用户名: 密码: 验证码:
城市生活垃圾填埋体的力学特性及降解沉降研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,随着城镇化建设的加快以及城镇人口的增加,越来越多的工业垃圾和生活垃圾出现在日常生活中,引起了严重的生态环境污染问题。目前国内外对垃圾主要采用填埋作业的方式进行处理,但是随着各种超大型垃圾填埋体的建设,填埋场的不规范填埋作业以及封场后因内部有机物质降解引起的滑坡灾害和不均匀沉降问题,给人居环境带来了巨大的威胁。本文从垃圾土抗剪强度影响机理出发,以重庆市长卫生桥垃圾填埋场的垃圾土样作为测试对象,从以下几个方面对垃圾土的力学及降解沉降特性进行了相关试验研究。
     1)为了研究有机物降解对垃圾土抗剪强度影响机理,并总结影响抗剪强度参数的相关因素(降解、含水率、有机物含量以及剪应变标准等),选取重庆市长生桥垃圾填埋场的垃圾土样作为研究对象,基于室内直剪试验和三轴固结排水试验,对新鲜重塑垃圾土和陈垃圾土的抗剪强度参数进行了测试;通过240d的降解-剪切试验,得出重塑新鲜垃圾土在0d~30d,其抗剪强度与垃圾土初始组成结构和预压应力有关,而受有机物含量以及降解程度的影响较小;抗剪强度随降解的进行在30d~240d,其粘聚力c在3.54kPa~22.24kPa之间变化,呈递增趋势;内摩擦角φ在27.86°~20.35°之间变化,呈先增后减的趋势;陈垃圾土的直剪试验表明,随着垃圾土中含水率的增加,其抗剪强度的整体趋势是减小的;陈垃圾土的三轴固结排水试验(CD)结果表明,随剪切应变标准的增大(5%~20%),抗剪强度呈递增趋势,其中粘聚力c从0kPa增大为66.42kPa,而内摩擦角φ从29°增大为38°。
     2)为了研究垃圾土蠕变-降解沉降特性,基于室内蠕变观测试验得到蠕变~降解沉降过程曲线(0d~360d),最后对沉降影响因素进行了详细分析。试验结果表明,因外部荷载和内部蠕变沉降引起的垃圾土总沉降量可达试样总高度的33.2%;填埋体中渗滤液在前期的溢出量受外部荷载和有机物中初始含水量控制;通过对不同有机物含量的垃圾土试样的降解沉降试验,得出垃圾土的累计沉降量和累计渗滤液产量之间符合指数函数关系;垃圾土中既有利于初期压缩变形,又有利于后期厌氧降解沉降的垃圾土中最优有机物含量区间为29.1%~36.47%;垃圾土内部温度监测结果显示,22℃~45℃是一个能够加速其内部有机物降解速率的温度区间,且在41℃时作用最大。本次研究结果可用于降解-沉降和温度场的分析,也可为进一步了解垃圾土的沉降特性提供理论支持。
     3)为了研究垃圾土的降解-蠕变沉降特性,通过对试样在室内分别进行加载压缩试验,测试了垃圾土在360d内其降解沉降变化特性,试验结果显示:垃圾土在好氧和厌氧降解阶段的变形特性符合弹塑性变形特征;根据蠕变理论和垃圾土的实测变形特点,推导了符合其变形特性的Burgers蠕变沉降模型,并对该模型的正确性进行了验证,发现该模型能够较好的模拟垃圾土在不同降解阶段的变形特性,并且能够为准确预测垃圾土的沉降以及计算后期填埋场的容量提供帮助。
     4)基于Mitchell三元导电模型和室内实测资料,在确定原状垃圾土试样的结构和土性参数基础上,推导了适合重庆长卫生桥填埋场垃圾土电阻率的计算模型。通过分析电阻率影响因素(孔隙率,渗滤液浓度,温度,湿密度等)得出当其它参数不变,而只改变其中一个变量时:电阻率随孔隙率的增加而呈幂函数减小;相比添加NaCl和ZnCl2溶液的垃圾土,孔隙率的增加对添加柴油时垃圾土电阻率的影响要大于前两者;在孔隙率一定时,渗滤液对垃圾土电阻率的影响受稀释作用控制,并且影响程度随含水率的增加而减小;随着随温度的升高,垃圾土电阻率呈线性递减趋势;在含水率一定时,孔隙率的变化是导致垃圾土中三种导电模式发生互相转化的主要原因,并对电阻率造成影响;最后采用高密度电阻率层析技术,对垃圾填埋体进行了尝试性测试,通过对比电阻率实测值和计算值,证明了电阻率模型的正确性,研究结果能够为分析垃圾填埋体渗滤液的含量和富集状态,以及评价垃圾土的力学特性供理论支持。
In recent decades, industrial and Municipal Solid Waste (MSW) production hasrapidly increased as a result of significant population growth in the global. As aeconomical disposal way of MSW, most of urban waste production were land filled intoregulated centers both in china and aborad. However, with the continuing increase ofMSW in the city, which can pose important environmental disasters. Based on themechanism evolution of landslides for the landfills, Chongqing landfill was selected forthe research and the the mechanical behavior of MSW was elaborately studied in thispaper as follows:
     1) In order to study the effect of biodegradation on the shearstrength as well asother related factors such as moisture content, organic content, shear strain standard onthe shear strength of MSW. Laboratory tests were applied during the process of organicmatter degradation in the specimens, which was collected from landfills located inChongqing area. The shear tests results during the240days shows that the shear strengthof shredded fresh samples in the initial phase (0d~30d) depends on initial structure andpre-compressive pressure, the effects of organic content and moisture content on shearstrength are not obvious; In the second phase(30d~240d), the shear strength ofcohesion c increases steadily from3.54kPa to22.24kPa while internal friction angle φincreased from14.41°to27.84°during the0~30days and then decreased gradually from27.86°to20.35°. Direct Shear tests results for landfills sample shows that the increaseof moisture content in the waste may caused the decreased of shear strength.Consolidated drained tri-axial tests result shows that the shear strength increasesprogressively as defined axial strain increases from5%to20%, corresponding cohesionc varies from0kPa to66.42kPa and internal friction angle φ ranges from29°to38°.
