用户名: 密码: 验证码:
全球气象要素场关联特性及在汛期降水预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于NCEP/NCAR和ERA40再分析资料构建全球温度场和高度场关联矩阵,并以此为基础探讨气象要素场关联性的整体特征,主要结论如下:
     (1)分别构建温度关联矩阵和随机关联矩阵并进行比较,发现温度关联矩阵中既存在关联“噪声”又存在真实关联。采用信度为0.01的统计检验能够简单有效地滤除温度关联矩阵中的关联“噪声”。对日温度序列做step=5d,10d...的滑动平均继而构建关联矩阵发现:365-730d可能是温度场时间尺度上的一个转折点;全球平均关联系数CTglobal的总体变化趋势是随step的增加而增大,但趋势逐渐变缓。位于赤道东太平洋海域的正关联中心(区域Ⅰ)(162.5°E-102.5°W,7.5°N-12.5°S)和位于北太平洋海域的负关联中心(区域Ⅱ)(157.5°E-147.5°W,27.5°-47.5°N)是值得重点关注的两个区域,二者之间存在强负相关。取长度为10a滑动窗口研究CTglobal随时间的演变特征发现:CTglobal在1981-1987年之间发生了明显的跃变;区域Ⅰ和Ⅱ对这一跃变也有清晰的反映,区域Ⅱ的跃变略滞后于区域Ⅰ;此外,北太平洋海域负关联中心随时间演变还出现了明显的“位移”,据此提取出北太平洋海域负关联中心最强负关联值,定义为动态北太平洋指数(Moving North Pacific Index, MNPI)。
     (2)构建考虑时间延迟情况下的关联矩阵,分析时间延迟对全球温度场关联性时空特征的影响。结果表明:随着延迟时间的增加,全球温度场的关联性总体逐渐减弱,但对应不同的延迟时间其规律也不同,延迟1-30d的情况下,可根据CTglobal的下降快慢大体将其划分为3段:延迟1-7d左右、8-20d左右、21-30d左右。温度场关联系数的空间分布型没有随延迟时间的增加发生明显变化,但在数值上的变化总体呈沿纬向的带状分布,其中北半球中纬度的亚洲大陆大部以及赤道中东太平洋地区分别与同纬度的其他地区变化趋势相反。区域Ⅰ和Ⅱ的平均关联系数随延迟时间的演变规律与全球平均状况相比更加复杂。
     (3)讨论增/降温趋势和极端温度事件对全球温度场关联性的影响,由NCEP/NCAR再分析资料得到的结果表明:去除增/降温趋势之后,原本呈现降温趋势的地区关联性有所增强,而原本增温趋势较显著的区域与关联性减弱较显著的区域也有较好的对应关系。但由ERA40再分析资料得到的结论则并没有这种明显的对应关系。总体而言,两套资料的结论都显示增/降温趋势对全球温度场关联性的空间分布型没有太大影响。采用不同的极端温度值替代方案造成全球平均关联系数随时间的演变在90年代之后发生较大差异,究其原因,可能与不同方案下温度场关联系数的南、北半球空间分布在90年代前后发生较大改变有关。
     (4)分别基于本文定义的动态北太平洋指数和Trenberth等定义的北太平洋指数,针对长江中下游区域夏季汛期降水模式预报误差寻找降水预测误差场的4个相似年份,将相似年误差场的算术平均作为模式预测结果的误差场进行预测。结果表明,基于动态北太平洋指数选取相似误差场进行模式预测误差订正比利用北太平洋指数效果优越。在此基础上结合欧氏距离加权平均方法能进一步改善预报效果,提高预报技巧。2003-2009年共7年的夏季汛期降水独立样本回报结果表明,动态北太平洋指数对长江中下游夏季汛期降水的具有很高的预测技巧,尤其具有年代际变化特征,与北太平洋海温的演变特征相一致。最后利用动态北太平洋指数制作了2009年中国夏季汛期降水预测,经检验达到了很高的预报技巧。
     (5)基于200hPa、500hPa、700hPa高度场和地面气压场全球再分析资料构建关联矩阵。结果表明各层次高度场的关联性在中低纬度区域较好并向高纬度地区递减,呈准带状分布;垂直方向上,低层的关联性较弱,随着高度增加关联性逐渐增强;北太平洋区域从低层至高层均存在一个较强的负关联中心,体现出一定的特殊性。考虑时间延迟的情况下,随着延迟天数的增加关联性逐渐减弱,延迟天数达到15天左右其衰减趋势趋于平缓,达到60天左右发生显著转折。从空间角度来看,环流系统内部关联的衰减速度表现出低纬向中高纬加快,高层向低层加快的特征。各层次高度场和地面气压场全球平均关联系数随时间的变化特征基本保持一致,在1978-1982年和1996-1998年左右发生了两次明显的跃变。
     (6)进一步研究北太平洋负关联中心由低层到高层的空间分布特征及其与全球其他强关联中心之间的关系,结果表明:各层次高度场中与北太平洋区域之间存在显著关联的地区比较一致,主要分布在三个区域:赤道中太平洋(中心A)和白令海峡(中心B)(负关联)、北美大陆东南部(中心C)(正关联)。北太平洋区域格点与这三个区域格点间关联性的累加效果使得各层次高度场的北太平洋区域都存在一个明显的负值中心,该负关联中心从低层到高层存在先南后北、先西后东的移动过程,且方向的转变都发生在500hPa高度场。地面气压场中,中心C对北太平洋区域的影响明显弱于其他两个中心,而在700hPa、500hPa和200hPa高度场都是中心A的作用最强。
Based on temperature and height field correlation matrixes constructed by NCEP/NCAR and ERA40 reanalysis data, we study the correlation characteristics of global meteorological elements. Main conclusions are as follows:
     (1) By comparison of temperature and random correlation matrixes, we find that noise and true correlations both exist in global temperature field, and the 99% confidence test is used in order to filter correlation'noise'. We construct correlation matrixes based on moving average of temperature series and find that 365-730d maybe a turning of time scale of temperature field. Global average correlation coefficient CTglobal increase along with time scale, but the rate is slower and slower. The positive correlation center (162.5°E-102.5°W,7.5°N-12.5°S) (AreaⅠ) and the negative correlation center (157.5°E-147.5°W,27.5°-47.5°N) (AreaⅡ) are the two areas we concern on, there is strong negative correlation between them. With the help of a 10a slipping window, we find that CTglobal had an abrupt change between 1981-1987a, so did AreaⅠandⅡ. And the position of AreaⅡchange with time. We defined a new index named Moving North Pacific Index (MNPI) based on the value of the strongest negative correlation of Area II.
     (2) We construct matrixes in case of considering time delay, the results show that: with the delay time increasing, CTglobal weakened. However, different delay time corresponding to different rule, take 1-30d for instance, generally based on decreasing speed can be divided into three sections:1-7d,8-20d and 21-30d. The spatial distribution pattern of temperature coefficient did not significantly changed with the increasing delay time, but the overall distribution of change in value was the strip along the latitudinal, and most of the Asian continent and the eastern equatorial Pacific are reverse to the trend of other areas in the same latitude.(Area I and II show more complex evolution rules than the average state.
