用户名: 密码: 验证码:
丙烯腈共聚物纳米纤维膜的表面功能化及其识别性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子识别是指两种分子通过结构互补和功能基团之间相互作用而发生特异性结合的现象,在生物体内普遍存在,如酶与底物、抗原与抗体、糖与蛋白质等的相互作用。本论文基于分子识别原理,综合聚丙烯腈优异的成纤性、良好的物理机械性能和化学稳定性以及纳米纤维膜高比表面积、高孔隙率等优点,设计并制备了具有分子识别功能的聚丙烯腈基纳米纤维膜,包括分子印迹膜和糖基化膜,并对其分子识别性能进行了研究。具体研究内容如下:
     合成了丙烯腈/丙烯酸共聚物(PANCAA)和丙烯腈/甲基丙烯酸羟乙酯共聚物(PANCHEMA)。利用静电纺丝技术制备了茶碱(THO)印迹PANCAA纳米纤维膜,并研究了印迹纳米纤维膜的选择性诱导结晶行为。发现THO印迹纳米纤维膜可以选择性地诱导THO在其表面结晶析出。二维红外相关光谱和计算机模拟分析认为,由于PANCAA与THO的强氢键作用和印迹空穴的精确匹配,使印迹纳米纤维膜对THO具有较强的特异性识别能力。
     制备了壳聚糖修饰PANCAA纳米纤维膜,并研究了其与伴刀豆球蛋白(Con A)的相互作用。证实膜表面壳聚糖对ConA具有较强的吸附能力,但吸附非完全可逆,脱吸附率小于50%。进而将葡萄糖固定到PANCHEMA纳米纤维膜的表面,研究了葡萄糖糖基化PANCHEMA纳米纤维膜对ConA的特异性相互作用。结果表明,糖基化纳米纤维膜对ConA具有强的特异性识别能力和高的结合容量,是一类具有完全可逆吸附能力,并可多次重复使用且力学性能良好的吸附分离材料。
     利用石英晶体微天平(QCM)证实了PANCHEMA膜表面的糖基化过程。同时采用QCM和表面等离子共振(SPR)测定了糖基化表面与Con A的饱和结合常数,分别为2.86×10~6M~(-1)和4.09×10~6M~(-1),比葡萄糖单糖与ConA之间的结合常数(0.8×10~3M~(-1))高出3个数量级,证明了这一糖基化方法构建多价糖基化表面的可行性。
Molecular recognition is a universal phenomenon existing in biological systems suchas enzyme-substrate recognition,antigen-antibody binding,carbohydrate-proteininteraction.It is characterized by selective binding on the basis of the exact matchbetween two molecules by shape,size and the position of functional groups.Polyacrylonitrile (PAN) has the superior membrane/fiber-forming property andphysicochemical stability,and the electrospun nanofibrous membrane pocesses highsurface area to volume and large porosity.Therefore,PAN-based nanofibrous membraneswith specific recognition capabilities were designed and prepared on the basis of the meritsof PAN and the nanofibrous membrane,which included molecularly imprinted nanofibrousmembrane and glycosylated nanofibrous membrane.The affinity and selectivity of thesenanofibrous membranes were further investigated.The main results of this work aresummarized as below.
     Poly(acrylonitrile-co-acrylic acid) (PANCAA) and poly(acrylonitrile-co-hydroxyethylmethacrylate) (PANCHEMA) were synthesized,respectively.Theophylline (THO)imprinted PANCAA nanofibrous membranes were fabricated by electrospinning technique.We find that the THO imprinted nanofibrous membranes can selectively induce thecrystallization of THO on its surface.The anlysis of two-dimensional infrared correlationspectroscopy and quantum chemistry calculations confirm that the THO imprintednanofibrous membrane shows a high affinity and selectivity with THO on the basis of thestrong hydrogen bonding and the exactly matched cavities.
     Chitosan-modified PANCAA nanofibrous membranes were prepared and employed tostudy the specific interaction with concanavalin A (Con A).These chitosan-modifiedPANCAA nanofibrous membranes show strong affinity with Con A.However,theadsorption is not completely reversible.The percent of desorption is less than 50%.Furthermore,glucose was immobilized on the PANCHEMA nanofibrous membranes.The specific interaction between the glucosylated PANCHEMA nanofibrous membranesand Con A was subsequently studied.The results indicate that the glucosylatedPANCHEMA nanofibrous membranes have strong specific affinity and high bindingcapacities to Con A,which is a kind of excellent adsorption and separation material withreversible adsorption capability,repeatability and good mechanical property.
     The construction of glucosylted surface on the PANCHEMA film was in situmonitored by quartz crystal microbalance (QCM).Meawhile,the association binding constant between the glucose residues and Con A was measured by QCM and surfaceplasmon resonance (SPR),respectively.Accordingly they are 2.86×10~6 and 4.09×10~6M~(-1),which are much higher than that between single glucose and Con A (0.8×10~3 M~(-1)).These results suggest the feasibility for the construction of a multivalent glucosylationsurface using this method.
引文
[1]Marty, J.D.; Mauzac, M., Molecular imprinting: State of the art and perspectives.Adv.Polym.Sci.2005, 172, 1-35.
    [2]Pauling, L.; Campbell, D., The manufacture of antibodies in vitro.J.Exp.Med.1942, 76, 211-220.
    [3]Dickey, F.H., Specific adsorption.J.Phys.Chem.1955, 59, 695-707.
    [4]Wulff, G.; Sarhan, A., Use of polymers with enzyme-analogous structures for the resolution of racemates.Angew.Chem.Int.Ed.1972,11, 341-344.
    [5]Vlatakis, G.; Andersson, L.I.; Muller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting.Nature 1993, 361, 645-647.
    [6]Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; O'Mahony, I.A.N.;Whitcombe, M.J., Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003.J.Mol.Recognit.2006, 19, 106-180.
    [7]Ulbricht, M., Membrane separations using molecularly imprinted polymers.J.Chromatogr B 2004,804, 113-125.
    [8]Whitcombe, M.J.; Vulfson, E.N., Imprinted polymers.Adv.Mater.2001, 13, 467-478.
    [9]Piletsky, S.A.; Panasyuk, T.L.; Piletskaya, E.V.; Nicholls, I.A.; Ulbricht, M., Receptor and transport properties of imprinted polymer membranes-a review.J.Membr.Sci.1999, 157, 263-278.
    [10]Wulff, G., Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies.Angew.Chem.Int.Ed.1995, 34, 1812-1832.
    [11]Haupt, K., Molecularly imprinted polymers: The next generation.Anal.Chem.2003, 75,376A-383A.
    [12]Piletsky, S.A.; Alcock, S.; Turner, A.P.F., Molecular imprinting: At the edge of the third millennium.Trends Biotechnol.2001, 19, 9-12.
    [13]Sellergren, B.; Lepisto, M.; Mosbach, K., Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions.NMR and chromatographic studies on the nature of recognition.J.Am.Chem.Soc.1988, 110, 5853-5860.
    [14]Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting-synthesis and characterization of polymeric receptors for cholesterol.J.Am.Chem.Soc.1995, 117, 7105-7111.
    [15]徐又一;徐志康,高分子膜材料.化学工业出版社 2005.
    [16]Wulff, G.; Knorr, K., Stoichiometric noncovalent interaction in molecular imprinting.Bioseparation 2002, 10, 257-276.
    [17]Piletsky, S.A.; Dubey, I.Y.; Fedoryak, D.M.; Kukhar, V.P., Substrate-selective polymeric membranes: Selective transfer of nucleie acid components.Biopolym.Kletka 1990, 6, 55-58.
    [18]J.Mathew-Krotz; Shea, K.J., Imprinted polymer membranes for the selective transport of targeted neutral molecules.J.Am.Chem.Soc.1996, 118, 8154-8155.
    [19]Sergeyeva, T.A.; Piletsky, S.A.; Brovko, A.A.; Slinchenko, E.A.; Sergeeva, L.M.; Panasyuk, T.L.; El'skaya, A.V., Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes.Analyst 1999, 124, 331-334.
    [20]Sergeyeva, T.A.; Piletsky, S.A.; Piletska, E.V.; Brovko, O.O.; Karabanova, L.V.; Sergeeva, L.M.; El'skaya, A.V.; Turner, A.P.F., In situ formation of porous molecularly imprinted polymer membranes.Macromolecules 2003, 36, 7352-7357.
    [21]Sergeyeva, T.A.; Brovko, O.O.; Piletska, E.V.; Piletsky, S.A.; Goncharova, L.A.; Karabanova,L.V.; Sergeyeva, L.M.; El'skaya, A.V., Porous molecularly imprinted polymer membranes and polymeric particles.Anal.Chim.Acta 2007, 582, 311-319.