     2) In order to study the creep–degradation settlement properties of municipal solidwaste, the change of static-creep-settlement for fresh municipal solid wastes whichcollected from the Chongqing landfill were observed elaborately during the360daysLaboratory test. By analyzing leachate-degradation-strain-time relational curves, thenumber of total creep settlement caused by external load and inner degradation in thewaste can reach33.2%of the sample height, and the leachate production can becontrolled by the external load and organic content; the tests results indicated that thedegradation rule of MSW can be expressed as the Richards model,the relation of cumulative settlenment with cumulative leachate fitting the exponential function model;The corresponding section for organic content that suit for the initial compressiondeformation and the creep-degradation settlement could be ranged from29.1%to36.47%. During the monitoring for settlement and internal temperature field in theanaerobic reaction stage, a optimum temperature zones that varied from22℃to45℃were found and which could accelerate degradation speed of organic matters in thewaste, and it becoming more fasterwhen the temperature reached to41℃.With thepreliminary study for degradation-settlement and temperature field, the tests result willprovide some theoretical help for further settlement analysis in the waste and landfilldesign.
     3) The creep-settlement properties of municipal solid waste are investigated usingthe compressive experiments indoor. According to the experiment results, deformationof waste sample under respective loading condition is recorded and it can be expressedas elastic-plastic biodegradation induced model in both aerobic and anaerobic phases.Based on creep theory and monitored dates, a creep models called Burgers model isproposed which could better describe the deformation properties of landfills. Based onone dimension compression experiments and data available from published literature,the model parameters are obtained. In order to illustrate the applicability of proposedmodel, settlements due to respective loading of waste with time are predicted for typicallandfill conditions. The proposed Burgers models is capable of reproducing quite wellthe results obtained from tests performed in the laboratory as well as the settlementrecorded in sanitary landfills, both of creep model are valuable for predicting thecapacity calculation and settlement research of landfills.
     4) Based on the Mitchell’s three-Element conductive model and tests dates, A newlandfill resitivity model was estabilished after the structure and properties parameters oflandfill sample were determined and which was better suitable for ChongQing areas. Byanalysis the effect factors (temperature, moisture density, leachate concentration,porosity), Tests results shows (only one parameter is variable but the other parametersare unchanged): The resistivity of landfill decreased as the increase of porosity in thelandfill and their relationships could be represented by power equations. With morepollutants adding to the specimen, great change has been happened to oil pollutant thanadding NaCl、ZnCl2leachate with increasing porosity of landfill. Suppose the porosityof landfill is fixed, The effect of leachate on the resisitivity can mainly controlled by thedilution process of landfill, and which decreased with the rising of moisture content. The resistivity is liner against the temperature andwhich increased as the increase oftemperature during the aerobic and anaerobic phase in landfills. When assume themoisture content is constants, three kinds of conductive model may be changed due tothe change of porosity in the waste, and it could even cause a change for the electricalresistivity of MSW. Finally, a high-density resistivity chromatography is applied in thefield tests, and the comparison of electrical resistivity between tested value andcalculated was conducted the the results prove that the proposed electrical resistivitymodel is reasonable. These study results could better predict the leachate content in thewaste and evaluate the mechanic behavior in the landfill.
引文
[1] Sowers G F. Settlement of waste disposal fills[C]. Proc.8th Int. Conf. on Soil Mech. FoundEngng. Moscow, V2.2,1973,12(4):207-210.
    [2]王罗春.城市生活垃圾填埋场稳定化进程研究[D].上海:同济大学,1999.
    [3]孔德泉,万蓉.西安市固体废弃物卫生填埋场建设中的环境岩土工程问题研究[J].岩土力学,2008,29(增刊):583-586.
    [4]李国建,陈世和,邵立明.城市垃圾处理与处置[M].北京:中国环境科学出版社,1992.
    [5] Zhan T L, Chen Y M, Ling W A. Shear strength characterization of municipal solid waste atthe Suzhou landfill, China [J]. Engineering Geology,2008,97(3):97-111.
    [6]陈云敏,王立忠,胡亚元,等.城市固体垃圾填埋场边坡稳定分析[J].土木工程学报,2000,33(3):92-97.
    [7]重庆市环保“十二五”计划和2015年目标纲要[J].重庆环境科学,2012(4):9-11.
    [8]孙继军,曾照明,卢继强,等.城市垃圾填埋场安全稳定性分析[J].重庆环境科学,2003,25(12):30-31.
    [9]张乾飞,王艳明,徐永福,等.老填埋场改扩建中的关键环境岩土技术问题[J].土木工程学报,2007,40(4):73-81.
    [10]谢强,张永兴,张建华.重庆地区城市垃圾填埋场稳定化研究进程[J].地下空间,2003,23(3):330-334.
    [11] Eid H T. Stark T D. Evans W D. Sherry P E. Municipal solid waste slope failure. I: waste andfoundation soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(5),397–407.
    [12] Kavazanjian E. Merry S M. The10July2000Payatas landfill failure[C]. Proceedings ofSardinia'05-10th International Symposium Waste Management and Landfill (CD ROM),Cagliari, Italy,2005.
    [13] Merry S M. Kavazanjian Jr E. Fritz W U. Reconnaissance of the10July2000Payatas landfillfailure[J]. Journal of Performance of Constructed Facilities, ASCE,2005,19(2),100–107.
    [14]陈云敏,林伟岸,詹良通,等.城市生活垃圾抗剪强度与填埋龄期关系的试验研究[J].土木工程学报,2009,42(3):111-117.
    [15]王桂林,刘东燕,汪东云,等.重庆市城区固体废物填埋场现状及岩土环境问题[J].地下空间,2001,21(1):18-22.
    [16]钱学德,郭志平,施建永,等.现代卫生填埋场的设计与施工[M].北京:中国建筑工业出版社,2001.
    [17] Sowers G F. Foundation problems in sanitary landfills[J]. Geotechnical Special Publication,n118II,2002,1243-1256.
    [18] Bowles J E. Foundation analysis and design[M], McGraw-Hill, New York,1988.
    [19] Chang J C, Hannon J B. Settlement performance of two test highway embankments onsanitary landfill[C]. In Presented at International Symposium: New Horizons in ConstructionMaterials, Envo Publ Co, Inc, Lehigh Valley, Nov1-3,1976:139-157(No. Monograph).
    [20] Pozdnyakova L A. Electrical properties of soils[D]. University of Wyoming, Laramie, WY,1999.
    [21] Niu Jing, Tongju Zhang, Yijia He, Haiyan Zhou, Aihua Zhao, Youcai Zhao. Pretreatment oflandfill leachate using deep shaft aeration bioreactor (DSAB) in cold winter season[J]. J.Hazard. Mater.2013,(252):250-257.
    [22]钱学德,郭志平.城市固体废弃物(MSW)的工程性质[J].岩土工程学报,1998,20(5):1-6.
    [23] Yu Lingda, Guangfu Wang, Renjian Zhang, Leiming Zhang, Yu Song, Bingbing Wu, XufangLi, Kun An, Junhan Chu. Characterization and Source Apportionment of PM2.5in an UrbanEnvironment in Beijing[J]. Aerosol Air Qual. Res,2013,13(2):574–583.