     (3) We discussion the effection of warming/cooling trends of temperature and extreme temperature events on the temperature field correlation matrixes, the results show that:based on the NCEP/NCAR reanalysis data, by removing the warming/ cooling trends, regions that originally show cooling trends have enhanced regional correlation, and regions that originally show warming trends have weakened regional correlation, but by the ERA40 reanalysis data, there is no such correspondence. Overall, the conclusions of the two sets of data are shown that warming/cooling trend of temperature can not significantly affected the spatial distribution of the correlation of global temperature field. Different alternative methods of the extreme temperature make quite different reasons after 1990s, and it may be associated with the great change of correlation distribution of the southern and northern hemisphere before and after 1990s.
     (4) Aim at model prediction error of summer precipitation of Yangtze River region, we use the MNPI we defined and the NPI defined Trenberth et al. to find the 4 similar years of precipitation forecast error, and make the arithmetic average of them as the model prediction error. The results showed that MNPI perform better than NPI. On this basis, combined with the Euclidean distance weighted average method can further improve the forecast skill. The results of 2003-2009 summer precipitation independent sample return prediction show that MNPI perform good on prediction of summer precipitation of Yangtze River region. MNPI shows interdecadal variations, consistent with the evolution characteristics of North Pacific sea surface temperature. Finally, we give the forecast of summer precipitation in China in 2009 with MNPI, and reached a very high forecast skill.
     (5) Correlation matrixes are constructed with NCEP/NCAR global height field data and surface pressure data, furthermore, the characteristics of these two matrixes are analyzed. Research results shows that correlations at all levels of height field are better in middle-low latitudes and descend to the high latitudes, presenting characteristics of quasi-zonal distribution. In the vertical direction, correlations of low levels are weaker and become more and more stronger with the increase of height. There is always a negative correlation center in the north pacific at all levels of height, reflecting a certain degree of particularity. Results of delayed correlation shows that decreased with the increasing of delay time, the tendency became gently when the delay tine reach 15d and there is an obvious turning point when the delay tine reach 60d. From the angle of space, the decay rate of correlation increase with latitude and the decrease of height. Changes over time of CT global in three height fields and surface pressure are almost the same, two abrupt changes occurred during 1978-1982 and 1996-1998.
     (6) Further research on the spatial distribution of the North Pacific negative correlation center showes that:the strong correlation centers associated with the North Pacific negative correlation center consistent from low-to-high levels, mainly in three regions:the central equatorial Pacific (center A) and the Bering Strait (center B), and southeastern North American continent (center C). The cumulative effect of correlation among North Pacific and the other three centers are as follows:we can get clear negative centers in the North Pacific region on all levels. The negative center moves from low to high by the following rules:first eastward, then westward; first moved south, moving north after; and changes have occurred both on the 500hpa height field. On surface pressure field, the correlation between the center C and the North Pacific region is the weakest, on the other levers, the most significant center correlated to the North Pacific region is the center A.
引文
[1]Wallace J M, Gutzler D S, Teleconnection in the geopotential height field during the Northern Hemisphere winter, Mon. Wea. Rev.,1981,109:784-812;
    [2]赵宗慈,高学志,罗勇等,气候模式作年季预报的几个问题,LASG, Technical Report,1997,3:78-90:
    [3]王艳玲,郭品文,春季北方气旋活动的气候特征及与气温和降水的关系,南京气象学院学报,2005,28(3):391-397;
    [4]陈兵,郭品文,向渝川,夏季低空越赤道气流与ENSO的关系,南京气象学院学报,2005,28(1):36-43;
    [5]Li Chongyin, Zhou Wen, Jia Xiaolong et al., Decadal/Interdecadal variation of the ocean temperature and its impacts on climate, Adv. Atmos. Sci.,2006,23 (6):964-981;
    [6]余锦华,荣淑艳,任健,青藏高原地表温度对华北汛期降水变化的影响,气象科学,2005,25(6):579-586;
    [7]晏红明,肖子牛,中国西南汛期降水的振动和分布及其与印度洋海温异常的关系,气象科学,2001,21(1):54-63;
    [8]谢付莹,何金海,华北夏季降水与哈得孙湾海冰的相关分析,南京气象学院学报,2003,26(3):308-316;
    [9]王兰宁,田武文,黄祖英等,西北地区东部夏季温度特征及与热带SSTA的相关关系,气象科学,2000,20(1):23-29;
    [10]林学椿,统计天气预报中相关系数的不稳定性,大气科学,1978,3(2):55-63;
    [11]丁裕国,气象变量间相关系数的序贯检验及其应用,南京气象学院学报,1987,23:340-347;
    [12]朱盛明,相关系数稳定性分析及其应用,气象学报,1982,49(4):113-117;
    [13]Guhr T, Muller-Groeling A, WeidenmUller H A, Random-Matrix theories in quantum physics: common concepts, Phys. Rep.,1998,299,189-425;
    [14]Efetov K B, Supersymmetry in Disorder and Chaos, Cambridge University Press,1997;
    [15]Santhanam M S, Patra P K, Statistics of atmospheric correlations, Phys. Rev. E,2001,64: 016102;
    [16]龚志强,王晓娟,杨杰,封国林,环流系统空间关联结构特征及稳定性研究,中国科学(D辑),审搞中;
    [17]支蓉,龚志强,郑志海,周磊,基于矩阵理论的全球温度资料的尺度性研究,物理学报,2009,58(3):2113-2120;
    [18]Hoskins B J, Karoly D J, The steady linear response of a spherical atmosphere to thermal and orographic forcing, J. Atmos. Sci.,1981,38:1179-1196;
    [19]Hoskins B, Pearce R, Large-scale dynamical processes in the atmosphere, Academic Press, 1983,55-94;
