 2005, 264(1-3): 195-202.
    [3]Amara M, Kerdjoudj H.Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions: Application to the separation of metallic ions [J], Talanta, 2003, 60(5): 991-1001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700