    [24]朱向荣,王朝晖,方鹏飞.杭州天子岭垃圾填埋场扩容可行性研究[J].岩土工程学报,2002,24(3):281-285.
    [25]李晓红,梁峰,卢义玉,等.重庆市某垃圾填埋场填埋体的强度特性试验[J].重庆大学学报(自然科学版),2006,29(8):6-9.
    [26]赵瑜,李晓红,卢义玉,等.重庆市某卫生填埋场陈垃圾土的工程特性研究.重庆建筑大学学报,2008,30(3):32-40.
    [27]李国成,但堂辉,杨武超.城市固体垃圾的抗剪强度参数[J].重庆大学学报,2008,31(2):202-205.
    [28] VAN IMPE W. Environmental geotechnics: ITC5Activities-state of art[C]. In: Proceedings,3rd international congress on environmental geotechnics, Lisbon, Portugal,1998,(1-4):1163–1187.
    [29] Kavazanjian E, Bonaparte R, Schmertmann G R. Evaluation of MSW properties for seismicanalysis[J]. In Geoenvironment2000Characterization, Containment, Remediation, andPerformance in Environmental Geotechnics, ASCE,1995,(46):1126-1141.
    [30] Pelkey S A, Valsangkar A J, Landva A. Shear displacement dependent strength of municipalsolid waste and its major constituent[J]. ASTM Geotechnical Testing Journal,2001,24(4):381-390.
    [31]高文银,涂帆,肖朝郓,等.填埋场不同深度垃圾土反复直剪实验研究[J].环境工程学报,2010,4(5):1172-1176.
    [32] Thomas S, Aboura A A, Gourc J P, Gotteland P, Billard H, Delineau T, Gisbert T, Ouvry J F,Vuillemin M. An in situ waste mechanical experimentation on a French Landfill[C]. In:Proceedings Sardinia99, seventh international waste management and landfill symposium,Cagliari, Italy,1999,99:445-452.
    [33] Houston W N, Houston S L, Liu J W, Elsayed A, Sanders C O. In-situ testing methods fordynamic properties of MSW Landfills[C]. In: Proceedings of specialty conference onearthquake design and performance of solid waste landfills, Geotechnical Special Publication54, ASCE, San Diego, CA,1995:73-82.
    [34] Caicedo B, Giraldo E, Yamin L, Soler N. The landslide of Dona Juana landfill in Bogota. Acase study[C]. In: Proceedings of the fourth international congress on environmentalgeotechnics (4th ICEG), Rio de Janeiro, Brazil, August2002:11–15.
    [35] Edincliler A, Benson C H, Edil T B. Shear strength of municipal solid waste: interimreport-year1. Environmental geotechnics research report96-2, prepared for WMXTechnologies, Inc.,(1996) February,65.
    [36] Siegel R A, Robertson R J, Anderson D G.(1990) Slope stability investigation at a landfill inSouthern California. Geotechnics of waste fills-theory and practice, ASTM STP1070. In:Landva A, Knowles D (eds) American society for testing and materials. Philadelphia,Pennsylvania: pp259–284.
    [37] Jones D R V, Dixon N. Landfill lining stability and integrity: the role of waste settlement [J].Geotextiles and Geomembranes,2005,23(1):27-53.
    [38] Gabr M A, Valero S N. Geotechnical properties of municipal solid waste [J]. ASTMGeotechnical Testing Journal,1995,18(2):241–251.
    [39] Gabr M A, Hossain M S, Barlaz M A. Review of shear strength parameters of municipal solidwaste with Leachate recirculation[C]. In: Proceedings of2nd intercontinental landfill researchsymposia, in Asheville, NC, October13–16,2002.
    [40] Gabr M A, Hossain M S, Barlaz M A. Shear strength parameters of municipal solid wastewith leachate recirculation[J]. Geotechnical and Geoenvironmental Engineering,2007,133(4):478-484.
    [41] Dixon N, Jones D R V. Engineering properties of municipal solid waste [J]. Geotextiles andGeomembranes,2005,23(3):205-233.
    [42] Bray J D, Zekkos D, Kavazanjian Jr E, Athanasopoulos G A, Riemer M F. Shear strength ofmunicipal solid waste [J]. Geotechnical and Geoenvironmental Engineering,2009,135(6):709-722.
    [43] Reddy K R, Gangathulasi J, Parakalla N S, Hettiarachchi H, Bogner J E, Lagier T.Compressibility and shear strength of municipal solid waste under short-term leachaterecirculation operations [J]. Waste Management&Research,2009,27(6):578-587.
    [44] Reddy K R, Hettiarachchi H, Parakalla N S, Gangathulasi J, Bogner J E. Geotechnicalproperties of fresh municipal solid waste at Orchard Hills Landfill, USA [J]. WasteManagement,2009b,29(2):952-959.
    [45] Reddy K R, Hettiarachchi H, Gangathulasi J, Bogner J E. Geotechnical properties ofmunicipal solid waste at different phases of biodegradation [J]. Waste Management,2011,31(11):2275-2286.
    [46] Jessberger H L, Kockel R. Mechanical properties of waste materials. XXV Ciclo diConferenze de Geotecnica di Torino, Torino, Italy,1991:19–22.
    [47] Jessberger H L, Kockel R. Determination and assessment of the mechanical properties ofwaste materials[C]. In: Proceedings Sardinia93,4th international landfill symposium, S.Margherita di Pula, Cagliari, Italy,1993:1383–1392.
    [48] Vilar O M, de FCarvalho M. Mechanical properties of municipal solid waste[J]. Journal ofTesting and Evaluation,2004,32(6):438-449..
    [49] Gomes C, Lopes M L, Lopes M G. A Study of MSW properties of a Portuguese landfill [J].Hydro-Physico-Mechanics of Landfills, LIRIGM, Grenoble1University, France,2005,1:21-22.
    [50] Itoh T, Towhata I, Kawano Y, Kameda M, Fukui S, Koelsch F, Yonai Y. Mechanical propertiesof municipal waste deposits and ground improvement[C]. In: Proceedings of the16thinternational conference on soil mechanics and geotechnical engineering, Osaka, Japan,2005,16(4):2273–2276.
    [51] Grisolia M, Napoleoni Q. Geotechnical characterization of municipal solid waste: choice ofdesign parameters[C]. In Proc. Of The Second International Congress on EnvironmentalGeotechnics, Osaka, Japan, AA Balkema,1996,2:641-646.
    [52] Vilar O M, Carvalho M F. Shear strength and consolidation properties of municipal solidwaste[C]. In International workshop on hydro-physico-mechanics of landfills, GrenobleUniversity I, France,2005.