    [22]Hong, J.M.; Anderson, P.E.; Qian, J.; Martin, C.R., Selectively-permeable ultrathin film composite membranes based on molecularly imprinted polymers.Chem.Mater.1998,10, 1029-1 033.
    [23]Donato, L.; Figoli, A.; Drioli, E., Novel composite poly (4-vinylpyridine)/polypropylene membranes with recognition properties for (S)-naproxen.J.Pharm.Biomed.Anal.2005, 37,1003-1008.
    [24]Dzgoev, A.; Haupt, K., Enantioselective molecularly imprinted polymer membranes.Chirality 1999, 11, 465-469.
    [25]Chen, C.B.; Chen, Y.J.; Zhou, J.; Wu, C.H., A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone ~1H-indole-3-acetic acid.Anal.Chim.Acta 2006, 569, 58-65.
    [26]Kielczynski, R.; Bryjak, M., Molecularly imprinted membranes for cinchona alkaloids separation Sep.Purif.Technol.2005, 41, 231-235.
    [27]Yoshikawa, M.; Izumi, J.; Kitao, T.; Koya, S.; Sakamoto, S., Molecularly imprinted polymeric membranes for optical resolution.J.Membr.Sci.1995, 108, 171-175.
    [28]Yoshikawa, M.; Murakoshi, K.; Kogita, T.; Hanaoka, K.; Guiver.M.D.; Robertson, G.P., Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups.Eur.Polym.J.2006, 42, 2532-2539.
    [29]Yoshikawa, M.; Izumi, J., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.Macromol.Biosci.2003, 3, 487-498.
    [30]Yoshikawa, M.; Ooi, T.; Izumi, J., Novel membrane materials having EEE derivatives as a chiral recognition site.Eur.Polym.J.2001, 37, 335-342.
    [31]Yoshikawa, M.; Izumi.J.; Kitao, T., Alternative molecular imprinting, a facile way to introduce chiral recognition sites.React.Funct.Polym.1999, 42, 93-102.
    [32]Yoshikawa, M.; Fujisawa, T.; Izumi, J..Molecularly imprinted polymeric membranes having EFF derivatives as a chiral recognition site.Macromol.Chem.Phys.1999, 200, 1458-1465.
    [33]Kobayashi, T.; Wang, H.Y.; Fujii, N..Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments.Anal.Chim.Acta 1998, 365, 81-88.
    [34]Yoshikawa.M.: Izumi.J.: Kitao.T.: Sakamoto.S..Alternative molecularly imprinted polymeric membranes from a tetrapeptide residue consisting of D-or L-amino acids.Macromol.Rapid Commun.1997, 18, 761-767.
    [35]Yoshikawa, M.; Izumi, J.; Guiver, M.D.; Robertson, G.P., Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes.Macromol.Mater.Eng 2001, 286, 52-59.
    [36]Yoshikawa, M.; Ooi, T.; Izumi, J.1., Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate.J.Appl.Polym.Sci.1999, 72, 493-499.
    [37]Yoshikawa, M.; Izumi, J.; Ooi, T.; Kitao, T.; Guiver, M.D.; Robertson, G.P., Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique.Polym Bull.1998, 40, 517-524.
    [38]Kobayashi, T.; Wang, H.Y.; Fujii, N., Molecular imprinting of theophylline in acrylonitrile-acrylic acid copolymer membranes.Chem.Lett.1995, 927-928.
    [39]Kobayashi, T.; Fukaya, T.; Abe, M.; Fujii, N., Phase inversion molecular imprinting by using template copolymers for high substrate recognition.Langmuir 2002, 18, 2866-2872.
    [40]Wang, H.Y.; Kobayashi, T.; Fukaya, T.; Fujii, N., Molecular imprint membranes prepared by the phase inversion precipitation technique .2.Influence of coagulation temperature in the phase inversion process on the encoding in polymeric membranes.Langmuir 1997, 13, 5396-5400.
    [41]Wang, H.Y.; Kobayashi, T.; Fuji, N., Molecular imprint membranes prepared by the phase inversion precipitation technique.Langmuir 1996,12, 4850-4856.
    [42]Wang, H.Y.; Xia, S.L.; Sun, H.; Liu, Y.K.; Cao, S.K.; Kobayashi, T., Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective binding.J.Chromatogr.B 2004, 804, 127-134.
    [43]Cristallini, C.; Ciardelli, G.; Barbani, N.; Giusti, P., Acrylonitrile-acrylic acid copolymer membrane imprinted with uric acid for clinical uses.Macromol.Biosci.2004, 4, 31-38.
    [44]Ulbricht, M.; Malaisamy, R., Insights into the mechanism of molecular imprinting by immersion precipitation phase inversion of polymer blends via a detailed morphology analysis of porous membranes.J.Mater.Chem.2005,15,1487-1497.
    [45]Malaisamy, R.; Ulbricht, M., Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions.Sep.Purif.Technol.2004, 39, 211-219.
    [46]Ramamoorthy, M.; Ulbricht, M., Molecular imprinting of cellulose acetate-sulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique.J.Membr.Sci.2003, 217, 207-214.
    [47]Takeda, K.; Abe, M.; Kobayashi, T., Molecular-imprinted nylon membranes for the permselective binding of phenylalanine as optical-resolution membrane adsorbents.J.Appl.Polym.Sci.2005, 97,620-626.
    [48]Kobayashi, T.; Reddy, P.S.; Ohta, M.; Abe, M.; Fujii, N., Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: Charge transfer interaction as recognition origin.Chem.Mater.2002, 14, 2499-2505.
    [49]Trotta, F.; Baggiani.C.; Luda, M.P., Drioli.E.; Massari, T., A molecular imprinted membrane for molecular discrimination of tetracycline hydrochloride. J. Membr. Sci. 2005,254, 13-19.
    [50] Trotta, F.; Drioli, E.; Baggiani, C; Lacopo, D., Molecular imprinted polymeric membrane for naringin recognition. J. Membr. Sci. 2002, 201, 77-84.
    [51] Chronakis, I. S.; Milosevic, B.; Frenot, A.; Ye, L., Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules 2006, 39, 357-361.
    [52] Chronakis, I. S.; Jakob, A.; Hagstr(?)m, B.; Ye, L., Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 2006,22, 8960-8965.
    [53] Wang, H. Y.; Kobayashi, T.; Fujii, N., Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membranes using photograft polymerization. J. Chem. Technol.Biotechnol. 1997, 70, 355-362.
    [54] Piletsky, S. A.; Matuschewski, H.; Schedler, U.; Wilpert, A.; Piletska, E. V.; Thiele, T. A.; Ulbricht,M., Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules 2000, 33, 3092-3098.
    [55] Sergeyeva, T. A.; Matuschewski, H.; Piletsky, S. A.; Bendig, J.; Schedler, U.; Ulbricht, M.,Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. J. Chromatogr. A 2001, 907, 89-99.
    [56] Kochkodan, V.; Weigel, W.; Ulbricht, M., Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions. Desalination 2002,149, 323-328.
    [57] Ulbricht, M.; Belter, M.; Langenhangen, U.; Schneider, F.; Weigel, W, Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations.Desalination 2002,149, 293-295.
    [58] Kochkodan, V.; Hilal, N.; Windsor, P. J.; Lester, E., Composite microfiltration membranes imprinted with cAMP. Chem. Eng. Technol. 2003,26, 463-468.
    [59] Hilal, N.; Kochkodan, V.; Busca, G; Kochkodan, O.; Atkin, B. P., Thin layer composite molecularly imprinted membranes for selective separation of cAMP. Sep. Purif. Technol. 2003, 31,281-289.
    [60] Hilal, N.; Kochkodan, V., Surface modified microfiltration membranes with molecularly recognising properties. J. Membr. Sci. 2003, 213, 97-113.
    [61] Kochkodan, V.; Weigel, W.; Ulbricht, M., Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated a-cleavage photoinitiator. Analyst 2001, 126,803-809.
    [62] Hilal, N.; Kochkodan, V.; Al-Khatib, L.; Busca, G., Characterization of molecularly imprinted composite membranes using an atomic force microscope. Surf. Interface Anal. 2002, 33, 672-675.
    [63] Wang, H. J.; Zhou, W. H.; Yin, X. F.; Zhuang, Z. X.; Yang, H. H.; Wang, X. R., Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J. Am. Chem. Soc. 2006,128, 15954-15955.
    [64] Titirici. M. M.; Sellergren, B., Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization.Chem.Mater.2006,18, 1773-1779.
    [65]Wei, X.L.; Li, X.; Husson, S.M., Surface molecular imprinting by atom transfer radical polymerization.Biomacromolecules 2005, 6,1113-1121.
    [66]Sellergren, B.; Ruckert, B.; Hall, A.J., Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports.Adv.Mater.2002, 14, 1204-1208.