    [20]Wang G L, Yang P C, Lv D R, On spatio-temporal series analysis and its application to predict the regional short term climate process, Advances in Atmospheric Sciences,2004, 21(2):296-299;
    [21]刘式达,刘式适,非线性动力学和复杂现象,北京:气象出版社,1989,249;
    [22]刘式达,刘式适,大气动力学,北京:北京大学出版社,1999,536;
    [23]Nitta T,1986, Long-term variations of cloud amount in west Pacific region, J. Meteor. Soc. Japan,64:373-390;
    [24]Nitta T, Maruyama T, Motoki T, Long-term variations of tropospheric circulations in western Pacific region as derived from GMS cloud winds, J. Meteor. Soc. Japan,1986,64:895-911;
    [25]Horel J D, Wallace J M, Planetary-scale atmospheric phenomena associated with the Southern Oscillation, Mon. Wea. Rev.,1981,109:813-829;
    [26]Walker G T, Bliss E W, World weather Ⅱ, Mem. India. Meteor. Dep.,1924,24:275-332;
    [27]Walker G T, Bliss E W, World weather V, Mem. Roy. Meteor. Soc.,1932,4:53-84;
    [28]Bjerknes J, A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus,1966,18:820-829;
    [29]Bjerknes J, Atmospheric teleconnections from the equatorial Pacific, Mon. Wea. Rev.,1969, 97:163-172;
    [30]Bjerknes J, Large scale atmospheric response to the 1964-1965 Pacific equatorial warming, J. Phys. Oceanogr.,1972,2:212-217;
    [31]Lamb P J, Peppler R A, North Atlantic Oscillation:concept and application, Bull. Am. Meteorol. Soc.,1987,68:1218-1225;
    [32]Keppenne C L, Ghil M, Adaptive filtering and prediction of Southern Oscillation Index, J. Geophys. Res.,1992,97:20449-20454;
    [33]Thompson D W J, Wallance J M, The Arctic Oscillation signature in wintertime geopotential height and temperature fields, Geophys. Res. Lett.,1998,25:1279-1300;
    [34]Nitta T, Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation, J. Meteor. Soc. Japan,1987,65:373-390;
    [35]黄荣辉,引起我国夏季旱涝的东亚大气环流异常遥相关及其物理机制的研究,大气科学,1990,14(1):108-117;
    [36]Lau K M, East Asia summer monsoon rainfall variability and climate teleconnection, J. Meteor. Soc. Japan,1992,70:211-242;
    [37]Ding Qinghua, Wang Bin, Circum global teleconnection in the Northern Hemisphere summer, J. Climate,2005,18:3483-3506;
    [38]符淙斌等,El Nino时期赤道增暖的两种类型,科学通报,1985,30:596-599;
    [39]臧恒范,王绍武,1854-1987年期间的埃尔尼诺与反埃尔尼诺事件,海洋学报,1991,13:26-34;
    [40]ENSO监测小组,埃尔尼诺事件的划分标准和指数,气象,1989,15:37-38;
    [41]王世平,埃尔尼诺事件的判据、分类和特征,海洋学报,1991,13:612-620;
    [42]王绍武,1860-1979年间的厄尔尼诺事件,科学通报,1985,30:927-931;
    [43]Wright P B, Relationships between indices of the Southern Oscillation, Mon. Wea. Rev.,1984, 112:1913-1919;
    [44]Angell J K, Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern pacific, Mon. Wea. Rev.,1981,109:230-243;
    [45]Douglas A V, Engelhart P J, On a statistical relationship between autumn rainfall in the central equatorial Pacific and subsequent winter precipitation in Florida, Mon. Wea. Rev., 1981,109:2377-2382;
    [46]Derlage H P, The Southern Oscillation, a 2-3 year fundamentals oscillation of worldwide significant, Scientific Proceedings of the International Association of Meteorology, Rome, 1954;
    [47]Quinn, W H, Burt M V, Use of the Southern Oscillation in weather prediction, J. Appl. Meteor.,1972,11:616-628;
    [48]Wright P B, An index of the Southern Oscillation, Climatic Research Unit research publication,1975;
    [49]Trenberth E K, Spatial and temporal Variations of the Southern Oscillation, Quart. J. Roy. Meteor. Soc.,1976,102:639-653;
    [50]Egger J, Meyer G, Wright P B, Press, wind and cloudiness on the tropical Pacific related to the Southern Oscillation, Mon. Wea. Rev.,1981,109:1139-1149;
    [51]Van Loon H, Madden R A, The Southern Oscillation, part I:Global association with pressure and temperature in Northern Winter, Mon. Wea. Rev.,1981,109:1150-1162;
    [52]Mcbrid J L, Nicholls N, Seasonal relationships between Australian rainfall and the Southern Oscillation, Mon. Wea. Rev.,1983,111:517-528;
    [53]Ropelewski C F, Jones P D, An extension of the Tahiti-Darwin Southern Oscillation Index, Mon. Wea. Rev.,1987,115:2121-2165;
    [54]Montgomery R B, Report on the work of G T Walker, Mon. Wea. Rev.,1940,39:1-22;
    [55]Rogers J C, The association between the North Atlantic Oscillation and the South Oscillation in Northern hemisphere, Mon. Wea. Rev.,1984,112:1999-2015;
    [56]Moses T, Kiladis G N, Diaz H F, Barry R G., Characteristics and frequency of reversals in mean sea level pressure in North Atlantic sectors and their relationship with long-term temperature trends, J. Climate.,1987,7:13-30;
    [57]Barston A G, Livezey R E, Classification, seasonality and persistence of low frequency atmospheric patterns, Mon. Wea. Rev.,1987,105:1083-1126;
    [58]龚道溢,王绍武,北大西洋涛动指数的比较及其年代际变率,大气科学,2000,24(2):187-192:
    [59]Leathers D J, Palecki N A, The Pacific/North American teleconnection pattern and United climate Ⅱ:temperature characteristics and index specification, J. Climate,1992,5:707-716;
    [60]Shukla J, Wallace J M, Numerical simulation of the atmospheric response to equatorial sea surface temperature anomalies, J. Atmos. Sic.,1983,40:1613-1630;
    [61]Tokioka T, Yamazaki K, Chiba M, Atmospheric response to the sea surface temperature anomalies observed in early summer of 1983:a numerical experiment, J. Meteor. Soc. Japan, 1985,63:565-588;
    [62]Huang R H, Physical mechanism of influence of heat source anomaly over low latitudes on general circulation over Northern Hemisphere in winter, Scientia Sinica(Series B),1986,29: 970-985;
    [63]Zhu Q G, Shi N, Variations in the teleconnection intensity indices and their remote response to the El Nino events in the Northern Hemisphere, Acta. Meteor. Sinica.,1992,6(4):443-445;
    [64]施能,北半球冬季大气环流遥相关的长期变化及其与中国气候变化的关系,气象学报, 1996,54(6):675-673;