    [53]冯世进.城市固体废弃物静动力强度特性及填埋场的稳定性分析[D].杭州:浙江大学.2005.
    [54] Tchobanoglous, G., Theisen, H.&Vigil, S.(1993) ìIntegrated Solid Waste Management.1993,New York, U.S.A.: McGraw-Hill.
    [55]杨明亮,骆行文,喻晓,等.金口垃圾填埋场内大型建筑物地基基础及安全性研究[J].岩石力学与工程学报,2005,24(4):628-637.
    [56]刘荣.城市固体废弃物(MSW)实验填埋力学参数研究[M].南京:河海大学.2004.
    [57]刘荣,施建勇,彭功勋.垃圾土力学性质的室内试验研究[J].岩土力学,2005,26(1):108-112.
    [58]冯世进,陈云敏,高丽亚,等.城市固体废弃物的剪切强度机理及本构关系[J].岩土力学,2007,28(12):2524-2528;
    [59]高丽亚,冯世进,陈云敏,等.城市固体废弃物大直径三轴压缩试验研究[J].同济大学学报(自然科学版),2007,35(12):1602-1606.
    [60]陈云敏,林伟岸,詹良通,等.城市生活垃圾抗剪强度与填埋龄期关系的试验研究[J].土木工程学报,2009,42(3):111-117.
    [61]旦增顿珠,介玉新,魏弋峰,等.垃圾土的强度特性试验研究[J].清华大学学报(自然科学版),2006,46(9):1538-1541.
    [62]张丙印,介玉新.垃圾土的强度与变形特性[J].工程力学,2006,23(增刊II):14-22.
    [63]雷华阳,李鸿琦,宛子瑞,等.建筑垃圾土变形特性的现场试验与分析[J].工业建筑,2006,36(1):34-39.
    [64]施建勇,冒俊.水泥垃圾土强度特性试验研究[J].岩土力学,2009,30(7):1951-1966.
    [65]施建勇,钱学德,朱月兵.垃圾填埋场复合衬垫剪切特性单剪试验研究[J].岩土力学,2010a,31(4):1112-1117.
    [66]施建勇,朱俊高,刘荣,等.垃圾土强度特性试验与双线强度包线研究[J].岩土工程学报,2010b,32(10):1499-1504.
    [67]骆行文,杨明亮,姚海林,等.陈垃圾土的工程力学特性试验研究[J].岩土工程学报,2006,28(5):622-625.
    [68]王伟,金鹏,张芳.短龄期城市固体垃圾直剪试验及应力位移模型[J].岩土力学,2011,32(1):166-170.
    [69]孙秀丽,孔宪京,邹德高,等.城市固体垃圾应力-应变-时间关系试验研究[J].岩土力学,2011,32(8):2331-2364.
    [70]张振营,张明义,吴世明.城市垃圾土模型参数的程序计算结果[J].青岛建筑工程学院学报,2000,21(4):6-10.
    [71]张振营,吴世明,陈云敏.天子岭垃圾填埋场有机物降解规律的研究[J].岩土力学,2002,23(1):60-62.
    [72] Matasovic N, Jr E K. Cyclic characterization of OII landfill solid waste[J]. Journal ofGeotechnical and Geoenvironmental Engineering,1998,124(3):197-210.
    [73]周健,毓蔚.垃圾土室内动力试验研究[J].岩土力学,1999,20(4):1-5.
    [74]邓学晶,孔宪京,刘君.城市垃圾填埋场的地震响应及稳定性分析[J].岩土力学,2007a,28(10):2095-2100.
    [75]邓学晶,孔宪京.垃圾填埋场动力稳定机理及稳定分析研究现状与进展[J].世界地震工程,2007b,23(4):59-65.
    [76]陈云敏,冯世进,孔宪京,等.城市固体废弃物的动力特性及参数确定[J].土木工程学报,2006,39(5):90-95.
    [77]冯世进,高广运,陈云敏,等.城市固体废弃物的动强度试验研究[J].岩石力学与工程学报,2007,26(3):560-566.
    [78]赵阳.城市固体废弃物动力特性试验研究[D].大连:大连理工大学,2010.
    [79]孙继军,曾照明,卢继强,等.城市垃圾填埋场安全稳定性分析[J].重庆环境科学,2003,25(12):30-31.
    [80]张鹏,王建华,陈锦剑.垃圾填埋场边坡上土工膜的拉力与位移分析[J].岩土力学,2004,25(5):789-792.
    [81]张志红,饶为国.填埋场垃圾体的安全稳定性分析[J].中国安全科学学报,2005,15(6):108-112.
    [82]陈云敏,柯瀚.城市生活垃圾的工程特性及填埋场的岩土工程问题[J].工程力学,2005,22(增刊):119-126.
    [83]冯世进,陈云敏,高广运,等.垃圾坝和界面强度对填埋场沿底部衬垫系统滑动的影响[J].岩石力学与工程学报,2007,26(1):149-155.
    [84]陈云敏,高登,朱斌,等.垃圾填埋场沿衬垫界面的地震稳定性及永久位移分析[J].中国科学E辑:技术科学,2008,38(1):79-94.
    [85]涂帆,崔广强,林从谋,等.垃圾填埋场稳定影响因素敏感性神经网络分析[J].岩土力学,2010,31(4):1168-1172.
    [86]张文杰,林伟岸,垃圾填埋场孔压监测及边坡稳定性分析[J].岩石力学与工程学报,2010a,29(2):3628-3632.
    [87]张文杰,邱清文,邱战洪.垃圾填埋场边坡稳定可靠度分析[J].岩石力学与工程学报,2010b,29(1):2958-2963.
    [88] Watts K S, Charles J A, Blaken N J R. Settlement of landfills: measurements and theirsignificance. Waste2000, Integrated Waste Management and Pollution Control: Research[J].Policy and Practice,2002:673–682.
    [89] Swati M, Joseph K. Settlement analysis of fresh and partially stabilised municipal solid wastein simulated controlled dumps and bioreactor landfills[J]. Waste Management,2008,28(8):1355-1363.
    [90]彭绪亚,吉方英,肖波,等.垃圾填埋气的产生及其影响因素分析[J].重庆建筑大学学报,1999,21(6):66-69.
    [91]彭绪亚,黄文雄,刘国涛,等.城市生活垃圾填埋产沼的模拟实验[J].城市环境与城市生态,2003a,16(3):5-7.
    [92]彭绪亚,余毅,刘国涛.垃圾填埋场竖井抽气条件下的填埋气压力分布[J].重庆大学学报,2003b,26(1):92-95.
    [93]彭功勋,刘荣,施建勇.卫生填埋场生物降解沉降的热力学机理及其估算[J].岩土力学,2003,24(3):401-404.