    [67]Ruckert, B.; Hall, A.J.; Sellergren, B., Molecularly imprinted composite materials via iniferter-modified supports.J.Mater.Chem.2002, 12, 2275-2280.
    [68]Yilmaz, E.; Haupt, K.; Mosbach, K., The use of immobilized templates-a new approach in molecular imprinting.Angew.Chem.Int.Ed.2000, 39, 2115-2130.
    [69]Shi, H.Q.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D., Template-imprinted nanostructured surfaces for protein recognition.Nature 1999, 398, 593-597.
    [70]Yoshikawa, M.; Izumi, J.-I.; Kitao, T.; Koya, S.; Sakamoto, S., Molecularly imprinted polymeric membranes for optical resolution.J.Membr.Sci.1995, 108, 35-43.
    [71]Yoshikawa, M.; Kawamura, K.; Ejima, A.; Aoki, T.; Sakurai, S.; Hayashi, K.; Watanabe, K.,Green polymers from Geobacillus thermodenitrificans DSM465-Candidates for molecularly imprinted materials.Macromol.Biosci.2006,6,210-215.
    [72]Rademacher, T.W.; Parekh, R.B.; Dwek, R.A., Glycobiology.Ann.Rev.Biochem.1988, 57,785-838.
    [73]Williams, S.J.; Davies, G.J., Protein-carbohydrate interactions: Learning lessons from nature.Trends Biotechnol.2001, 19, 356-362.
    [74]Lee, Y.C.; Lee, R.T., Carbohydrate-protein interactions: Basis of glycobiology Acc.Chem.Res.1995, 28, 321-327.
    [75]Rao, V.S.R.; Lam, K.; Qasba, P.K., Architecture of the sugar binding sites in carbohydrate binding proteins-a computer modeling study.Int.J Bio.Macromol.1998, 23, 295-307.
    [76]Lundquist, J.J.; Toone, E.J., The cluster glycoside effect Chem.Rev.2002, 102, 555-578.
    [77]Lis, H.; Sharon, N., Lectins: Carbohydrate-specific proteins that mediate cellular recognition.Chem.Rev.1998, 98, 637-674.
    [78]Kennedy, J.F.; Palva, P.M.G.; Corella, M.T.S.; Cavalcanti, M.S.M.; Coelho, L.C.B.B.,Lectins, versatile proteins of recognition-a review.Carbohydr.Polym.1995, 26, 219-230.
    [79]Bouckaert, J.; Poortmans, F.; Wyns, L.; Loris, R., Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A.J.Biol.Chem.1996, 31, 271-273.
    [80]Goldstein, I.J.; Hollerman, C.E.; Smith, E.E., Protein-carbohydrate interaction.Ⅱ.Inhibition studies on the interaction of concanavalin A with polysaccharides.Biochemisty 1965, 4, 876-883.
    [81]Poretz, R.D.; Goldstein, I.J., An examination of the topography of the saccharide binding sites of concanavalin A and of the forces involved in complexation.Biochemistry 1970, 9, 2890-2896.
    [82]Bouckaert, J.; Loris, R.; Poortmans, F.; Wyns, L., Crystallographic structure of metal-free concanavalin A at 2.5 angstrom resolution.Proteins 1995.23.510-524.
    [83] Edelman, G. M.; Cunningham, B. A.; Reeke, G. N.; JR.; Becker, J. W.; Waxdal, M. J.; Wang, J. L.,The covalent and three-dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. U. S. A. 1972,69, 2580-2584.
    [84] Curie, P.; Curie, J., An oscillating quartz crystal mass detector. Comput. Rend. Acad. Sci. Paris 1880, 91, 294-297.
    [85] Sauerbrey, G. Z., Use of quartz vibration for weighing thin films on a microbalance. Z. Phys. 1959, 155, 206-212.
    [86] Nomura, T.; Okuhara, M., Frequency shifts of piezoelectric quartz crystals immersed in organic liquids Anal. Chim. Acta 1982,142, 281-284
    [87] Caruso, F.; Furlong, D. N.; Kingshott, P., Characterization of ferritin adsorption onto gold. J.Colloid Interface Sci. 1997,186, 129-140.
    [88] Ebara, Y.; Okahata, Y., In situ surface-detecting technique by using a quartz-crystal microbalance.interaction behaviors of proteins onto a phospholipid monolayer at the air-water interface. Langmuir 1993, 9, 574-576.
    [89] Liebau, M.; Bendas, G; Rothe, U.; Neubert, R. H. H., Adhesive interactions of liposomes with supported planar bilayers on QCM as a new adhesion model. Sens. Actuator B-Chem. 1998, 47,239-245.
    [90] Caruso, F.; Rodda, E.; Furlong, D. N., Orientational aspects of antibody immobilization and immunological activity on quartz crystal microbalance electrodes. J. Colloid Interface Sci. 1996, 178,104-115.
    [91] Johannsmann, D., Viscoelastic analysis of organic thin films on quartz resonators. Macromol.Chem. Phys. 1999,200, 501-516.
    [92] Hook, F.; Kasemo, B.; Nylander, T.; Fant, C; Sott, K.; Elwing, H., Variations in coupled water,viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking:A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 2001, 73, 5796-5804.
    [93] Rickert, J.; Brecht, A.; Gopal, W., QCM operation in liquids: Constant sensitivity during formation of extended protein multilayers by affinity. Anal. Chem. 1997, 69, 1441-1448.
    [94] Du, B. Y.; Johannsmann, D., Operation of the quartz crystal microbalance in liquids: Derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir 2004,20,2809-2812.
    [95] Kanazawa, K. K.; Gordon, J. G., The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta 1985,175, 99-105.
    [96] Janshoff, A.; Galla, H. J.; Steinem, C., Piezoelectric mass-sensing devices as biosensors - an alternative to optical biosensors? Angew. Chem. Int. Ed. 2000, 39, 4004-4032.
    [97] Marx, K. A., Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 2003, 4.1099-1120.
    [98] O'Sullivan, C. K.; Guilbault, G.G., Commercial quartz crystal microbalances - theory and applications. Biosen. Bioelectron. 1999,14, 663-670.
    [99] Cooper, M. A.; Singleton, V. T., A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: Applications of acoustic physics to the analysis of biomolecular interactions. J.Mol. Recognit. 2007, 20, 154-184.
    [100] Zhang, Y.; Luo, S. Z.; Tang, Y. J.; Yu, L.; Hou, K. Y; Cheng, J. P.; Zeng, X. Q.; Wang, P. G., Carbohydrate-protein interactions by "clicked" carbohydrate self-assembled monolayers. Anal. Chem.2006,75,2001-2008.
    [101] Shen, Z. H.; Huang, M. C.; Xiao, C. D.; Zhang, Y.; Zeng, X. Q.; Wang, P. G., Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal.Chem. 2007, 79, 2312-2319.
    [102] Huang, M. C.; Shen, Z. H.; Zhang, Y L.; Zeng, X. Q.; Wang, P. G., Alkanethiol containing glycopolymers: A tool for the detection of lectin binding. Bioorg. Med. Chem. Lett. 2007, 17,5379-5383.
    [103] Ebara, Y.; Okahata, Y., A kinetic study of concanavalin A binding to glycolipid monolayers by using a quartz-crystal microbalance. J. Am. Chem. Soc. 1994,116, 11209-11212.
    [104] Liebau, M.; Hildebrand, A.; Neubert, R. H. H., Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance. Eur. Biophys. J 2001, 30,42-52.
    [105] Hildebrand, A.; Schaedlich, A.; Rothe, U.; Neubert, R. H. H., Sensing specific adhesion of liposomal and micellar systems with attached carbohydrate recognition structures at lectin surfaces. J.Colloid Interface Sci. 2002,249, 274-281.
    [106] Hoshi, T.; Akase, S.; Anzai, J., Preparation of multilayer thin films containing avidin through sugar-lectin interactions and their binding properties. Langmuir 2002,18, 7024-7028.
    [107] Anzai, J.-i.; Kobayashi, Y.; Nakamura, N.; Hoshi, T., Use of Con A and mannose-labeled enzymes for the preparation of enzyme films for biosensors. Sens. Actuator B-Chem. 2000, 65, 94-96.
    [108] Liedberg, B.; Nylander, C.; Lundstrom, I., Surface-plasmon resonance for gas-detection and biosensing. Sens. Actuator 1983, 4, 299-304.
    [109] Rich, R. L.; Myszka, D. G., Advances in surface plasmon resonance biosensor analysis. Curr.Opin. Biotechnol. 2000,11, 54-61.
    [110] Rich, R. L.; Myszka, D. G., Survey of the year 2007 commercial optical biosensor literature. J.Mol. Recognit. 2008, 21, 355-400.
