用户名: 密码: 验证码:
污泥改性及其在填埋场中的稳定化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市污水处理率的逐年提高,污水厂污泥的产量急剧增加,污泥的处理处置问题日益严重。常用的堆肥、填埋、焚烧和制造建筑材料等处置方法各有利弊。根据我国目前的经济现状和未来的发展趋势,在今后相当长的时间里,填埋仍然是我国污泥处理最重要的方法之一。然而,传统的污泥填埋方式存在着污泥强度低难以压实、渗透性低无法排水、卫生条件差以及场地不可持续使用等问题。
     针对这些问题,本文提出了“污泥改性填埋——填埋场污泥降解与稳定化形成矿化污泥——矿化污泥开采与利用——污泥改性填埋”的循环填埋的新理念,在系统地表征污泥与填埋相关的土工性质基础上,研究了矿化垃圾、粉煤灰、建筑垃圾、泥土等改性材料对污泥进行改性后填埋的可行性;通过污泥及改性污泥在填埋场中的矿化过程、腐殖化过程、生物毒性和表面沉降的变化规律研究,系统地表征了污泥在填埋场中的稳定化过程;建立了填埋污泥稳定化程度的评价指标体系,预测了矿化污泥的形成时间。为解决污泥性质不符合填埋操作要求的问题、实现污泥填埋场的可持续使用提供了基础数据和工艺参数,为解决污泥处置问题开辟了一条新途径。主要研究结论如下:
     对上海曲阳污水厂生物污泥和白龙港污水厂化学强化一级处理污泥的土工性质研究表明,化学污泥的孔隙比和压缩性低于生物污泥,抗剪和抗压性能好于生物污泥。含水率是影响污泥土工性质的主要因素,污泥的强度和内摩擦角与含水率负相关。新鲜脱水污泥抗压强度小于10kPa,抗剪强度小于5kPa,无法承受作业机械碾压。当含水率降到64%左右,污泥的抗压强度和抗剪强度分别增大到50kPa和25kPa,可以满足填埋作业的强度要求,建造成12.6°的边坡在填埋操作中不会造成滑坡问题。含水率降到60%时,污泥臭度降到3级。50kPa下白龙港化学污泥的固结系数C_v=0.010726cm~2/s。50~100kPa内压缩指数C_c=1.16。
     改性材料对污泥的有效改性技术研究表明,污泥应满足的填埋作业要求有:无侧限抗压强度≥50kPa,十字板抗剪强度≥25kPa,渗透系数在10~(-6)~10~(-5)cm/s数量级,臭度低于三级等。粉煤灰、矿化垃圾、建筑垃圾、泥土四种改性剂能够不同程度的改善污泥的工程性质,包括降低污泥的含水率和持水性、提高抗剪和抗压强度、增大渗透性能、降低可压缩性及臭度。其中抗剪强度为控制性指标。与污泥的最低混合比分别为6:10、9:10、7:10和9:10时方能使改性污泥达到填埋作业要求。综合比较下,粉煤灰的效果最好,建筑垃圾次之,矿化垃圾再次之,泥土最差。
     对污泥及改性污泥在填埋后的稳定化进程研究表明,经过498天的降解,曲阳污泥、曲阳污泥+矿化垃圾、白龙港污泥和老港中试污泥的有机质降解率分别为67.1%、61.6%、30.5%和51.4%。污泥初始有机质含量越高,总降解率越高。生物污泥较化学污泥易于降解。
     除纯污泥的氨氮呈现不断积累外,各种污泥渗滤液COD、TOC、VFA、总磷基本上都是随时间呈波动下降趋势。除了pH外,添加改性剂的污泥渗滤液各污染指标基本都比纯污泥的低。纯污泥的渗滤液产量很小,每年只有44L/t污泥;添加矿化垃圾使污泥渗滤液的可生化性降低,产量增加到每年约287L/t污泥。
     改性剂可以提高污泥的渗透性,减轻污泥水解酸化产物的积累对微生物的抑制作用,可明显缩短渗滤液有机污染物浓度到达峰值的时间,并降低峰值的大小;提高污泥的产气速率,加速污泥进入甲烷化阶段,并可提高气体的甲烷含量。
     中试污泥的渗滤液COD、TOC、VFA、总磷浓度明显低于实验室小试。中试污泥的降解速度大于小试污泥。相对于环境温度,35℃时污泥降解更快,渗滤液中污染物浓度更高。增大改性剂用量,可提高污泥产气量。压实不利于产气。
     污泥的腐殖化过程研究表明,随着污泥不断降解,腐殖质不断生成。随着微生物种群的演替,前期生成的腐殖质又不断被降解。四类污泥的腐殖质随时间基本上呈下降趋势,或后期保持平稳;老港中试污泥的腐殖化率和腐殖化率指数随时间呈下降趋势。曲阳污泥的呈增大趋势,曲阳污泥+矿化垃圾和白龙港污泥的腐殖化率前后差别很小。腐殖化率的大小顺序是曲阳污泥+矿化垃圾>白龙港污泥>曲阳污泥>老港中试污泥。HI大小顺序是曲阳污泥>曲阳污泥+矿化垃圾>老港中试污泥>白龙港污泥。初始有机质含量越高的污泥,腐殖化作用越强,腐殖化程度越深。
     四种污泥的HA分子量及其分布表明,曲阳污泥、曲阳污泥+矿化垃圾、白龙港污泥的HA基本上都经历分子量先增大后减小,后期又增大的变化过程。分子离散度依次降低。其中曲阳污泥在后期分子合成最迅速,腐殖化深度最大。老港中试污泥的规律不同,前期分子量减小,中期后期变化很小,分子的离散度最小。污泥的FA前期呈分解趋势,后期呈合成趋势。
     四种污泥植物毒性消失的快慢顺序是曲阳污泥+矿化垃圾、曲阳污泥、白龙港污泥、老港中试污泥,分别先后在填埋后的520、612、650、670天达到发芽指数80%。矿化垃圾具有一定的缓解污泥降解产生的植物毒性的作用,腐熟后的曲阳污泥+矿化垃圾具有促进种子发芽的肥效作用。
     污泥在填埋场覆土封场后的长期沉降可分为应力沉降和降解沉降。纯污泥填埋初期的沉降主要是应力沉降,一年后以降解沉降为主。老港中试污泥、白龙港污泥、曲阳污泥以及曲阳污泥+矿化垃圾的最终沉降量占堆体高度的百分比分别是12.33%、20.54%、13.77%和26.57%。第一年的沉降量分别占总沉降量的98.9%、94.4%、97.4%和98.9%。四种污泥的沉降量分别可在870、1170、995和762天达到其沉降能力的99.99%。老港中试污泥的固结系数C_v=0.00215cm~2/s。
     根据渗滤液和污泥固体的指标与填埋时间的定量关系,按照污泥的BDM达到4.76%和渗滤液COD降到一级排放标准预测,污泥及改性污泥的稳定化时间是3.2~5.8年。如果将污泥利用作营养土,污泥的稳定化时间只需1.4~1.8年。
Sludge disposal has become an acute problem in sewage treatment plants. Though incineration, composting, bricking making, cement production industries can use sludge as feed materials, landfill disposal is still considered to be an alternative due to its low disposal costs.