    [94]孔宪京,孙秀丽,邹德高,等.垃圾土中有机物降解引起的体积缩减量与时间的关系研究[J].岩土工程学报,2006,28(12):2060-2065.
    [95]孔宪京,孙秀丽,邹德高.垃圾土蠕变-降解特性的室内试验研究[J].岩土力学,2008,29(2):337-341.
    [96] Leckie J O, Halvadakis C, Pacey J G. Landfill management with moisture control[J]. Journalof the Environmental Engineering Division,1979,105(2),337-355.
    [97] Mehta R, Barlaz M A, Yazdani R, Augenstein D, Bryars M, Sinderson L. RefuseDecomposition in the Presence and Absence of Leachate Recirculation[J]. EnvironmentalEngineering,2002,128(3):228-236.
    [98] Edi T B, Ranguette V J. Wuellner, WW, Settlement of municipal refuse, ASTM SpecialTechnical Publication,1990,1070:225-239.
    [99] Pohland, Al-Yousfi. Design and operation of landfills for optimal stabilization and biogasproduction[J]. Water Science&Technology,1994,30:117-124.
    [100] Wall D K, Zeiss C. Municipal landfill biodegradation and settlement[J]. EnvironmentalEngineering,1995,121(3):214-224.
    [101] Reinhart D R, Al-Yousfi A B. The impact of leachate recirculation on municipal solid wastelandfill operating characteristics[J]. Waste Management&Research,1996,(14):337-346.
    [102] Reinhart D. R (1996). Full-scale experiences with leachate recirculating landfills: casestudies. Waste Management&Research14,347~365.
    [103] Pacey J (EMCON) San Mateo California, Augenstein D.(IEM), Alto P (CaliforniaRichard Morck Engage Environmental) North Bend Washington, Reinhart D (Universityof Central Florida) Orlando Florida, Yazdani R (Yolo County Planning&Public WorksDepartment) Woodland, California.(1996). The Bioreactor landfill-an innovation in solidwaste management.
    [104] Townsend T G, Townsend T G, Miller W L, Lee H J, Earle J F K. Acceleration of landfillstabilization using leachate recycle[J]. Environmental Engineering, ASCE,1996,122(4):263-268.
    [105] Pohland&Al-Yousfi (1994).. Design and operation of landfills for optimal stabilization andbiogas production.. Water Science&Technology30,117.124.
    [106] Mehta R, Barlaz M A, Yazdani R, Augenstein D, Bryars M, Sinderson L. RefuseDecomposition in the Presence and Absence of Leachate Recirculation[J]. EnvironmentalEngineering,2002,128(3):228-236.
    [107] Swati M, Joseph K. Settlement analysis of fresh and partially stabilised municipal solidwaste in simulated controlled dumps and bioreactor landfills[J]. Waste Management,2008,28(8):1355-1363.
    [108] Ham R K, Bookter T J. Decomposition of solid waste in test lysimeters[J]. EnvironmentalEngineering,1982,108(6):1147-1170.
    [109] Yuen S T S, Styles J R, Mcmahon T A.1995. An Active Landfill Management by LeachateRecirculation–A Review and an Outline of a Full-Scale Project. In: Christensen, T. H.,Cossu, R., Stegmann, R.(Eds.), Proceedingsof Fifth International Landfill Symposium,Sardinia95, CISA, Cagliari, Italy, I, pp.53~58.
    [110] Yuen S T S, Styles J R, Wang Q J, Mcmahon T A.1999. Findings from a Full-ScaleLandfill Bioreactor Study International Landfill Symposium, Sardinia99, CISA,Cagliari, Italy, I, pp.403~418.
    [111] an I, Onay T T. Impact various leachate recirculation regimes on municipal solid wastedegradation[J]. Hazardous Materials,2001,87(1-3),259-271.
    [112] Kelly R J, Shearer B D, Kim J, Goldsmith C D, Hater G R, Novak J T. Relationshipsbetween analytical methods utilised as tools in the evaluation of landfill waste stability[J].Waste Management,2006,26(12),1349-1356.
    [113] Elagroudy S A, Abdel-Razik M H, Warith M A, Ghobrial F H. Waste settlement inbioreactor landfill models[J]. Waste Management,2008,28(11):2366-2374.
    [114] Tchobanoglous, G., Theisen, H.&Vigil, S.(1993) ìIntegrated Solid WasteManagement.1993, New York, U. S. A.: McGraw-Hill.
    [115] Haandel Van A. C and Lettinga G.(1994) Anaerobic sewage treatment John Wiley and Sons,ISBN0-471-95121-8.
    [116] Coduto D P, Huitric R. Monitoring landfill movements using precise instruments[J]. ASTMSpecial Technical Publication,1990,(1070):358-370.
    [117] Pump W.(1998) Rational design of landfills to account for settlement.10th Ann. Conf.Waste MINZ, New Zealand
    [118] Rigo J M, Cazzuffi D A. Test Standards and their Classification. Geomembranes:Identification and Performance Testing, Eds. Rollin, A. L. and Rigo, J. M., Chapman andHall, New York,1991:22-58.
    [119] Hanson J L, Yesiller N, Kendall L A. Integrated Temperature and Gas Analysis at aMunicipal Solid Waste Landfill[C]. Proc. Int. Conf. Soil Mech. Geotech. Eng.: Geotechnol.Harmony Global Environ.,2005,4:2265-2268.
    [120] Bowders J J, Mitchell M. Waste Settlements at the Columbia, Missouri Landfill[J].International Workshop《Hydro-physico-Mechanics of Landfills》LIRIGM, Grenoble1University, France,2005:21-22.
    [121] Townsend T G, Townsend T G, Miller W L, Lee H J, Earle J F K. Acceleration of landfillstabilization using leachate recycle[J]. Environmental Engineering, ASCE,1996,122(4):263-268.
    [122] Yesiller N, Hanson J L. Analysis of temperatures at a Municipal solid waste Landfill[C].Ninth International Waste Manage-ment and Landfill Symposium, Christensen et al., Eds.,CISA, Italy,2003:1-10.
    [123] Ye iller N. Hanson J L. Liu W L. Heat Generation in Municipal Solid Waste Landfills [J].Journal of Geotechnical and geoenvironmental engineering,2005,131(11):1330-1344.
    [124] Ye iller N, Hanson J L, Oettle N K, Liu W L. Thermal analysis of cover systems inmunicipal solid waste landfills[J]. Geo-tech. Geoenvir-on. Eng.,2008,134(11):1655–1664.
    [125] Hanson J L, Ye iller N, Oettle N K. Spatial and temporal temperature distributions inmunicipal solid waste landfills[J]. Environmental Engineering,2009,136(8):804-814.