    [111] Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M., Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J. Am. Chem. Soc. 2003,125, 6140-6148.
    [112] Linman, M. J.; Taylor, J. D.; Yu, H.; Chen, X.; Cheng, Q., Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. Anal. Chem. 2008, 80,4007-4013.
    [113] Vornholt, W.; Hartmann, M.; Keusgen, M., SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources. Biosen. Bioelectron. 2007, 22, 2983-2988.
    [114] K(?)βlinger, C.; Uttenthaler, E.; Drost, S.; Aberl, F.; Wolf, H.; Brink, G; Stanglmaier, A.;Sackmann, E., Comparison of the QCM and the SPR method for surface studies and immunological applications. Sens. Actuator B-Chem. 1995,24-25, 107-112.
    [115] Morimoto, M.; Saimoto, H.; Usui, H.; Okamoto, Y.; Minami, S.; Shigemasa, Y., Biological activities of carbohydrate-branched chitosan derivatives. Biomacromolecules 2001,2, 1133-1136.
    [116] Kelly, T. L.; Lam, M. C. W.; Wolf, M. O., Carbohydrate-labeled fluorescent microparticles and their binding to lectins. Bioconjugate Chetn. 2006,17, 575-578.
    [117] Houseman, B. T.; Mrksich, M., Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 2002, 9, 443-454.
    [118] Park, S.; Lee, M. R.; Pyo, S. J.; Shin, I., Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 2004,126, 4812-4819.
    [119] Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W. G., Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat.Biotechnol. 2002,20, 1011-1017.
    [120] Zhi, Z. L.; Powell, A. K.; Turnbull, J. E., Fabrication of carbohydrate microarrays on gold surfaces: Direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal. Chem. 2006, 78, 4786-4793.
    [121] Wang, D. N.; Liu, S. Y.; Trummer, B. J.; Deng, C.; Wang, A. L., Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 2002,20,275-281.
    [122] Blixt, O.; Head, S.; Mondala, T.; Scanlan, C.; Huflejt, M. E.; Alvarez, R.; Bryan, M. C; Fazio, F.;Calarese, D.; Stevens, J.; Razi, N.; Stevens, D. J.; Skehel, J. J.; van Die, I.; Burton, D. R.; Wilson, I. A.;Cummings, R.; Bovin, N.; Wong, C. H.; Paulson, J. C., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 2004,101, 17033-17038.
    [123] Liang, P. H.; Wang, S. K.; Wong, C. H., Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: Determination of surface and solution dissociation constants. J.Am. Chem. Soc. 2007,129, 11177-11184.
    [124] Rosenfeld, R.; Bangio, H.; Gerwig, G. J.; Rosenberg, R.; Aloni, R.; Cohen, Y.; Amor, Y.;Plaschkes, I.; Kamerling, J. P.; Maya, R. B. Y., A lectin array-based methodology for the analysis of protein glycosylation. J. Biochem. Biophys. Methods 2007, 70, 415-426.
    [125] Pilobello, K. T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L. K., Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 2005. 6, 985-989.
    [126] Screen, J.; Stanca-Kaposta, E. C.; Gamblin, D. P.; Liu, B.; Macleod, N. A.; Snoek, L. C.; Davis,B. G.; Simons, J. P., IR-spectral signatures of aromatic-sugar complexes: Probing carbohydrate-protein interactions. Angew. Chem. Int. Ed. 2007, 46, 3644-3648.
    [127] Sultan, N. A. M.; Rao, R. N.; Nadimpalli, S. K.; Swamy, M. J., Tryptophan environment,secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab:Fluorescence and circular dichroism spectroscopic studies. Biochim. Biophys. Acta-Gen. Subj. 2006,7760, 1001-1008.
    [128]Dam, T.K.; Brewer, C.F., Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry.Chem.Rev.2002, 102, 387-429.
    [129]Honda, S.; Taga, A., Studies of carbohydrate-protein interaction by capillary electrophoresis.Recognit.Carbohydr.Biol.Systems Pt A 2003, 362, 434-454.
    [130]Yoon, K.; Kim, K.; Wang, X.F.; Fang, D.F.; Hsiao, B.S.; Chu, B., High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating.Polymer 2006, 47,2434-2441.
    [131]Zhu, Y.B.; Gao, C.Y.; Liu, X.Y.; Shen, J.C., Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells.Biomacromolecules 2002, 3, 1312-1319.
    [132]Che, A.F.; Nie, F.Q.; Huang, X.D.; Xu, Z.K.; Yao, K., Acrylonitrile-based copolymer membranes containing reactive groups: Surface modification by the immobilization of biomacromolecules.Polymer 2005, 46, 11060-11065.
    [133]Dai, Z.W.; Nie, F.Q.; Xu, Z.K., Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules.J.Membr.Sci.2005, 264, 20-26.
    [134]Ye, P.; Xu, Z.K.; Che, A.F.; Wu, J.; Seta, P., Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization.Biomaterials 2005, 26, 6394-6403.
    [135]Ye, P.; Xu, Z.K.; Wu, J.; Innocent, C.; Seta, P., Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization.Biomaterials 2006, 27,4169-4176.
    [136]Lin, W.C.; Liu, T.Y.; Yang, M.C., Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate.Biomaterials 2004, 25, 1947-1957.
    [137]Yu, D.G.; Jou, C.H.; Lin, W.C.; Yang, M.C., Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer.Colloid Surf B-Biointerfaces 2007, 54, 222-229.
    [138]Yu, D.G.; Lin, W.C.; Yang, M.C., Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer.Bioconjugate Chem.2007, 18, 1521-1529.
    [139]Vazquez-Dorbatt, V.; Maynard, H.D., Biotinylated glycopolymers synthesized by atom transfer radical polymerization.Biomacromolecules 2006, 7, 2297-2302.
    [140]Kou, R.Q.; Xu, Z.K.; Deng, H.T.; Liu, Z.M.; Seta, P.; Xu, Y.Y., Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside.Langmuir 2003, 19, 6869-6875.
    [141]Yang, Q.; Xu, Z.K.; Dai, Z.W.; Wang, J.L.; Ulbricht, M., Surface modification of polypropylene microporous membranes with a novel glycopolymer.Chem.Mater.2005,17,3050-3058.
    [142]Yang, Q.; Hu, M.X.; Dai, Z.W.; Tian, J.; Xu, Z.K., Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition.Langmuir 2006.22. 9345-9349.
    [143] Yang, Q.; Tian, J.; Hu, M. X.; Xu, Z. K., Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Langmuir 2007, 23, 6684-6690.
    [144] Yang, Q.; Xu, Z. K.; Hu, M. X.; Li, J. J.; Wu, J., Novel sequence for generating glycopolymer tethered on a membrane surface. Langmuir 2005, 21, 10717-10723.
    [145] Chen, G. J.; Tao, L.; Mantovani, G.; Geng, J.; Nystrom, D.; Haddleton, D. M, A modular click approach to glycosylated polymeric beads: Design, synthesis and preliminary lectin, recognition studies. Macromolecules 2007, 40, 7513-7520.
    [146] Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
    [147] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
    [148] Brun, M. A.; Disney, M. D.; Seeberger, P. H., Miniaturization of microwave-assisted carbohydrate functionalization to create oligosaccharide microarrays. Chembiochem 2006, 7, 421 -424.
    [149] Dulery, V.; Renaudet, O.; Philouze, C; Dumy, P., α and β L-Fucopyranosyl oxyamines: key intermediates for the preparation of fucose-containing glycoconjugates by oxime ligation. Carbohydr.Res. 2007, 342, 894-900.
    [150] Ying, L.; Yin, C.; Zhuo, R. X.; Leong, K. W.; Mao, H. Q.; Kang, E. T.; Neoh, K. G.,Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate)film and its application to hepatocyte culture. Biomacromolecules 2003, 4, 157-165.
    [151] Chua, K. N.; Lim, W. S.; Zhang, P. C.; Lu, H. F.; Wen, J.; Ramakrishna, S.; Leong, K. W.; Mao,H. Q., Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005, 26, 2537-2547.
    [152] Yin, C.; Ying, L.; Zhang, P. C.; Zhuo, R. X.; Kang, E. T.; Leong, K. W.; Mao, H. Q., High density of immobilized galactose ligand enhances hepatocyte attachment and function. J. Biomed.Mater. Res. Part A 2003, 67A, 1093-1104.
    [153] Houseman, B. T.; Gawalt, E. S.; Mrksich, M., Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 2003,19, 1522-1531.
    [154] Takasu, A.; Niwa, T.; Itou, H.; Inai, Y.; Hirabayashi, T., Chemical modification of hydroxyl groups of poly(vinyl alcohol) by a glycosidation reaction. Macromol. Rapid Commun. 2000, 21,764-769.