    [65]Huang R H, Wu Y F, The influence of the ENSO on the summer climate in China and its mechanism, Adv. Atmos. Sci.,1989,6:21-32;
    [66]Kerr R, A new force in high-latitude climate, Science,1999,284:241-242;
    [67]Cutlip K, Northern influence, Weatherwise,2000,53(2):10-11;
    [68]Thompson D W, Wallace J M, Hegerl G C, Annular modes in the extratropical circulation, J. Climate,2000,13(5):1018-1036;
    [69]Gong D Y, Wang S W, Zhu J H, East Asian winter monsoon and Arctic Oscillation, Geophys. Res. Lett.,2001,28:2073-2076;
    [70]Thompson D W, Regional climate impacts of Northern Hemisphere annular mode,2001, Science,293:85-89;
    [71]Rigor IG, Colony R L, Martin S, Variations in surface air temperature observations in the Arctic 1979-97, J. Climate,2000,13(5):896-914;
    [72]Gong D Y, Ho C H, The Siberian High and climate change over middle to high latitude Asia, Theoretical and Applied Climatology,2002,72:1-9;
    [73]Overland J E, Adams J M, Bond N A, Decadal variability of the Aleutian low and its relation to high-latitude circulation, J. Climate,1999,12(5):1542-1548;
    [74]Gong D Y, Ho C H, Arctic Oscillation signals in East Asian summer monsoon, Journal of Geophysical research-Atmospheres,2003,108:1-7;
    [75]Hurrell J W, Influence of variations in extra-tropical wintertime teleconnections on Northern hemisphere, Geophy. Res. Lett.,1996,23:665-668;
    [76]Hurrell J W, Decadal trends in North Atlantic Oscillation:regional temperatures and precipitation, Science,1995,269:676-679;
    [77]Hurrell J W, and Van Loon H, Decadal variations in climate association with the North Atlantic Oscillation, Climatic Change,1997,36:301-326;
    [78]Hilmer M, Jung T, Evidence for a recent change in the link between the north Atlantic oscillation and Arctic sea ice export, Geophy. Res. Lett.,2000,27(7):980-992;
    [79]龚道溢,王绍武,大气环流因子对北半球气温变化影响的研究,地理研究,1999,18(1):31-38:
    [80]符淙斌,曾昭美,最近530年冬季北大西洋涛动指数与中国东部夏季旱涝指数之联系,科学通报,2005,50(14):1511-1521;
    [81]李崇银,李桂龙,北大西洋涛动和北太平洋涛动的演变与20世纪60年代的气候突变,科学通报,1999,44(16):1765-1769;
    [82]Peng S L, Mysak L A, A teleconnection study of interannual sea surface temperature fluctuation in the Northern Atlantic and precipitation and runoff over western Siberia, J. Climate,1993,13:876-885;
    [83]Jones P D, Conway D, Precipitation in the British Isles:An analysis of area-average data update to 1995, Int. J. Climatology,1997,17:427-438;
    [84]Sinclair M R, Renwick J A, Kindson J W, Low-frequency variability of Southern Hemisphere sea level pressure and weather systemactivity, Mon.Wea.Rev.,1997,125:2531-2543.;
    [85]Hall A,Visbeck M, Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode, J.Climate,2002,15:3043-3057;
    [86]Thompson D W J, Lorenz D J, The signature of the annular modes in the tropical troposphere, J.Climate,2004,17:4330-4342;
    [87]Baldwin M P, Annular modes in global daily surface pressure, Geophys. Res. Lett.,2001,28: 4115-4118.;
    [88]Nan S N, Li J P, The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode, Geophys. Res. Lett.,2003, 30:2266-2269;
    [89]南素兰,李建平,春季南半球环状模与长江流域夏季降水的关系I:基本事实,气象学报,2005,63:837-846;
    [90]Rogers J R, Van Loon H, Spatial variability of sea level pressure and 500hPa height anomalies over the Southern Hemisphere, Mon. Wea. Rev.,1982,110:375-392;
    [91]薛峰,王会军,何金海,马斯克林高压和澳大利亚高压的年际变化及其对东亚夏季风降水的影响,科学通报,2003,48(3):287-291;
    [92]范可,王会军,南极涛动的年际变化及其对东亚冬春季气候的影响,中国科学(D辑),2006,36(4):385-391;
    [93]丁一汇,孙颖,国际气候变化研究新进展,气候变化研究进展,2006,2(4):161-167;
    [94]Jones, P D, Hemispheric surface air temperature variations:a reanalysis and an update to 1993, J. Climate,1994,7:1794-1802;
    [95]Hansen J, Lebedeff S, Global trends of measured surface air temperature, J. Geophys. Res., 1987,92:13345-13372;
    [96]Vinnikov K Y, Empirical on contemporary global climate change (temperature and precipitation), J. Climate,1990,3:662-667;
    [97]Mitchell J M, Recent secular changes of global temperature, Ann. NYAcad. Sci.,1961,95: 235-250;
    [98]Borzenkova I L, Vinnikov K Y, Spirina L P et al., Change in the air temperature of the Northern Hemisphere for the period 1881-1975, Meteor. Gidrol.,1976,7:27-35;
    [99]Jones P D, Wigley T M L, Kelly P M, Variations in surface air temperature:part 1, Northern Hemisphere,1881-1980, Mon. Wea. Rev.,1982,110:59-72;
    [100]Jones P D, Hemispheric surface air temperature variations:recent trends and an update to 1987, J. Climate,1988,1:654-660;
    [101]竺可桢,中国近五千年来气候变迁的初步研究,中国科学,1973,2:168-189;
    [102]涂长望,关于二十世纪气候变暖的问题,陶诗言、涂长望文集,北京;气象出版社,2000:345-347;
    [103]王绍武,龚奇儿,钮芬兰,我国气候振动的研究,北京大学学报(自然科学版),1963,31(4):343-358;
    [104]张先恭,李小泉,本世纪我国气温变化的某些特征,气象学报,1982,40(2):198-208;
    [105]屠其璞,近百年来我国气温变化的趋势和周期,南京气象学院学报,1984,2:151-162;
    [106]王绍武,近百年我国及全球气温变化趋势,气象,1990,16(2):11-15;
    [107]王绍武,叶瑾琳,龚道溢等,近百年中国年气温序列的建立,应用气象学报,1998,9(4):392-401;
    [108]唐国利,林学椿,1921-1990年我国气温序列及变化趋势,气象,1992,18(7):3-6;
    [109]丁一汇,戴晓苏,中国近百年来的温度变化,气象,1994,20(12):19-26;
    [110]林学椿,于淑秋,唐国利,中国近百年温度序列,大气科学,1995,19(5):525-534;
    [111]陈隆勋,邵永宁,张清芬,任阵海,田广生,近四十年我国气候变化的初步分析,应用气象学报,1991,2:164-173;
    [112]李建平,史久恩,一百年来全球气候突变的检测与分析,大气科学(增刊),1993,132-1401:
    [113]王绍武,叶瑾林,近百年全球气候变暖的分析,大气科学,1995,19(5):545-553;
    [114]符淙斌,王强,南亚夏季风长期变化中的突变现象及其与全球迅速增暖的同步性,中国科学(B辑),1991,6:666-672;
    [115]Fu Congbin, Large Signals of Climate Variation over the Ocean in the Asian Monsoon Region, Advances in Atmospheric Sciences,1988,5(4):389-404;
    [116]衣育红,王绍武,80年代全球气候突然变暖,科学通报,1992,6:528-531;
    [117]Nitta T, Yamada S, Recent Warming of Tropical Sea Surface Temperature and Its Relationship to the Northern Hemisphere Circulation, Journal of the Meteorological Society of Japan,1989,67(3):375-383;