     Sludge is a biosolid and biodegradable. It will be stabilized gradually and steadily as soon as being placed in a landfill. It is considered that a recycle of "landfill - sludge landfilling - sludge biodegradation - aged sludge excavation - re-landfilling of fresh sludge " should be possible, if the stabilization process is explored fully and the time for the sludge stabilization is drawn.
     However, the operation of landfilling of sludge is found quite difficult as it contains over 80% moisture and extremely low strength and permeability. The objectives of this work were to transform the geotechnical properties of sewage sludge by mixing additives such as aged refuse excavated from long-term closed refuse landfill, coal ash, demolition wastes, and soil, followed by the exploration of the landfill stabilization process of the original and transformed sludge. Both bio-sludge generated from a biological treatment plant of sewage and chemical sludge generated from a primary treatment plant of sewage using AlCl_3 as main coagulant were tested.
     This study investigates the geotechnical properties of the dewatered sewage sludge both generated from chemically enhanced primary treatment and biological treatment in Shanghai. The result shown that void ratio and compressibility of chemical sludge was lower and shear stress and bearing capacity was better than that of bio-sludge. Moisture has significant effect on geotechnical properties of sludge, and has negative relevant with shear stress and fiction angle. Sludge could meet the requirement of shear stress and bearing capacity no less than 50kPa and 25 kPa respectively when its moisture content decreased to 64%.side slope of 12.6°may be constructed without causing sliding problems for chemical sludge during landfill
     operation. The malodor could decrease to 3~(rd) grade. Consolidation coefficient under 50 kPa was calculated to be 0.010726 cm~2/s and the compressive coefficient under 50~100 kPa was 1.16.
     It was found that the geotechnical properties of sludge for landfill operation should meet the requirements of the following specifications: bearing capacity over 50kPa, vane shear strength over 25 kPa, permeability of over the magnitude of 10~(-6)~10~(-5)cm/s, and moderate odor. In this case, the sludge should be mixed with the additives and ratios of additives to sludge should be over 6:10、9:10、7:10 and 9:10 for coal fly ash, aged refuse, demolition wastes and soil, respectively.
     The annual production rate of leachate from fresh sludge with moisture of 80% was about 44L/t. The biodegradability of leachate decreased and annual production of leachate increased to 287 L/t in the presence of 33% aged refuse in the mixtures. Meanwhile, it was observed that the presence of the additives can accelerate the stabilization of sludge. Pollutants concentrations in leachate from mixtures with additives were always lower than those of the fresh sludge.