    [155] Renaudie, L.; Le Narvor. C.; Lepleux, E.; Roger, P., Functionalization of poly(ethylene terephthalate) fibers by photografting of a carbohydrate derivatized with a phenyl azide group. Biomacromolecules 2007, 8, 679-685.
    [156] Chevolot, Y.; Martins, J.; Milosevic, N.; Leonard, D.; Zeng, S.; Malissard, M.; Berger, E. G.; Maier, P.; Mathieu. H. J.; Crout, D. H. G.; Sigrist, H., Immobilisation on polystyrene of diazirine derivatives of mono- and disaccharides: Biological activities of modified surfaces. Bioorg. Med. Chem. 2001, 9, 2943-2953.
    [157] Bahulekar, R.; Tokiwa, T.; Kano, J.; Matsumura, T.; Kojima, I.; Kodama, M., Polyacrylamide containing sugar residues: synthesis, characterization and cell compatibility studies. Carbohydr. Polym. 1998,37,71-78.
    [158] Lu, C. H.; Shi, Q.; Chen, X. S.; Lu, T. C.; Xie, Z. G.; Hu, X. L.; Ma, J.; Jing, X. B.,Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. J. Polym. Sci. Polym. Chem. 2007, 45, 3204-3217.
    [159] Chua, K. N.; Lim, W. S.; Zhang, P.; Lu, H.; Wen, J.; Ramakrishna, S.; Leong, K. W.; Mao, H. Q.,Stable immobilization of rat heatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005, 26, 2537-2547.
    [160] Formalas, A., US patent 1975 504 1934.
    [161] Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223-2253.
    [162] Li, D.; Xia, Y., Electropinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151-1170.
    [163] Sill, T. J.; von Recum, H. A., Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008,29, 1989-2006.
    [164] Schiffman, J. D.; Schauer, C. L., A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 2008, 48,317-352.
    [165] Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C, Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett. 2001, 78, 1149-1151.
    [166] Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42, 9955-9967.
    [167] Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000, 87,4531-4547.
    [168] Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001, 89,3018-3026.
    [169] Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E., Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit Polymer 2005, 46, 3372-3384.
    [170] Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C., The role of elasticity in the formation of electrospun fibers. Polymer 2006, 47, 4789-4797.
    [171] Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 2001,13, 2201-2220.
    [172] Fong, H.; Chun, I.; Reneker, D. H., Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585-4592.
    [173] Acatay, K.; Simsek, E.; Ow-Yang, C.; Menceloglu. Y. Z., Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angew. Chem. Int. Ed. 2004, 43, 5210-5213.
    [174] Zheng, J. F.; He, A. H.; Li, J. X.; Xu, J. A.; Han, C. C., Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer 2006, 47,7095-7102.
    [175] Zong, X. H.; Kim, K.; Fang, D. F.; Ran, S. F.; Hsiao, B. S.; Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43,4403-4412.
    [176] Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H., The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 2004, 45,2959-2966.
    [177] Lee, K. H.; Kim, H. Y.; Bang, H. J.; Jung, Y. H.; Lee, S. G, The change of bead morphology formed on electrospun polystyrene fibers. Polymer 2003, 44, 4029-4034.
    [178] Uyar, T.; Besenbacher, F., Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer 2008, 49, 5336-5343.
    [179] Qin, X. H.; Wang, S. Y; Sandra, T.; Lukas, D., Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution. Mater. Lett. 2005, 59, 3102-3105.
    [180] Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, 261-272.
    [181] Li, D.; Xia, Y. N., Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16,1151-1170.
    [182] Bognitzki, M.; Czado, W.; Frese, T; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.;Wendorff, J. H., Nanostructured fibers via electrospinning. Adv. Mater. 2001,13, 70-72.
    [183] Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002,35, 8456-8466.
    [184] Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004, 37, 573-578.
    [185] McCann, J. T.; Marquez, M.; Xia, Y. N., Highly porous fibers by electrospinning into a cryogenic liquid. J.Am. Chem. Soc. 2006,128, 1436-1437.
    [186] Bognitzki, M.; Frese, T.; Steinhart, M.; Greiner, A.; Wendorff, J. H.; Schaper, A.; Hellwig, M.,Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends. Polym. Eng.Sci. 2001, 41, 982-989.
    [187] Li, D.; Xia, Y. N., Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 2004, 4, 933-938.
    [188] Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim. F.; Yan, Y Q., One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003,15, 353-389.
    [189] Murugan, R.; Ramakrishna, S., Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Eng. 2006. 12. 435-447.
    [190]Teo, W.E.; Ramakrishna, S., A review on electrospinning design and nanofibre assemblies.Nanotechnology 2006, 17, R89-R106.
    [191]Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L., Electrospinning of collagen nanofibers.Biomacromolecules 2002, 3, 232-238.
    [192]Katta, P.; Alessandro, M.; Ramsier, R.D.; Chase, G.G., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector.Nano Lett.2004, 4, 2215-2218.
    [193]Li, D.; Wang, Y.L.; Xia, Y.N., Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays.Nano Lett.2003, 3.1167-1171.
    [194]Li, D.; Wang, Y.L.; Xia, Y.N., Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films.Adv.Mater.2004, 16, 361-366.
    [195]Li, D.; Ouyang, G.; McCann, J.T.; Xia, Y.N., Collecting electrospun nanofibers with patterned electrodes.Nano Lett.2005, 5, 913-916.
    [196]Yang, D.Y.; Lu, B.; Zhao, Y.; Jiang, X.Y., Fabrication of aligned fibirous arrays by magnetic electrospinning.Adv.Mater.2007, 19, 3702-3709.
    [197]Theron, A.; Zussman, E.; Yarin, A.L., Electrostatic field-assisted alignment of electrospun nanofibres.Nanotechnology 2001, 12, 384-390.
    [198]Dersch, R.; Liu, T.Q.; Schaper, A.K.; Greiner, A.; Wendorff, J.H., Electrospun nanofibers:Internal structure and intrinsic orientation.J.Polym.Sci.Polym.Chem.2003, 41, 545-553.
    [199]Dalton, P.D.; Klee, D.; Moller, M., Electrospinning with dual collection rings.Polymer 2005, 46,611-614.
    [200]Smit, E.; Buttner, U.; Sanderson, R.D., Continuous yarns from electrospun fibers.Polymer 2005,46, 2419-2423.
    [201]Xu, X.L.; Yang, L.X.; Xu, X.Y.; Wang, X.; Chen, X.S.; Liang, Q.Z.; Zeng, J.; Jing, X.B.,Ultrafine medicated fibers electrospun from W/O emulsions.J.Control.Release 2005, 108, 33-42.
    [202]Qi, H.X.; Hu, P.; Xu, J.; Wang, A.J., Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment.Biomacromolecules 2006, 7, 2327-2330.
    [203]Bazilevsky, A.V.; Yarin, A.L.; Megaridis, C.M., Co-electrospinning of core-shell fibers using a single-nozzle technique.Langmuir 2007, 23, 2311-2314.
    [204]Li, D.; Babel, A.; Jenekhe, S.A.; Xia, Y.N., Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret.Adv.Mater.2004, 16, 2062-+.
    [205]Zhao, Q.; Xin, Y.; Huang, Z.H.; Liu, S.D.; Yang, C.H.; Li, Y.F., Using poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]as shell to fabricate the highly fluorescent nanofibers by coaxial electrospinning.Polymer 2007, 48, 4311-4315.
    [206]Wang, M.; Yu, J.H.; Kaplan, D.L.; Rutledge, G.C., Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning.Macromolecules 2006, 39,1102-1107.
    [207]Herricks, T.E.; Kim, S.H.; Kim, J.; Li, D.; Kwak, J.H.; Grate, J.W.; Kim, S.H.; Xia, Y.N.,Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning.J.Mater.Chem.2005,'5, 3241-3245.
    [208]Jiang, H.L.; Hu, Y.Q.; Li, Y.; Zhao, P.C.; Zhu, K.J.; Chen, W.L., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents.J.Control.Release 2005, 108, 237-243.
    [209]Zhang, Y.Z.; Wang, X.; Feng, Y.; Li, J.; Lim, C.T.; Ramakrishna, S., Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release.Biomacromolecules 2006, 7,1049-1057.
    [210]Kim, M.S.; Shin, K.M.; Kim, S.I.; Spinks, G.M.; Kim, S.J., Controlled array of ferritin in tubular nanostructure.Macromol.Rapid Commun.2008, 29, 552-556.
    [211]Townsend-Nicholson, A.; Jayasinghe, S.N., Cell electrospinning: a unique biotechnique for encapsulatinglivingorganismsforgeneratingactivebiologicalmicrothreads/scaffolds.Biomacromolecules 2006, 7, 3364-3369.