    [118]Trenberth K E, Recent Observed Interdecadal Climate Changes in the Northern Hemisphere, Bulletin American Meteorological Society,1990,71(7):988-993;
    [119]Lau K M, Weng H, Interannual, Decadal-Interdecadal, and Global Warming Signals in Sea Surface Temperature duringl955-1997, J. Climate,1999,12:1257-1267;
    [120]Zhang Yuan, Wallace J M, Battisti D S, ENSO-like Interdecadal Variability:1900-1993, J. Climate,1997,10:1004-1020;
    [121]王绍武,全球气候变暖与未来发展趋势,第四纪研究,1991,3:269-276;
    [122]王绍武,全球气候变暖的检测及成因分析,应用气象学报,1993,4:226-236;
    [123]王绍武,近百年气候变化与变率的诊断研究,气象学报,1994,52:261-273;
    [124]Gordon A H, Interhemispheric contrasts of mean global temperature anomalies, Int. J. Climatology,1992,12(1):1-11;
    [125]王绍武,董光荣,中国西部环境特征及其演变,中国西部环境演变评估(第一卷),北京:科学出版社,2002,29-70;
    [126]翟盘茂,任福民,中国近四十年最高最低温度变化,气象学报,1997,55(4):418-429;
    [127]施能,陈家其,屠其璞,中国近100年来4个年代际的气候变化特征,气象学报,1995,53(4):431-439;
    [128]章名立,符淙斌,王铭如等,七十年代全球地面气温的初步研究(三)—我国东北冷、暖夏年全球温度场的分布,大气科学,1983,7(1):23-32;
    [129]莫振光,屠其璞,我国气温变化对北半球增暖的响应,气象出版社:我国短期气候变化及成因研究,1996,11-17;
    [130]Rasmusson E M, Carpenter T, Variations in the tropical sea surface temperature and surface wind fields associated with the Southern Oscillation EL Nino, Mon. Wea. Rev.,1982, 110:354-384;
    [131]Rasmusson E M, Wallace J M, Meteorological of El nino/Southern Oscillation, Science, 1983,222:1195-1202;
    [132]Fu C B, Fletcher J, Diaz H, Characteristics of the response of sea surface temperature in central Pacific associated with warm episodes of Southern Oscillation, Mon. Wea. Rev.,1986, 114:1716-1738;
    [133]Kurihara K, Kawahara M, Extremes of East Asian weather during the post ENSO years of 1983/84 severe cold winter and hot summer, J. Meteor. Soc. Japan,1986,64:494-503;
    [134]Kurihara K, A climatological study on the relationship between the Japanese summer weather and the subtropical high in the western Northern Pacific, Geophy. Mag.,1989,43: 45-104;
    [135]黄荣辉,孙凤英,热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响,大气科学,1994,18(2):141-151;
    [136]黄荣辉,周连童,关于我国重大气候灾害特征、形成机理和预测研究,灾害学报,2002,11:1-9;
    [137]Wyrtki K, Some thoughts about the West Pacific Pool, Proceedings of the Western Pacific international Meeting and Workshop on Yoga-Coare, Noumea, New Caledonia, Orstom,1989, 89-109;
    [138]翁学传,张启龙,颜廷壮,热带西太平洋暖池及其与南方涛动和副热带高压的关系,海洋科学集刊,1998,40:35-40;
    [139]张启龙,翁学传,颜廷壮,西太平洋暖池海域SST的时空特征,海洋与湖沼,2001,32(4):349-354;
    [140]周春平,李万彪,大洋暖池特征变化和成因的研究,北京大学学报,1998,34(1):40-49;
    [141]Webster P J, Lucas R, Toga Coare:The coupled ocean-atmosphere response experiment, Bull. Amer. Meteor. Soc.,1992,73:1377-1416;
    [142]Wang C, Enfield D B, The tropical Western Hemisphere warm pool, Geophysical Research Letters,2001,28:1635-1638;
    [143]李崇银,气候动力学引论,北京:气象出版社,2000,515;
    [144]White B B, Meyes G A, Songuy J R et al., Short-term climatic variability in the thermal structure of the Pacific Ocean during 1979-1982, J. Phys. Oceanogr.,1985,15:917-935;
    [145]黄荣辉,傅云飞,关于ENSO循环动力学研究的若干进展与问题,灾害性气候的过程及诊断,北京:气象出版社,1996:172-188;
    [146]龙宝森,李伯成,邹娥梅,热带西太平洋暖池异常东伸与热带东太平洋增温,海洋学报,1990,20(2):35-42;
    [147]Kessler W S, Mean three-dimensional circulation in the northeast tropical Pacific, J. Phys. Oceanogr.,2002,32 (9):2457-2471;
    [148]张启龙,侯一筠,程明华等,东太平洋暖池,水科学进展,2006,17(5):676-684;
    [149]陈烈庭,金祖辉,罗绍华,印度洋和南海海温的变化特征及其与大气环流的某些联系,海洋学报,1985,7:103-110;
    [150]Saji N H, Goswami B N, Viayachandrom P N et al., A dipole mode in the tropical Indian Ocean,Nature,1999,401:360-363;
    [151]Webster P T, Moore A M, Loschning J P et al., Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-1998, Nature,1999,401:356-360;
    [152]Qian W, Hu H, Zhu Y, Thermocline oscillationan dwarming event in the tropical Indian ocean, Atmosphere-Ocean,2003,41:241-258;
    [153]Li C Y, Mu M Q, The influence of the Indian Ocean dipoleon atmospheric circulation and climate, Advances in Atmospheric Sciences,2001,18(5):831-843;
    [154]Li C Y, Mu M Q, Pan J. Indian Ocean temperature dipole and SSTA in the equatorial Pacific Ocean, Chinese Science Bulletin,2002,47:236-239;
    [155]Xiao Z N, Yan H M, Li C Y, Relationship between dipole oscillations of SSTA of Indian Ocean region and precipitation and temperature in China, Journal of Tropical Meteorology, 2002,8(2):121-131;
    [156]Mantua N J, Hare S R, Zhang Y, A Pacific inter-decadal climate oscillation with impacts on salmon production, Bull. Amer. Meteor. Soc.,1997,78,1069-1079;
    [157]Tourre Y M, Rajagopalan B, Kushnir Y et al., Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20th Century, Geophys. Res. Lett.,2001,28: 2069-2072;
    [158]Minobe S A,5070 year climate oscillation over the North Pacific and North America, Geophys. Res. Lett.,1997,24:683-686;
    [159]Trenberth K E, Hurrell J W, Decadal air-sea variations in the Pacific, Climate Dyn.,1994,9: 303-319;
    [160]Kawamura R et al., Interdecadal and interannual variability in the northern extratropical circulation simulated with the JMA global model, J. Climate,1995,8:3006-3019;
    [161]范伶俐,夏冬季热带太平洋、印度洋海表温度年际异常的年代际变化,湛江海洋大学学报,2004,24(4):107-112;
    [162]Latif M, Barnett T P, Causes of decadal climate variability over the North Pacific and North America, Science,1994,266:634-637;
    [163]徐建军,王东晓,印度洋-太平洋海温的年际、年代际异常及其对亚洲季风的影响,海洋学报,2000,22(3):34-43;
    [164]Webster P J, The annual cycle and the predictability of the tropical coupled ocean to atmospheric forcing, J. Phys. Oceanogr,1995,56:33-55;
    [165]张春莹,陈星,赤道印度洋海温异常与偶极子季节变化特征,第四纪研究,2008,28(3):503-510;