    [126] Yen B C, Scanlon B. Sanitary landfill settlement rates[J]. Geotech. Eng.,1975,101(5):475-487.
    [127] Edi T B, Ranguette V J. Wuellner, WW, Settlement of municipal refuse, ASTM SpecialTechnical Publication,1990,1070:225-239.
    [128] Tan T S, Inoue T, Lee S L. Hyperbolic method for consolidation analysis[J]. Geotech. Engrg,1991,117(11):1723-1737.
    [129] Gibson R E, Lo K Y. A theory of consolidation for soils exhibiting secondarycompression[J]. Norges tekniske vitenskapsakademi,1961, C(10):1-15.
    [130] Bjarngard A, Edgers L. Settlement of municipal solid waste landfills[J]. Proc.,13th AnnualMadison Waste Conf.,1990:192-205.
    [131] Hossain M S, Gabr M A. Prediction of municipal solid waste landfill settlement withleachate recirculation[C]. Proceedings of the Sessions of the Geo-Frontiers2005Congress,Austin, Texas, USA,2005.
    [132] Park H I, Lee S R. Long-term settlement behavior of MSW landfills with refusedecomposition[J]. Resour. Manage. Technol.,1997,24:159-165.
    [133] Oweis I S. Estimate of landfill settlements due to mechanical and compositional process [J].Geotech. Geoenviron. Eng,2006,132(5):644–650.
    [134] Sandro Lemos Machado, Miriam de Fátima Carvalho, Orencio Monje Vilar. Modeling theInfluence of Biodegradation on Sanitary Landfill Settlements[J]. Soils and Rocks, S o Paulo,2009,32(3):123-134.
    [135] Sivakumar Babu G L, Reddy K R, Chouskey S K, Kulkarni H S. Prediction of Long-TermMunicipal Solid Waste Landfill Settlement Using Constitutive Model[J]. Practice periodicalof hazardous, toxic, and radioactive waste management Waste Management,2009,14(2):139-150.
    [136] Hettiarachchi H, Meegoda J, Hettiarachchi P. Effects of gas and moisture on modeling ofbioreactor landfill settlement[J]. Waste Manage,2009.29(3):1018-1025.
    [137] Liu C N, Chen R H, Chen K S. Unsaturated consolidation theory for the prediction of longterm municipal solid waste landfill settlement[J]. Waste Manage Res,2006,24(1):80–91.
    [138] Marques A C M. Compaction and compressibility of municipal solid waste. Ph. D. thesis,Sao Paulo Univ., Sao Carlos, Brazil.2001.
    [139]张振营,陈云敏.城市垃圾填埋场有机物降解沉降模型的研究[J].岩土力学,2004a,25(2):238-241.
    [140]张振营,陈云敏.城市垃圾填埋场沉降模型的研究[J].浙江大学学报(工学版),2004b,38(9):1162-1165.
    [141]张振营,杨云芳,陈云敏.城市生活垃圾的应力压缩曲线及压缩参数[J].浙江理工大学学报,2008,25(1):119-126.
    [142]张振营,杨云芳,吴长富,等.城市固体垃圾应力压缩计算方法.浙江大学学报(工学版),2009,43(2):370-375.
    [143]胡敏云,陈云敏,温振统.城市垃圾填埋场垃圾土压缩变形的研究[J].岩土工程学报,2001,23(1):123-126.
    [144]胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算[J].土木工程学报,2001,34(6):88-92.
    [145]陈云敏,柯瀚.城市固体废弃物的压缩性及填埋场容量分析[J].环境科学学报,2003,23(5):694-698.
    [146]陈继东,施建勇,方云飞.垃圾土降解规律及填埋场沉降计算分析[J].河海大学学报(自然科学版),2006,34(6):680-682.
    [147]陈继东,施建勇,胡亚东.垃圾土一维压缩修正公式及有机物降解验证试验研究[J].岩土力学,2008,29(7):1797-1801.
    [148]柯瀚,刘骏龙,陈云敏,等.不同压力下垃圾降解压缩试验研究[J].岩土工程学报,2010,32(10):1610-1615.
    [149]徐晓兵,詹良通,陈云敏,等.城市生活垃圾填埋场沉降监测与分析[J].岩土力学,2010,22(1):35-39.
    [150]刘疆鹰,徐迪民,赵由才,等.城市垃圾填埋场的沉降研究[J].土壤与环境,2002,11(2):111-115.
    [151]张莲,何品晶,瞿贤,等.城市生活垃圾填埋场沉降模型比较[J].环境卫生工程,2006,14(6):1-5.
    [152]刘荣,卢廷浩.垃圾土沉降的Logistic模型应用研究[J].工业建筑,2005,35(11):56-59.
    [153]刘荣,卢廷浩.垃圾土的复合沉降模型研究[J].建筑科学,2007,23(12):94-97.
    [154]刘荣.城市固体废弃物中孔隙水压力的试验研究[J].工业建筑,2008,38(12):69-71.
    [155]廖智强,胡亚东,朱宁.填埋场次压缩沉降的室内复合模型研究[J].河海大学学报(自然科学版),2006,34(2):193-196.
    [156]廖智强.垃圾土瞬时模量变化规律的试验研究及机制分析[J].岩土力学,2007a,28(3):482-486.
    [157]廖智强,施建勇,冒俊. MSW主压缩指数变化规律试验研究及机理分析[J].河海大学学报(自然科学版),2007b,35(3):326-329.
    [158]施建勇,雷国辉,艾英钵,等.考虑有机物降解的变形试验和计算方法研究[J].岩土力学,2006,27(10):1673-1677.
    [159]刘晓东,施建勇,胡亚东.考虑城市固体废弃物(MSW)生化降解的力-气耦合一维沉降模型及计算[J].岩土工程学报,2011,33(5):693-699.
    [160]赵燕茹,谢强,张永兴,等,垃圾土蠕变-降解沉降特性试验研究[J].土木建筑与环境工程学报,2013,35(6),7-15.
    [161]谢强,张永兴,张建华.陈垃圾土的压缩性试验研究[J].重庆建筑大学学报,2003,25(4):18-22.
    [162]谢强,张永兴,张建华.生活垃圾卫生填埋场沉降特性研究的意义及现状[J].重庆大学学报,2003,26(8):119-122.
    [163]谢强,张永兴,张建华.生活垃圾填埋过程中的沉降分析与计算[J].岩土力学,2007,31(7):2135-2140.
    [164]谢强,张永兴,张建华.生活垃圾的PTH蠕变模型[C]//第十三届全国结构工程学术会议论文集(第Ⅲ册)[C],2004,5:339-343.
    [165]刘东燕,冯国建,罗云菊.考虑降解率下的垃圾土降解压缩量计算模型[J].土木建筑与环境工程,2010,32(2):14-18.