    [212]McCann, J.T.; Li, D.; Xia, Y.N., Electrospinning of nanofibers with core-sheath, hollow, or porous structures.J.Mater.Chem.2005, 15, 735-738.
    [213]Dror, Y.; Salalha, W.; Avrahami, R.; Zussman, E.; Yarin, A.L.; Dersch, R.; Greiner, A.; Wendorff, J.H., One-step production of polymeric microtubes by co-electrospinning.Small 2007, 3, 1064-1073.
    [214]Di, J.C.; Chen, H.Y.; Wang, X.F.; Zhao, Y.; Jiang, L.; Yu, J.H.; Xu, R.R., Fabrication of zeolite hollow fibers by coaxial electrospinning.Chem.Mater.2008, 20, 3543-3545.
    [215]Loscertales, I.G.; Barrero, A.; Marquez, M.; Spretz, R.; Velarde-Ortiz, R.; Larsen, G., Electrically forced coaxial nanojets for one-step hollow nanofiber design.J.Am.Chem.Soc.2004, 126,5376-5377.
    [216]Zhao, Y.; Cao, X.Y.; Jiang, L., Bio-mimic multichannel microtubes by a facile method.J.Am.Chem.Soc.2007,129, 764-765.
    [217]Greiner, A.; Wendorff, J.H., Electrospinning: A fascinating method for the preparation of ultrathin fibres.Angew.Chem.Int.Ed.2007, 46, 5670-5703.
    [218]Bergshoef, M.M.; Vancso, G.J., Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement.Adv.Mater.1999, 11, 1362-1365.
    [219]Ma, Z.; Kotaki, M.; Ramakrishna, S., Electrospun cellulose nanofiber as affinity membrane.J.Membr.Sci.2005,265,115-123.
    [220]Ma, Z.W.; Kotaki, M.; Ramarkrishna, S., Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: A novel affinity membrane.J.Membr.Sci.2006, 272, 179-187.
    [221]Ma, Z.W.; Masaya, K.; Ramakrishna, S., Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption.J.Membr.Sci.2006.282, 237-244.
    [222]Barhate, R.S.; Loong, C.K.; Ramakrishna, S., Preparation and characterization of nanofibrous filtering media J.Membr.Sci.2006, 283, 209-218.
    [223]Barhate, R.S.; Ramakrishna, S., Nanofibrous filtering media: Filtration problems and solutions from tiny materials.J.Membr.Sci.2007, 296, 1-8.
    [224]Gopal, R.; Kaur, S.; Ma, Z.W.; Chan, C.; Ramakrishna, S.; Matsuura, T., Electrospun nanofibrous filtration membrane.J.Membr.Sci.2006, 281, 581-586.
    [225]Xu, C.Y.; Inai, R.; Kotaki, M.; Ramakrishna, S., Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering.Biomaterials 2004, 25, 877-886.
    [226]Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S., Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials 2005,26.2603-2610.
    [227]Wang, Z.G.; Wan, L.S.; Liu, Z.M.; Huang, X.J.; Xu, Z.K., Enzyme immobilization on electrospun polymer nanofibers: An overview.J.Mol.Catal.B-Enzym.2009, 56, 189-195.
    [228]杨谦,聚丙烯微孔膜表面的糖基化研究.2007.
    [229]Frisch, M.J.T., G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.;Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomai, J.;Barone, V.;Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.;Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; shida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts,R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; omelli, C.; Ochterski, J.W.; Ayala, P.Y.;Morokuma, K.G.; Voth, A.; alvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuk, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz,P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; A1-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.;Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003.
    [230]Sellergren, B., Imprinted chiral stationary phases in high-performance liquid chromatography.J.Chromatogr.A 2001, 906, 227-252.
    [231]Takeuchia, T.; Haginakab, J., Separation and sensing based on molecular recognition using molecularly imprinted polymers.J.Chromatogr.B 1999, 728, 1-20.
    [232]Mosbach, K., Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics).Anal.Chim.Acta 2001, 435, 3-8.
    [233]Haupt, K.; Mosbach, K., Molecularly imprinted polymers and their use in biomimetic sensors.Chem.Rev.2000, 100, 2495-2504.
    [234]Ye, L.; Weiss, R.; Mosbach, K., Synthesis and characterization of molecularly imprinted microspheres.Macromolecules 2000, 33, 8239-8245.
    [235]Silvestri, D.; Barbani, N.; Cristallini, C.; Giusti, P.; Ciardelli, G., Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium.J.Membr.Sci.2006, 282,284-295.
    [236]Wang, H.Y.; Kobayashi.T.; Fujii.N.,Molecular imprint membranes prepared by the phase inversion precipitation technique.Langmuir 1996, 12, 4850-4856.
    [237]Sellergren, B.; Lepist(o|¨), M.; Mosbach, K., Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions.NMR and chromatographic studies on the nature of recognition J.Am.Chem.Soc.1988, 110, 5853-5860
    [238]Duffy,D.J.; Das, K.; Hsu, S.L.; Penelle, J.; Rotello, V.M.; Stidham, H.D., Binding efficiency and transport properties of molecularly imprinted polymer thin films.J.Am.Chem.Soc.2002, 124,8290-8294.
    [239]Pavel, D.; Lagowski, J., Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives.Part Ⅰ.Polymer 2005, 46, 7528-7542.
    [240]Pavel, D.; Lagowski, J., Computationally designed monomers and polymers for molecular imprinting of theophylline.Part Ⅱ.Polymer 2005, 46, 7543-7556.
    [241]Dong, W.G.; Yan, M.; Zhang, M.L.; Liu, Z.; Li, Y.M., A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer.Anal.Chim.Acta 2005, 542, 186-192.
    [242]Noda, I., Two-dimensional infrared spectroscopy of synthetic and biopolymers.Bull.Am.Phys.Soc.1986, 31, 520-.
    [243]Noda, I., 2-Dimensional infrared (2D IR) spectroscopy-theory and applications.Appl.Spectrosc.1990, 44, 550-561.
    [244]Noda, I., Generalized 2-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy.Appl.Spectrosc.1993, 47, 1329-1336.
    [245]Noda, I.; Dowrey, A.E.; Marcott, C., Recent developments in 2-dimensional infrared (2D-IR) correlation spectroscopy.Appl.Spectrosc.1993, 47, 1317-1323.
    [246]Musale, D.A.; Kulkami, S.S., Fouling reduction in poly(acrylonitrile-co-acrylamide) ultrafiltration membranes.J.Membr.Sci.1996, 111, 49-56.
    [247]Wang, Z.G.; Xu, Z.K.; Wan, L.S.; Wu, J.; Innocent, C.; Seta, P., Nanofibrous membranes containing carbon nanotubes: Electrospun for redox enzyme immobilization.Macromol.Rapid Commun.2006,27,516-521.
    [248]张旺玺;王艳芝;蔡华苏,丙烯腈与丙烯酸的共聚合及表征.化学世界2000, 11, 577-581.
    [249]Nie, F.Q.; Xu, Z.K.; Wan, L.S.; Ye, P.; Wu, J., Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes.J.Membr.Sci.2004, 230, 1-11.
    [250]Zhang, C.; Du, Z.J.; Li, H.Q.; Ruckenstein, E., Acrylonitrile-co-vinyl acetate with uniform composition via adiabatic, self-heating copolymerization in a concentrated emulsion.Polymer 2002,43, 2945-2951.
    [251]Mandal, S.; Pangarkar.V.G., Pervaporative dehydration of 1-methoxy propanol with acrylonitrile based co-polymer membranes prepared through emulsion polymerization: a solubility parameter approach and study of structural impact.J.Membr.Sci.2002, 209, 53-66.
    [252]Huang, X.J.; Xu, Z.K.; Wan, L.S.; Wang, Z.G.; Wang, J.L., Novel acrylonitrile-based copolymers containing phospholipid moieties: Synthesis and characterization.Macromol.Biosci.2005. 5, 322-330.
    [253]Godjevargova, T.; Konsulov, V.; Dimov, A., Preparation of an ultrafiltration membrane from the copolymer of acrylonitrile-glycidylmethacrylate utilized for immobilization of glucose oxidase.J.Membr.Sci.1999,152,235-240.
    [254]Hicke, H.G.; Lehmann, I.; Malsch, G.; Ulbricht, M.; Becker, M., Preparation and characterization of a novel solvent-resistant and autoclavable polymer membrane.J.Membr.Sci.2002,198, 187-196.
    [255]Xu, Z.K.; Kou, R.Q.; Liu, Z.M.; Nie, F.Q.; Xu, Y.Y., Incorporating a-allyl glucoside into polyacrylonitrile by water-phase precipitation copolymerization to reduce protein adsorption and cell adhesion.Macromolecules 2003, 36, 2441-2447.