    [166]Rajeevan M, Pai D S, Thapliyal V, Spatial and temporal relationships between global land surface air temperature anomalies and Indian summer monsoon rainfall, Meteo. Atmos. Phys., 1998,66(324):157-171;
    [167]周子康,俞连根,中国气候对全球气温增暖的响应,科技通报,1997,13(2):69-74;
    [168]张素琴,任振球,李松勤,全球温度变化对我国降水的影响,应用气象学报,1994,5(3):333-338;
    [169]陈烈庭,吴仁广,北方涛动同北半球温带大气环流的遥相关(一)—基本结构,大气科学,1991,15(4):26-34;
    [170]朱乾根,滕莺,徐国强,北太平洋中纬海温异常对中国东部夏季降水影响的可能途径,南京气象学院学报,2000,23(1):2-7;
    [171]刘宣飞,朱乾根,中国东部夏季降水的主相关型及其环流特征,南京气象学院学报,1999,22(2):238-245:
    [172]王叶红,王谦谦,赵玉春,长江中下游降水异常特征及其与全国降水和气温异常的关系,南京气象学院学报,1999,22(4):685-691;
    [173]陈烈庭,热带印度洋-太平洋海温纬向异常及其对亚洲夏季风的影响,大气科学,1988(特刊),142-148;
    [174]郭其蕴,王继琴,中国与印度夏季风降水的比较研究,热带气象学报,1988,4(1):53-60;
    [175]肖子牛,晏红明,EL Nino位相期间印度洋海温异常对中国南部初夏降水及初夏亚洲季风影响的数值模拟研究,大气科学,2001,25(2):173-183:
    [176]中国科学院大气物理研究所,海气相互作用与旱涝长期预报,北京:科学出版社,1978,1212;
    [177]王善华,钞焕玲,黄河中游降水与太平洋海温、南方涛动的关联,气象科学,1993,13(1):47-55;
    [178]陈兴芳,赵振国,中国汛期降水预测研究及应用,北京:气象出版社,2000,89-91;
    [179]陈烈庭,东太平洋赤道地区海水异常对热带大气环流及我国汛期降水的影响,大气科学,1977,1:1-12;
    [180]丁一汇,高等天气学,北京:气象出版社,1991,745-766;
    [181]余志豪,蒋全荣,厄尔尼诺、反厄尔尼诺和南方涛动,南京:南京大学出版社,1994:262-325;
    [182]陈烈庭,太平洋海气相互作用时空变化,气象学报,1983,41(3),296-304;
    [183]Yu R C, Zhang M H et al., Summer Monsoon Rainfalls Over Mid-Eastern China Lagged Correlated with Global SSTs, Advances in Atmospheric Sciences,2001,18 (2):179-196;
    [184]张耀存,卢新平等,冬春季海温异常关键区对长江中下游夏季降水影响的敏感性试验,气象科学,1998,18(2):150-155;
    [185]吴国雄,王敬方,1998,夏季中高纬500 hPa高度和海表温度异常特征及其相关分析,气象学报,56(1):46-54;
    [186]李勇,陆日宇,何金海,太平洋西部遥相关型与赤道中东太平洋海温的关联性和独立性,自然科学进展,2006,16(8):1051-1055;
    [187]陈烈庭,北太平洋副热带高压与赤道东部海温的相互作用,大气科学,1982,6(2):148-156。
    [1]刘式达,刘式适,大气动力学,北京:北京大学出版社,1999,536;
    [2]Shi N, An improved south Asian summer monsoon index with Monte Carlo test, Chin. Phys., 2005,14(4):844-849;
    [3]Dai X G, Fu Z B, Wang P, Interdecadal change of atmospheric stationary waves and North China drought, Chin. Phys.,2005,14(4):850-858;
    [4]Keppenne C L, Ghil M, Adaptive filtering and prediction of Southern Oscillation Index, J. Geophys. Res.,1992,97:20449-20454;
    [5]Lamb P J, Peppler R A, North Atlantic Oscillation:concept and application, Bull. Am. Meteorol. Soc.,1987,68:1218-1225;
    [6]Walker G T, Bliss E W, World weather V, Mem. Roy. Meteor. Soc.,1932,4:53-84;
    [7]龚道溢,王绍武,南极涛动,科学通报,1998,43(3):296-301;
    [8]胡隐樵,大气热力学导论—大气非平衡态非线性热力学,北京:地质出版社,2002,406;
    [9]Charney J G, Fleagle V E, Lally V E, The feasibility of a global observation and analysis experiment, Bull. Amer. Meteor. Soc.,1966,47:200-220;
    [10]Lorenz E N, Atmospheric predictability as revealed by naturally ocurring analogues, J. Atmos. Sci.,1969,26:636-646;
    [11]Lorenz E N, The predictability of a flow which possesses many scales of motion, Tellus., 1969,21:289-307;
    [12]Smagorinsky J, Problems and promises of deterministic extended range forecasting, Bull. Amer. Meteor. Soc.,1969,50:286-312;
    [13]Lorenz E N, Deterministic Nonperiodic Flow, J. Atmos. Sci.,1963,20 (3):130-141;
    [14]丑纪范,徐明,中国短期数值预报的进展和前景,科学通报,2001,46(11):890-895;
    [15]洪梅,张韧,何金海,基于动力统计模型重构的副热带高压中长期预报,气象学报,2006,64(6):780-789;
    [16]李建平,丁瑞强,短期气候可预报性的时空分布,大气科学,2008,32(4):975-986;
    [17]Xiao D, Li J P,2007, Spatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in 1970s, J. Geophys. Res.,112, D24S22, doi: 10.1029/2007JD008956;
    [18]肖栋,李建平,全球海表温度场中的年代际突变及其模态,大气科学,2007,31(5):839-854;
    [19]封国林,龚志强,董文杰,李建平,基于启发式分割算法的气候突变检测研究,物理学报,2005,54(11):5494-5499:
    [20]Wang G L, Yang P C, Lu D R, The spatio-temporal series method and tests of its predictable ability, Chinese Journal of Atmospheric Sciences,2005,29(1):82-90;
    [21]Kistler R, Kalnay E, Collins W et al., The NCEP/NCAR 50-year reanalysis:Monthly means CD-ROM and documentation, Bull. Amer. Meteor. Soc.,2001,82,247-262;
    [22]Gibson J K, Kallberg P, Uppala S etal., ERA description, ECMWF reanalysis project report series, ECMWF,1997, Reading,66pp;
    [23]Uppala S, ECMWF reanalysis,1957-2001, ERA40, ERA40 Project Report Series,2002,3: 1210;
    [24]黄刚,NCEP/NCAR和ERA240再分析资料以及探空观测资料分析中国被反地区年代际气候变化,气候与环境研究,2006,11(3):310-320;
    [25]Inoue T, Matsumoto J, A comparison of summer sea level pressure over East Eurasia between NCEP/NCAR reanalysis and ERA40 for the period 1960-1999, J. Meteor. Soc. Japan,2004,82: 951-958;
    [26]Josey S A, A comparison of ECMWF, NCEP/NCAR and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic, J. Climate,2001, 14:1780-1789;
    [27]Murirhead R J, Aspects of multivariate Statistical Theory, Wiley:New York,1982, p308;
    [28]Dyson F J, Distribution of Eigenvalues for a Class of Real Symmetric Matrices, Rev. Mex. Fis.,1971,20:231-237;
    [29]Sengupta A M, Mitra P P, Distributions of singular values for some random matrices, Phys. Rev. E,1999,60:3389-3392;
    [30]Bowick M J, Brezin E, Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. Lett. B,1991,268:21-28;
    [31]Laloux L, Cizeau P, Bouchaud J P, Potters M, Noise Dressing of Financial Correlation Matrices, Phys. Rev. Lett.,1999,83:1467-1470;
    [32]Campbell J, Lo A W, MacKinlay A C, The Econometrics of Financial Markets, Princeton: Princeton University Press,1997,218;
    [33]Garas A., Argyrakis P, Correlation study of the Athens Stock Exchange, Physica A,2007,380: 399-410;
    [34]Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N, Stanley H E, Universal and No universal Properties of Cross Correlations in Financial Time Series, Phys. Rev. Lett.,1999,83: 1471-1474;
    [35]Wilks D S, Statistical Methods in Atmospheric Sciences, London:Academic Press,1995, 375;
    [36]Tsonis A A, Roebber P J, Elsner J B, A characteristic time scale in the global temperature record, Geophy. Res. Lett.,1998,25(15):2821-2823.