    [166]雷华阳,李鸿琦,宛子瑞,等.建筑垃圾填埋场沉降计算中模型参数灵敏度分析[J].岩土力学,2007,28(4):675-678.
    [167]谢焰,陈云敏,柯瀚.考虑降解和分级堆填的填埋场一维沉降计算[J].水文地质工程地质,2008(1):102-106.
    [168]王志萍,胡敏云,夏玲涛.垃圾填土压缩特性的室内试验研究[J].岩土力学,2009,30(6):1681-1686.
    [169]柯秋菊,涂帆,解仲明,等.填埋场不同深度垃圾土压缩性的室内试验研究[J].环境工程学报,2010,4(1):199-203.
    [170]杨勇,薛强,李国敏.城市生活垃圾室内沉降仪研制与特性试验[J].仪器仪表学报,2010,31(6):1394-1398.
    [171]杨治贵,胡亚东.垃圾填埋体沉降计算方法[J].有色冶金设计与研究,2007,28(4):95-98.
    [172]陈宝玉,左辉,王建权.建筑垃圾土工程特性研究[J].水科学与工程技术,2008,(6):65-67.
    [173]孙洪军,梁力,赵丽红,等.城市垃圾填埋场沉降的力学模型研究[J].力学与实践,2009,31(6):53-56.
    [174]刘骏龙.城市固体废弃物的压缩试验及填埋场沉降模型研究[D].杭州:浙江大学,2010.
    [175]王彬州,陶兴东.城市固体废弃物的沉降变形分析[J].科技创业,2010:119-120.
    [176]顾蕾.陈垃圾沉降分析方法及工程应用[J].环境工程,2010,28(4):73-75.
    [177]栾智慧,王树国.垃圾卫生填埋实用技术[M].北京:化学工业出版社,2004.
    [178] Archie G E. The electrical resistivity log as an aid in determining some reservoircharacteristics[J]. Transactions of the American Institute of Mining and MetallurgicalEngineers,1942,146(99):54-62.
    [179] Grellier S, Reddy K R, Gangathulasi J, Adib R, and. Peters C C, Correlation betweenElectrical Resistivity and Moisture Content of Municipal Solid Waste in BioreactorLandfill[J]. Geoenvironmental Engineering,2007(GSP163):1-14.
    [180] Waxman M H. Smits L J M. Electrical conductivity in oil-bearing shaly sand[J]. Society ofPetroleum Engineers Journal,2003,8(2):107-122.
    [181] Phillips T, Gerrard C, Hensley P J, Fell R, Ackworth I, Barry D A, Jewell C M. Siteinvestigation and monitoring techniques for contaminated sites and potential waste disposalsites[J]. Geotechnical Management of Waste and Contamination,1993,3-37.
    [182] Kaya M A, zürlan G, engül E.(2007). Delineation of soil and groundwater contaminationusing geophysical methods at a waste disposal site in anakkale, Turkey[J]. Environmentalmonitoring and assessment,2007,135(1-3),441-446.
    [183] Mitchell J K, Arulanandan K. Electrical dispersion in relation to soil structure, University ofCalifornia, Institute of Transportation and Traffic Engineering, Soil Mechanics andBituminous Materials Research Laboratory,1968.
    [184] Mitchell J K. Fundamentals of soil behavior[M]. New York: John Wiley and Sons, Inc,1993.
    [185] Halvorson A D. Rhoades J D. Field mapping soil conductivity to delineate dryland salineseeps with four-electrode technique[J]. Soil Science Society of American Journal,1976,40(4):571-574.
    [186] Yoon G. Oh M. Park J. Laboratory study of landfill leachate effect on resistivity inunsaturated soil using cone penetrometer[J]. Environmental Geology,2002,43(1-2):18-28.
    [187] Grellier S. Robain H. Bellier G. Skhiri N. Influence of temperature on the electricalconductivity of leachate from municipal solid waste[J]. Hazardous Materials,2006,137(1):612-617.
    [188] Ye iller N. Hanson J L. Liu W L. Heat Generation in Municipal Solid Waste Landfills [J].Journal of Geotechnical and geoenvironmental engineering,2005,131(11):1330-1344.
    [189]程业勋,杨进.环境地球物理学的现状与发展[J].地球物理学进展,2007,22(4):1364-1369.
    [190]李忠,能昌信,宁书年,等.物探技术在固体废弃物探测的应用及前景展望[J].环境科学与技术,2006,29(12):93-95.
    [191]刘松玉,查甫生,于小军.土的电阻率特性室内测试技术研究[J].工程地质学报,2006,14(2):216–222.
    [192]刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1):83-87.
    [193]邹海峰,刘松玉,蔡国军,等.基于电阻率CPTU的饱和砂土液化势评价研究[J].岩土工程学报,2013,35(7):1280-1288.
    [194]刘志彬,张勇,方伟,等.黄土电阻率与其压实特性间关系试验研究[J].西安科技大学学报,2013,33(1):84-90.
    [195]朱才辉,李宁.基于土电阻率的黄土高填方地基细观变形机制[J].岩石力学与工程学报,2013,32(3):640-648.
    [196]韩立华.电阻率法在污染垃圾土评价与处理中的应用研究[D].南京:东南大学.2005.
    [197]王玉玲,能昌信,王彦文,等.重金属污染场地电阻率法探测数值模拟及应用研究[J].环境科学,2013,34(5):1908-1914.
    [198]查甫生,刘松玉,杜延军,等.非饱和黏性土的电阻率特性及其试验研究[J].岩土力学,2007,28(8):1671-1676.
    [199]王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究[J].环境污染治理技术与设备,2001.8,2(4):15-17.
    [200]涂帆,钱学德.中美垃圾填埋场垃圾土的重度、含水量和相对密度[J].岩石力学与工程学报,2008,27(1):3076-3081.
    [201] GB/T50123-1999,土工试验方法标准[S].中华人民共和国建设部,1999.
    [202]张振营,吴世明,陈云敏.城市生活垃圾土性参数的室内试验研究[J].岩土工程学报,2000,22(1):35-39.
    [203] Landva A, Knowles G D, Eds. Geotechnics of Waste Fills: Theory and Practices [M].Astm International,1990.
    [204] Hossain M S, Gabr M A, Asce F, The effect of shredding and test apparatus size oncompressibility and strength parameters of degraded municipal solid waste[J]. Wastemanagement,2009,29(9):2417-2424.
    [205] Grisolia M, Napoleoni Q, Tangredi G. The use of triaxial tests for the mechanicalcharacterization of municipal solid waste[C]. In Proc. of the5th International LandfillSymposium Sardinia,1995,95(2):761-767.