    [256]Hou, C.; Wang, C.G.; Cai, H.S.; Zhang, W.X., Determination of the reactivity ratios for acrylonitrile/N-vinylpyrrolidone copolymerization systems.J.Appl.Polym.Sci.2003, 89, 422-425.
    [257]Wan, L.S.; Xu, Z.K.; Huang, X.J.; Wang, Z.G.; Wang, H.L., Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of poly acrylonitrile.Polymer 2005, 46,7715-7723.
    [258]Ma, G.P.; Yang, D.Z.; Nie, J., Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning.Polym.Adv.Technol.2009, 20, 147-150.
    [259]Wang, C.; Chien, H.S.; Hsu, C.H.; Wang, Y.C.; Wang, C.T.; Lu, H.A., Electrospinning of polyacrylonitrile solutions at elevated temperatures.Macromolecules 2007, 40, 7973-7983.
    [260]Wang, T.; Kumar, S., Electrospinning of polyacrylonitrile nanofibers.J.Appl.Polym.Sci.2006,102, 1023-1029.
    [261]Noda, I., Two-dimensional infrared-spectroscopy.J Am.Chem.Soc.1989, 111, 8116-8118.
    [262]Wan, L.S.; Huang, X.J.; Xu, Z.K., Diffusion and structure of water in polymers containing N-Vinyl-2-pyrrolidone.J.Phys.Chem.B 2007, 111, 922-928.
    [263]Ozaki, Y.; Liu, Y.L.; Noda, I., Two-dimensional near-infrared correlation spectroscopy study of premelting behavior of nylon 12.Macromolecules 1997, 30, 2391-2399.
    [264]Czarnecki, M.A.; Czarnik-Matusewicz, B.; Ozaki, Y.; Iwahashi, M., Resolution enhancement and band assignments for the first overtone of OH(D) stretching modes of butanols by two-dimensional near-infrared correlation spectroscopy.3.Thermal dynamics of hydrogen bonding in butan-1-(ol-d) and 2-methylpropan-2-(ol-d) in the pure liquid states.J.Phys.Chem.A 2000, 104,4906-4911.
    [265]Czarnecki, M.A.; Maeda, H.; Ozaki, Y.; Suzuki, M.; Iwahashi, M., Resolution enhancement and band assignments for the first overtone of OH stretching modes of butanols by two-dimensional near-infrared correlation spectroscopy.2.Thermal dynamics of hydrogen bonding in n-and tert-butyl alcohol in the pure liquid states.J.Phys.Chem.A 1998, 102, 9117-9123.
    [266]Wang, Y.; Murayama, K.; Myojo, Y.; Tsenkova, R.; Hayashi, N.; Ozaki, Y., Two-dimensional Fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions.J.Phvs.Chem.B 1998, 102, 6655-6662.
    [267]Ren, Y.Z.; Shimoyama, M.; Ninomiya, T.; Matsukawa, K.; Inoue, H.; Noda, I.; Ozaki, Y.,Two-dimensional Fourier transform Raman correlation spectroscopy study of composition-induced structural changes in a series of ethylene/vinyl acetate copolymers.J.Phys.Chem.B 1999, 103,6475-6483.
    [268]Nakashima, K.; Ren, Y.; Nishioka, T.; Tsubahara, N.; Noda, I.; Ozaki, Y., Two-dimensional infrared correlation spectroscopy studies of polymer blends: Conformational changes and specific interactions in blends of atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene ether).J.Phys.Chem.B 1999, 103, 6704-6712.
    [269]Ren, Y.Z.; Murakami, T.; Nishioka, T.; Nakashima, K.; Noda, I.; Ozaki, Y., Two-dimensional Fourier transform Raman correlation spectroscopy studies of polymer blends: Conformational changes and specific interactions in blends of atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene ether).Macromolecules 1999, 32, 6307-6318.
    [270]孙素琴;周群;梁曦云,炮附片、黑顺片和白附片二维红外相关光谱的分析研究.光谱学与光谱分析2003, 23, 1082-1085.
    [271]曹峰;周群;孙素琴,真伪天麻二维相关红外光谱法的鉴别研究.现代议器 2002, 4, 19-21.
    [272]吴强;王静,二维相关分析光谱技术.化学通报 2000, 8, 45-53.
    [273]吴强;孕晨曦;李学臣;李燕鸿,二维红外相关光谱分析对十二烷氧基苯甲酸的相变过程.光谱学与光谱分析2001, 21, 778-782.
    [274]袁波;赵海鹰;黄梅珍;窦晓鸣,用二维相关红外光谱研究蛋白质分子的热动力学过程.红外与毫米波学报2004, 23, 213-216.
    [275]吴玉清;尾崎幸洋,二维相关红外光谱研究溶液中蛋白质的结构.红外与毫米波学报2003, 22, 161-168.
    [276]Tang, B.B.; Wu, P.Y.; Siesler, H.W., In situ study of diffusion and interaction of water and mono-or divalent anions in a positively charged membrane using two-dimensional correlation FT-1R/Attenuated total reflection Spectroscopy.J.Phys.Chem.B 2008, 112, 2880-2887.
    [277]Sun, B.J.; Lin, Y.N.; Wu, P.Y.; Siesler, H.W., A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly(N-isopropylacrylamide) aqueous solution.Macromolecules 2008, 41, 1512-1520.
    [278]Meng, S.; Sun, B.J.; Guo, Z.; Zhong, W.; Du, Q.G.; Wu, P.Y., Two-dimensional correlation ATR-FTIR studies on PEO-PPO-PEO tri-block copolymer and its phosphorylcholine derivate as thermal sensitive hydrogel systems.Polymer 2008, 49, 2738-2744.
    [279]Shen, Y.; Chen, E.Q.; Ye, C.; Zhang, H.L.; Wu, P.Y.; Noda, I.; Zhou, Q.F., Liquid-crystalline phase development of a mesogen-jacketed polymer-Application of two-dimensional infrared correlation analysis.J.Phys.Chem.B 2005, 109, 6089-6095.
    [280]Peng, Y.; Wu, P.Y.; Siesler, H.W., Two-dimensional/ATR infrared correlation spectroscopic study on water diffusion in a poly(epsilon-caprolactone) matrix.Biomacromolecules 2003, 4,1041-1044.
    [281]Liu.M.J.;Wu.P.Y.; Ding.Y.F.; Chen, G.: Li.S.J., Two-dimensional (2D) ATR-FTIR spectroscopic study on water diffusion in cured epoxy resins.Macromolecules 2002, 35, 5500-5507.
    [282]Lu, X.Y.; Weiss, R.A., Phase-behavior of blends of poly(ethylene glycol) and partially neutralized poly(acrylic acid).Macromolecules 1995, 28, 3022-3029.
    [283]Dong, J.; Ozaki, Y.; Nakashima, K., Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid).Macromolecules 1997, 30,1111-1117.
    [284]Ireta, J.; Neugebauer, J.; Scheffler, M., On the accuracy of DFT for describing hydrogen bonds:Dependence on the bond directionality.J Phys.Chem.A 2004, 108, 5692-5698.
    [285]Nishikawa, Y.; Nakano, T.; Noda, I., Two-dimensional correlation study of uniaxially drawn poly(ethylene terephthalate) films by using attenuated total reflection based dynamic compression modulation step-scan Fourier transform infrared in combination with spectral simulation analysis by density functional theory.Appl.Spectrosc.2006, 60, 145-154.
    [286]Nishikawa, Y.; Nakano, T.; Noda, I., Two-dimensional correlation analysis of polyimide films using attenuated total reflection-based dynamic compression modulation step-scan Fourier transform infrared spectroscopy.Appl.Spectrosc.2007, 61, 873-881.
    [287]Ye, L.; Cormack, P.A.G.; Mosbach, K., Molecular imprinting on microgel spheres.Anal.Chim.Acta 2001, 435, 187-196.
    [288]Nicholls, 1.A., Towards the rational design of molecularly imprinted polymers.J.Mol.Recognit.1998, 11, 79-82.
    [289]Li, Y.; Yin, X.F.; Chen, F.R.; Yang, H.H.; Zhuang, Z.X.; Wang, X.R., Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template.Macromolecules 2006, 39, 4497-4499.
    [290]Silvestri, D.; Borrelli, C.; Giusti, P.; Cristallini, C.; Ciardelli, G., Polymeric devices containing imprinted nanospheres: A novel approach to improve recognition in water for clinical uses.Anal.Chim.Acta 2005, 542, 3-13.
    [291]Hattori, K.; Hiwatari, M.; Iiyama, C.; Yoshimi, Y.; Kohori, F.; Sakai, K.; Piletsky, S.A., Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization.J.Membr.Sci.2004, 233, 169-173.
    [292]Varki, A., Biological roles of oligosaccharides: All of the theories are correct.Glycobiology 1993,3,97-130.