    [1]IPCC, Climate Change 2001:The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press,2001;
    [2]Zeng Z M, Yan Z W, Ye D Z, The regions with the most significant temperature trends during the last century, Adv. Atmos. Sci.,2001,18:480-496;
    [3]严中伟,曾昭美,本世纪两次温跃层跃变的比较分析,中国气候灾害的分布和变化,黄 荣辉等主编,北京:气象出版社,1996,277-283;
    [4]Schlesinger, M E, Ramankutty N, An Oscillation in the global climate system of period 65-70, Nature,1994,367:723-726;
    [5]江志红,屠其璞,施能,多窗谱分析方法(MTM)及其在全球变暖研究中的应用,气象学报,2001,59(4):480-490;
    [6]江志红,屠其璞,南北半球平均温度年代际振荡的非均衡性及其变暖显著性的影响,热带气象学报,2003,19(2):128-140;
    [7]Jones P D, Hemispheric surface air temperature variations:a reanalysis an update to 1993, J. Climate,1994,7:1794-1802;
    [8]Hansen J, Lebedeff S, Global trends of measured surface air temperature, J. Geophys. Res., 1987,92:13345-13372;
    [9]Vinnikov K Y, Empirical on contemporary global climate change (temperature and precipitation), J. Climate,1990,3:662-667;
    [10]IPCC, Climate Change 2001:The Scientific Basis, J. T. Houghton et al., Cambridge University Press,2001;
    [11]Kistler R, Kalnay E, Collins W, The NCEP-NCAR 50-year reanalysis:Monthly means CD-ROM and documentation, Bull. Amer. Meteor. Soc.,2001,82:247-268.
    [1]IPCC, Climate Change 2001:The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press,2001;
    [2]江志红,屠其璞,施能,多窗谱分析方法(MTM)及其在全球变暖研究中的应用,气象学报,2001,,59(4):480-490;
    [3]江志红,屠其璞,南北半球平均温度年代际振荡的非均衡性及其变暖显著性的影响,热带气象学报,2003,19(2):128-140;
    [4]Zeng Z M, Yan Z W, Ye D Z, The regions with the most significant temperature trends during the last century, Adv. Atmos. Sci.,2001,18:480-496;
    [5]严中伟,曾昭美,本世纪两次温跃层跃变的比较分析,中国气候灾害的分布和变化,黄荣辉等主编,北京:气象出版社,1996,277-283;
    [6]Karl T R, Kukla G, Razuvayev V N, Changery M J, Quayle R G, Heim Jr R R, Easterling D R, Fu C B, Global warming:Evidence for asymmetric diurnal temperature change, Geophys. Res. Lett.,1991,18:2253-2256;
    [7]Changnon S A, Pielke Jr R A, Changnon D, Sylves R T, Pulwarty R, Human factors explain the increased losses from weather and climate extremes, Bull. Amer. Meteor. Soc.,2000,81: 437-442;
    [8]Easterling D R, Evans J L, Groisman P Y, Karl T R, Kunkel K E, Ambenje P, Observed Variability and Trends in Extreme Climate Events:A Brief Review, Bull. Amer. Meteor. Soc., 2000,81:417-425;
    [9]陈隆勋,邵永宁,张清芬,任阵海,田广生,近40年我国气候变化的初步分析,应用气象学报,1991,2(2):164-174;
    [10]林学椿,于淑秋,唐国利,中国近百年温度序列,大气科学,1995,19(5):525-534;
    [11]李建平,史久恩,一百年来全球气候突变的检测与分析,大气科学(增刊),1993,17:132-140;
    [12]丁一汇,戴晓苏,中国近百年来的温度变化,气象,1994,20(12):19-26;
    [13]Frich P, Alexander L V, Della-Marta P, Gleason B, Haylock M, Klein Tank A M, Peterson T, Observed coherent changes in climatic extremes during the second half of the twentieth century Climate Research,2002,19:193-212;
    [14]Kistler R, Kalnay E, Collins W, The NCEP-NCAR 50-year reanalysis:Monthly means CD-ROM and documentation Bull. Amer. Meteor. Soc.,2001,82:247-268;
    [15]翟盘茂,潘晓华,中国北方近50年温度和降水极端事件变化,地理学报,2003,58(增刊):1-10。
    [1]竺可桢,东南季风与中国之雨量,地理学报,1934,1:1-227;
    [2]陶诗言,赵煜佳,陈晓敏,东亚的梅雨期与亚洲上空大气环流季节变化的关系,气象学报,1958,29:119-134:
    [3]陈隆勋,罗绍华,夏季亚洲季风环流结构及大气季节变化的关系,1980年热带天气会议论文集,北京:科学出版社,1982:82-92:
    [4]陈隆勋,东亚季风系统的结构及其中期变动,海洋学报,1984,6(6):744-758;
    [5]Tao S Y, Chen L X, A review of recent research on the East Asian Summer Monsoon in China, Monsoon Meteorology, Oxford university press,1987:61-92;
    [6]吕炯,海温异常与水旱问题,气象学报,1950,21(1):12-15;
    [7]黄荣辉,孙凤英,热带西太平洋暖池的热状况及其上空的对流活动对东亚夏季气候异常的影响,大气科学,1994,18(2):141-151;
    [8]吴国雄,刘还珠,降水对热带海表温度异常的邻域I:数值模拟,大气科学,1995,19(4):422-434:
    [9]张琼,刘平,吴国雄,印度洋和南海海温与长江中下游旱涝.大气科学,2003,27(6):992-1006;
    [10]简茂球,罗会邦,乔云亭,印度洋—太平洋各季海温年际变异模的相关性及其与我国夏季汛期降水的关系,热带气象学报,2006,22(2):131-137;
    [11]孙林海,宋文玲,冬季积雪对我国夏季汛期降水预测的评估分析,气象,2001,27(8):24-27:
    [12]彭京备,陈烈庭,张庆云,青藏高原异常雪盖和ENSO的多尺度变化及其与中国夏季汛期降水的关系,高原气象,2005,24(3):366-377;
    [13]Van Den Dool H M, Searching for analogues, how long must we wait? Tellus,1994,46A: 314-324;
    [14]Huang J P, Yi Y H, Wang S W et al., An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution, Quart. J. Roy. Meteor. Soc.,1993,119: 547-565;
    [15]Chao J P, Guo Y F, Xin R N, A theory and method of long-range numerical weather forecasts, J. Meteor. Soc. Japan,1982,60,282-291;
    [16]Barnett T P, Preisendorfer R W, Multifield analog prediction of short-term climate fluctuations using a climate state vector, J. Atmos. Sci.,1978,35(10):1771-1787;
    [17]顾震潮,天气数值预报中过去资料的使用问题,气象学报,1958,29(3):176-184;