    [206] Machado S L, Carvalho M F, Vilar O M. Constitutive model for municipal solid waste[J].Geotechnical and Geoenvironmental Engineering,2002,128(11):940-951.
    [207] Bishop A W, Henkel D J. Measurement of soil properties in the triaxial test[M].2ND ED.London: Edward Amold,(1900).
    [208] Reddy K R, Gangathulasi J, Hettiarachchi H, Bogner J. Geotechnical properties ofmunicipal solid waste subjected to leachate recirculation[C]. In Geo-Congress: Geotechnicsof Waste Management and Remediation(GSP177), American Society of Civil Engineers,2008:144-151.
    [209] Municipal solid waste in the United States:2009Facts and Figures[M]. United StatesEnvironmental Protection Agency,2010.
    [210] Hossian M S, Haque M A. Stability Analysis of Municipal Solid Waste Landfills withDecomposition[J]. Geotechnical and Geological Engineering,2009,27(6):659-666.
    [211] Hossian M S, Haque M A, Hoyos L R. Dynamic Properties of Municipal Solid Waste inBioreactor Landfills with Degradation[J]. Geogeth. Geol. Eng.,2010,28(4):391-403.
    [212] Nabegu A B. An Analysis of Municipal Solid Waste in Kano Metropolis, Nigeria[J]. Hum.Ecol.,2010,31(2):111-119.
    [213] Yu L, Batlle F, Carrera J, Lloret A. Gas flow to a vertical gas extraction well in deformableMSW landfills[J]. Journal of hazardous materials,2009,168(2-3):1404-1416.
    [214] Sivakumar Babu G L, Reddy K R, Chouksey S K. Parametric study of MSW landfillsettlement model[J]. Waste management,2011,31(6):1222-1231.
    [215]谢强,张永兴,张建华.重庆市城市生活垃圾的蠕变特性研究[J].土木工程学报,2007,40(10):74-79.
    [216]何秋菊,徐帆,解仲民,等.填埋场不同深度垃圾土压缩特性的室内试验研究[J].环境工程学报,2010,4(1),199-203.
    [217] Richards F J. A flexible growth function of empirical use[J]. Experimental Botany,1959,10(2):290-301.
    [218]谢强.城市生活垃圾卫生填埋场沉降特性研究[D].重庆:重庆大学,2004.
    [219]谢焰,陈云敏,唐晓武,等.城市生活垃圾降解压缩试验仪研制及应用[J].岩土工程学报,2005,27(5),571-576.
    [220] Park H I, Lee S R. Long-term settlement behaviour of MSW landfills with various fillages[J]. Waste management&research,1997,20(3):259-268.
    [221]陈云敏,施建勇,朱伟,等.环境岩土工程研究综述[J].土木工程学报,2012,45(4):165-182.
    [222]张文杰,陈云敏.垃圾填埋场抽水试验及降水方案设计[J].岩土力学,2010,31(1):211-215.
    [223]张文杰,陈云敏,邱战洪.垃圾土渗透性和持水性的试验研究.岩土力学,2009,30(11):3313-3323.
    [224] Youcai Z, Zhugen C, Qingwen S, Renhua H. Monitoring and long-term prediction of refusecompositions and settlement in large-scale landfill[J]. Waste management&research,2001,19(2):160-168.
    [225]孔宪京,孙秀丽,邹德高.垃圾土蠕变-降解特性的室内试验研究[J].岩土力学,2008,29(2):337-341.
    [226]王渝昆,谢强,张永兴.重庆市长生桥卫生填埋场雨污分流措施研究[J].重庆建筑大学学报,2005,27(2):72-75.
    [227] Bookter T J, Ham R K. Stabilization of solid waste in landfills[J]. Journal of EnvironmentalEngineering, ASCE,1982,108(6):1089-1100.
    [228] Ham R K, Norman M R, Fritschel P R. Chemical characterization of refuse kills landfillrefuse and extracts [J]. Journal of Environmental Engineering,1993, ASCE,119(6):1176-1195.
    [229] Manna L, Zanetti M C, Genon G. Modeling biogas production at landfill site [J]. Resources,conservation and recycling,1999,26(1):1-14.
    [230] Friedman S P. Soil properties influencing apparent electrical conductivity: A review [J].Computers and Electronics in Agriculture,2005,46(1):45-70.
    [231] Son Y, Oh M, Lee S. Influence of diesel fuel contamination on the electrical properties ofunsaturated soil at a low frequency range of100Hz–10MHz[J]. Environmental geology,2009,58(6):1341-1348.
    [232] Fukue M, Minato T, Matsumoto M, Horibe H, Taya N. Use of a resistivity cone fordetecting contaminated soil layers[J]. Engineering Geology,2001,60(1):361-369.
    [233] Testing A S. Standard test method for field measurement of soil resistivity using the WennerFour-Electrode method[S]. ASTM G57-95a,1995,3.
    [234] Andersland OB,Khattak AS, AL-Khafaji, A.W.N.(1981) Effect of organic material on soilshear strength. In: Yong RN, Townsend FC.(Eds), Laboratory shear strength of soil, Vol.740,pp:226-242.
    [235] Reddy K R, Gangathulasi J, Hettiarachchi H, Bogner J. Geotechnical properties ofmunicipal solid waste subjected to leachate recirculation[C]. In Geo-Congress: Geotechnicsof Waste Management and Remediation(GSP177), American Society of Civil Engineers,2008:144-151.
    [236] Langer, U.,2005. Shear and compression behaviour of undegraded municipal solid waste.Dissertation, Doctor of Philosophy, Loughborough University.
    [237]王渝昆.城市生活垃圾分层压实下的压实度及沉降规律研究[D].重庆:重庆大学,2006.
    [238]彭绪亚.垃圾填埋气产生及迁移过程模拟研究[D].重庆:重庆大学,2004.
    [239]黄文雄.垃圾填埋气产生过程与产量预测模型的研究[D].重庆:重庆大学,2002.
    [240]张永霞.污染土电阻率特征研究[D].兰州:兰州大学,2010.
    [241] Liu X D, Shi J Y,Qian X D, et al.(2011) One-dimensional model for municipal solidwaste(MSW) settlement considering coupled mechanical-hydraulic-gaseous effect andcpncise calculation.[J]. Waste management,2011,60(1):361-369.
    [242] IPCC guidelines for national greenhouse gas inventories, printed in france,1995
    [243] Tabasaran O. Obtention et valorisation du methane a partir de dechets urbains (Biogasproduction and exploitation from MSW). Tribune de Cebedeau1982;35,469,483.
    [244]马媛媛.生活垃圾渗滤液污染土电阻率特征研究[D].大连:中国海洋大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700