    [293]Dwek, R.A., Glycobiology: Toward understanding the function of sugars.Chem.Rev.1996, 96,683-720.
    [294]Ejaz, M.; Ohno, K.; Tsujii, Y.; Fukuda, T., Controlled grafting of a well-defined glycopolymer on a solid surface by surface-initiated atom transfer radical polymerization.Macromolecules 2000, 33,2870-2874.
    [295]Spain, S.G.; Albertin, L.; Cameron, N.R., Facile in situ preparation of biologically active multivalent glyconanoparticles.Chem.Commun.2006, 4198-4200.
    [296]Hu, M.X.;Wan, L.S.; Fu.Z.S.; Fan.Z.Q.; Xu, Z.K., Construction of glycosylated surfaces fox poly(propylene) beads with a photoinduced grafting/chemical reaction sequence.Macromol.Rapid Commun.2007,28,2325-2331.
    [297]Nakamatsu, J.; Torres, F.G.; Troncoso, O.P.; Yuan, M.L.; Boccaccini, A.R., Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds.Biomacromolecules 2006, 7, 3345-3355.
    [298]Rhazi, M.; Desbrieres, J.; Tolaimate, A.; Rinaudo, M.; Vottero, P.; Alagui, A.; El Meray, M.,Influence of the nature of the metal ions on the complexation with chitosan.Application to the treatment of liquid waste.Eur.Polym.J.2002, 38, 1523-1530.
    [299]Dutta, P.K.; Dutta, J.; Tripathi, V.S., Chitin and chitosan: Chemistry, properties and applications J.Sci.Ind.Res.2004, 63, 20-31.
    [300]Rinaudo, M., Chitin and chitosan: Properties and applications.Prog.Polym.Sci.2006, 31,603-632.
    [301]Kumar, M.N.V.R., A review of chitin and chitosan applications.React.Funct.Polym.2000, 46,1-27.
    [302]Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.J., Food applications of chitin and chitosans.Trends Food Sci.Technol.1999,10,37-51.
    [303]Zeng, X.F.; Ruckenstein, E., Membrane chromatography: Preparation and applications to protein separation.Biotechnol.Prog.1999, 15, 1003-1019.
    [304]Kristiansen, A.; Nysaeter, A.; Grasdalen, H.; Varum, K.M., Quantitative studies of the binding of wheat germ agglutinin (WGA) to chitin-oligosaccharides and partially N-acetylated chitosans suggest inequivalence of binding sites.Carbohydr.Polym.1999, 38, 23-32.
    [305]G(u|¨)m(u|¨)(?)derelio(?)lu, M.; Agi, P., Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes.React.Funct.Polym.2004,61,211-220.
    [306]Supaphol, P.; Mit-Uppatham, C.; Nithitanakul, M., Ultrafine electrospun polyamide-6 fibers:Effect of emitting electrode polarity on morphology and average fiber diameter.J.Polym.Sci., Part B Polym.Phys.2005, 43, 3699-3712.
    [307]朱孔营;渠荣遴;李方,低分子量壳聚糖制备与应用研究进展.高分子通报 2006, 2, 41-45.
    [308]覃彩芹;肖玲;杜予民;樊木;施晓文,过氧化氢氧化降解壳聚糖的可控性研究.武汉大学学报2000, 46, 195-198.
    [309]Rao, S.B.; Sharma, C.P., Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential.J.Biomater.Sci.-Polym.Ed.1997,34,21-28.
    [310]Park, K.D.; Kim, W.G.; Jacobs, H.; Okano, T.; Kim, S.W., Blood compatibility of SPUU-PEO-heparin graft copolymers.J.Biomater.Sci.-Polym.Ed.1992, 26, 739-756.
    [311]Chou, T.C.; Fu, E.; Wu, C.J.; Yeh, J.H., Chitosan enhances platelet adhesion and aggregation.Biochem.Biophys.Res.Commun.2003, 302, 480-483.
    [312]Okamoto.Y.; Yano, R.; Miyatake, K.; Tomohiro, I.; Shigemasa.Y.; Minami.S., Effects of chitin and chitosan on blood coagulation.Carbohydr.Polym.2003, 53, 337-342.
    [313]杨健;田丰;陈世谦,壳聚糖的止血机理和应用.国外医学生物医学工程分册 2001, 24,77-80.
    [314]Ero(?)lu, A.E.; Volkan, M.; Ataman, O.Y., Fiber optic sensors using novel substrates for hydrogen sulfide determination by solid surface fluorescence.Talanta 2000, 53 89-101.
    [315]Reyes, J.F.G.; Barrales, P.O.; D(?)az, A.M., Development of a solid surface fluorescence-based sensing system for aluminium monitoring in drinking water.Talanta 2005, 65, 1203-1208.
    [316]Goldstein, 1.J.; Hollerman, C.E.; Smith, E.E., Protein-carbohydrate interaction.I.Inhibition surface on the interaction of concanavalin A with polysaccharides.Biochemistry 1965, 4, 876-883.
    [317]Claesson, P.M.; Ninham, B.W., pH-Dependent interactions between adsorbed chitosan layers.Langmuir 1992, 8, 1406-1412.
    [318]黄小军,聚丙烯分离材料的磷脂化改性.2006.
    [319]刘振东,β-D-五乙酰半乳糖制备方法的改进北京服装学院学报2001, 21.
    [320]Fleming, C.; Maldjian, A.; Da Costa, D.; Rullay, A.K.; Haddleton, D.M.; John, J.S.; Penny, P.;Noble, R.C.; Cameron, N.R.; Davis, B.G., A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility.Nat.Chem.Biol.2005, 1, 270-274.
    [321]吴莉莉,糖基化烯类单体的合成及其聚合物纳米纤维的性能研究2008.
    [322]Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F., Colorimetric Method for Determination of Sugars and Related Substances.Anal.Chem.1956, 28, 350-356.
    [323]Bech, L.; Lepoittevin, B.; El Achhab, A.; Lepleux, E.; Teule-Gay, L.; Boisse-Laporte, C.; Roger,P., Double plasma treatment-induced graft polymerization of carbohydrated monomers on poly(ethylene terephthalate) fibers.Langmuir 2007, 23, 10348-103 52.
    [324]Fennessey, S.F.; Farris, R.J., Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yams.Polymer 2004, 45,4217-4225.
    [325]Bouckaert, J.; Poortmans, F.; Wyns, L.; Loris, R., Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A.J.Biol.Chem.1996, 271, 16144-16150.
    [326]Gu, S.Y.; Wu, Q.L.; Ren, J.; Vancso, G.J., Mechanical properties of a single electrospun fiber and its structures.Macromol.Rapid Commun.2005, 26, 716-720.
    [327]Huang, Z.M.; Zhang, Y.Z.; Ramakrishna, S.; Lim, C.T., Electrospinning and mechanical characterization of gelatin nanofibers.Polymer 2004, 45, 5361-5368.
    [328]Wang, X.F.; Zhang, K.; Zhu, M.F.; Hsiao, B.J.S.; Chu, B.J., Enhanced mechanical performance of self-bundled electrospun fiber yams via post-treatments.Macromol.Rapid Commun.2008, 29, 826-831.
    [329]Ge, J.J.; Hou, H.Q.; Li, Q.; Graham, M.J.; Greiner, A.; Reneker, D.H.; Harris, F.W.; Cheng, S.Z.D., Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: Electrospun composite nanofiber sheets.J.Am.Chem.Soc.2004, 126, 15754-15761.
    [330]Duverger.E.; Frison, N.; Roche.A.C.; Monsigny.M., Carbohydrate-lectin interactions assessed by surface plasmon resonance.Biochimie 2003, 85, 167-179.
    [331]Shin, I.; Park, S.; Lee, M.R., Carbohydrate microarrays: An advanced technology for functional studies of glycans.Chem.Eur.J.2005, 11, 2894-2901.
    [332]Pei, Y.X.; Yu, H.; Pei, Z.C.; Theurer, M.; Ammer, C.; Andre, S.; Gabius, H.J.; Yan, M.D.;Ramstrom, O., Photoderivatized polymer thin films at quartz crystal microbalance surfaces: Sensors for carbohydrate-protein interactions.Anal.Chem.2007, 79, 6897-6902.
    [333]Ertl, P.; Mikkelsen, S.R., Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition.Anal.Chem.2001, 73, 4241-4248.
    [334]Yu, L.; Huang, M.; Wang, P.G.; Zeng, X., Cross-linked surface-grafted glycopolymer for multivalent recognition of lectin.Anal.Chem.2007, 79, 8979-8986.
    [335]Ebara, Y.; Itakura, K.; Okahata, Y., Kinetic studies of molecular recognition based on hydrogen bonding at the air-water interface by using a highly sensitive quartz-crystal microbalance.Langmuir 1996,12, 5165-5170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700