    [18]丑纪范,为什么要动力-统计相结合?—兼论如何结合,高原气象,1986,5(4):367-372;
    [19]丑纪范,天气数值预报中使用过去资料的问题,中国科学,1974,6:635-644;
    [20]曹鸿兴,大气运动的自忆性方程,中国科学B辑,1993,23(1):104-112;
    [21]封国林,曹鸿兴,魏凤英,丑纪范,长江三角洲汛期预报模式的研究及其初步应用,气象学报,2001,59(2):206-212;
    [22]Feng G L, Dong W J, Evaluation of the applicability of a retrospective scheme based on comparison with several difference schemes, Chinese Physics,2003,12(10):1076-1086;
    [23]Feng G L, Dong W J, Chou J F, Application of retrospective time integration scheme to the prediction of torrential rain, Chin. Phys.,2004,13(3):413-422;
    [24]达朝究,丑纪范,缓变地形下Rossby波振幅演变满足的带有强迫项的KdV方程,物理学报,2008,57(4):2595-2599;
    [25]任宏利,丑纪范,动力相似预报的策略和方法研究,中国科学(D辑),2007,37(8):988-993;
    [26]任宏利,丑纪范,统计—动力相结合的相似误差订正法,气象学报,2005,63(6):988-993:
    [27]任宏利,张培群,李维京,丑纪范,基于多个参考态更新的动力相似预报方法及应用,物理学报,2006,55(8):4388-4396;
    [28]任宏利,丑纪范,数值模式的预报策略和方法研究进展.地球科学进展,2007,22(4):376-385:
    [29]郑志海,黄建平,任宏利.基于季节气候可预报分量的相似误差订正方法和数值试验,物理学报,2009,58(10):7359-7367;
    [30]支蓉,龚志强,郑志海,周磊,基于矩阵理论的全球温度资料的尺度性研究,物理学报,2009,58(3):2113-2121;
    [31]Trenberth K E, Hurrell J W, Decadal atmosphere-ocean variations in the Pacific, Climate Dynamics,1994,9:303-319;
    [32]Trenberth K E, Hoar T J, The 1990-1995 El Nino-Southern Oscillation event:longest on record, Geophys Res. Lett.,1996,23:57-70.
    [1]杨培才,周秀骥,气候系统的非平稳行为和预测理论,气象学报,2005,63(5):556-570;
    [2]Feng G L, Dong W J, On physical basis of ensemble prediction, Chin Phys,2003,52(9): 243-249;
    [3]Li J P, Chou J F, Existence of the atmosphere attractor, Science in China (Series D),1997, 40(2):215-224;
    [4]侯威,封国林,高新全,基于复杂度分析冰芯和石笋代用资料时间序列的研究,物理学报,2005,54(5):477-483;
    [5]龚志强,封国林,万仕全,基于启发式分割算法检测华北和全球气候变化的特征,物理学报,2006,55(1):477-484;
    [6]Tsonis A K, Swanson K L, Roebber P J, What do networks have to do with climate? Bull. Amer. Meteor. Soc.,2006,87:585-595;
    [7]Tosnis A A, Kyle L S, The role tele-connection in atmosphere system, J. Climate,2008,21: 2990-3001;
    [8]封国林,董文杰,龚志强等,观测数据非线性时空分布理论和方法,北京:气象出版社,2006,230pp;
    [9]封国林,龚志强,支蓉,气候变化检测与诊断技术的若干新进展,气象学报,2008,66(6):40-53:
    [10]龚志强,支蓉,周磊,1-30d尺度温度关联网动力学统计性质研究,物理学报,2008,57(8):716-725:
    [11]支蓉,龚志强,郑志海,2009,基于矩阵理论的全球温度资料的尺度性研究,物理学 报,58(3):751-758;
    [12]丁一汇,天气动力学中的诊断分析,北京:科学出版社,1989,pp292;
    [13]丁一汇,中国的气候变化与气候影响研究,北京:气象出版社,1997,pp562;
    [14]廉毅,安刚,东亚季风、Elnino与中国松辽平原夏季低温关系初探,气象学报,1998,56(6):724-735;
    [15]廉毅,北太平洋涛动与东亚季风的相关研究,地理科学,2007,27(增刊):19-26;
    [16]Kalnay E et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteor. Soc.,1996, 77(3):437-472;
    [17]Kistler R, Kalnay E, Collins W, The NCEP/NCAR 50-year reanalysis, Bull. Amer. Meteor. Soc.,2001,82:247-268;
    [18]Wallace J M, Gutzler D S, Tele-connections in the geopotential height field during the Northern Hemisphere winter, Mon. Wea. Rev.,1981,109:784-812;
    [19]丁瑞强,李建平,2008,混沌系统可预报期限随初始误差变化规律研究,物理学报,57(12):86-91。
    [1]Li J P, Chou J F, Existence of the atmosphere attractor, Science in China (Series D),1997, 40(2):215-224;
    [2]侯威,封国林,高新全,基于复杂度分析冰芯和石笋代用资料时间序列的研究,物理学报,2005,54(5):477-483;
    [3]龚志强,封国林,万仕全,基于启发式分割算法检测华北和全球气候变化的特征,物理 学报,2006,55(1):477-484;
    [4]Wang G L, Yang P C, Lv D R, On spatio-temporal series analysis and its application to predict the regional short term climate process, Advances in Atmospheric Sciences,2004,21(2): 296-299;
    [5]刘式达,刘式适,非线性动力学和复杂现象,北京:气象出版社,1989,249;
    [6]刘式达,刘式适,大气动力学,北京:北京大学出版社,1999,536;
    [7]Wallace J M, Gutzler D S, Teleconnection in the geopotential height field during the Northern Hemisphere winter, Mon. Wea. Rev.,1981,109:784-812;
    [8]Tsonis A K, Swanson K L, Roebber P J, What do networks have to do with climate? Bull. Amer. Meteor. Soc.,2006,87:585-595;
    [9]Tosnis A A, Kyle L S, The role tele-connection in atmosphere system, J. Climate,2008,21: 2990-3001;
    [10]封国林,董文杰,龚志强等,2006,观测数据非线性时空分布理论和方法,北京:气象出版社,230pp;
    [11]封国林,龚志强,支蓉,2008,气候变化检测与诊断技术的若干新进展,气象学报,66(6):40-53;
    [12]龚志强,支蓉,周磊等,2008,1-30d尺度温度关联网动力学统计性质研究,物理学报,57(8):716-725:
    [13]支蓉,龚志强,郑志海,2009,基于矩阵理论的全球温度资料的尺度性研究,物理学报,58(3):751-758;
    [14]廉毅,安刚,1998,东亚季风、Elnino与中国松辽平原夏季低温关系初探,气象学报,56(6):724-735:
    [15]廉毅,北太平洋涛动与东亚季风的相关研究,地理科学,2007,27(增刊):19-26;
    [16]Kalnay E et al., The NCEP/NCAR 40-year reanalysis' project, Bull. Am. Meteor. Soc.,1996, 77(3):437-472;
    [17]Kistler R, Kalnay E, Collins W, The NCEP/NCAR 50-year reanalysis, Bull. Amer. Meteor. Soc.,2001,82:247-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700