     A field lysimeter with 36 t of fresh sludge was established and its long-term stabilization process was monitored. It was found that pollutants concentrations in the leachate from the field-test lysimeter were significantly lower than those of the laboratory lysimeters. Moreover, it seemed that the degradation in the field lysimeter was faster. After 498 days of biodegradation, the organic matters decreased by 67.1 %、61.6%、30.5%and 51.4% for the laboratory-scale lysimeters of bio-sludge, bio-sludge+aged refuse, chemical sludge and field test lysimeter of chemical sludge, respectively. The biodegradation of the bio-sludge was observed to be faster than the chemical sludge.
     The humidification of sludge in the lysimeters was studied. It was found that humus, humic percentum and humic index slightly increased during the stabilization process. Molecular weight of humic acid decreased in early days revealing its mineralization process, and increased with time in metaphase and anaphase showing its maturation process. Fulvic acid decomposed in prophase and composed in metaphase and anaphase. Humic percentum decreased in the sequence of the laboratory-scale lysimeters of bio-sludge+aged refuse, bio-sludge, field test lysimeter of chemical sludge, and chemical sludge, while humic index decreased in the sequence of the laboratory-scale lysimeters of bio-sludge, bio-sludge+aged refuse, field test lysimeter of chemical sludge, and bio-sludge.
     Biological toxicity faded during the stabilization of sludge, slow in prophase and rapaid in metaphase and anaphase, according with logarithm formula. The germinating index of aged refuse+biosludge, biosuldge, chemical sludge and field-test chemical sludge can reach to 80% at 520 d、612 d、650 d and 670 d of placement, respectively. Mixing of aged refuse could reduce the toxicity of the biosludge and increased the germinating index.
     Settlement of simulated landfills could be classified into the initial stress settlement occurred mainly in the first year and secondary degradation settlement in the following years. The predicted ultimate settlement of the chemical sludge in field-test lysimeter, chemical sludge, biosludge and aged refuse+biosludge in the laboratory scale lysimeters were evaluated to be 12.33%、20.54%、13.77%, and 26.57% of the initial sludge height, and the corresponding settlements in first year were 98.9%、94.4%、97.4% and 98.9% of the ultimate settlement, respectively. 99.99% of the ultimate settlement may reach at 870 d, 1170 d, 995 d, and 762 d of the placement, respectively. Consolidation coefficient of field-test lysimeter was calculated to be 0.00215 cm~2/s.
     The equations among the settlements, pollutants concentrations in leachate (COD, NH3-N, etc), chemical compositions in the sludge (organic matters, BDM, VM, TS, moisture, etc) and the placement time, were established. Taking the leachate discharge standard and the BDM in soil as reference, it was estimated that resultant biodegraded sludge can be regarded as the stabilized sludge or aged sludge which can be excavated and recycled after around 3.2 to5.8 years placement, when the BDM in the sludge decreased from around 30~60% in sludge to 4.76% in soil and COD to 100 mg/L in the leachate. If the aged sludge was to be used for planting, 1.4 to 1.8 years at lest would be needed.
引文
[1] 徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社,2003.7
    [2] 朱石清,张善发,陈华等.上海市污泥处理处置工程规划.污泥处理处置技术研究进展[M].北京:化学工业出版社,2006
    [3] 杭世珺,陈吉宁,郑兴灿等.污泥处理处置的认识误区与控制对策.污泥处理处置技术研究进展[M].北京:化学工业出版社,2006
    [4] 唐小辉,赵力.污泥处置国内外进展[J].环境科学与管理,2004,30(3):68-71
    [5] 张建频.上海市城市污泥处理与处置方法探讨[J].建设科技,2002,10:64-66
    [6] 张树国,吴志超,张善发,等.上海市污水处理厂污泥处置对策研究[J].环境工程,2004,22(1):75-78
    [7] 叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程,2002,10(2):85-88
    [8] 魏源送,王敏捷,王菊思.堆肥技术进展[J].环境科学进展,1999,7(3):11-23
    [9] 李艳霞,王敏健,王菊思,陈同斌.固体废弃物的堆肥化处理技术[J].环境污染治理技术与设备,2000,1(4):39-45
    [10] 赵丽君,杨意东,胡振苓.城市污泥堆肥技术研究[J].中国给水排水,1999,15(9):58-60
    [11] 陈世和,李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000
    [12] 陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社,1990
    [13] 何品晶,顾国维,李笃中.城市污泥处理与利用[M].科学出版社,2003.4
    [14] USAEPA, 1995. Process Design Manual: Surface Disposal of Sewage Sludge and Domestic Septage. Washington, DC 20460: USAEPA (EPA/625/K-95/002)
    [15] 黄凌军,杜红,鲁承虎等.欧洲污泥干化焚烧处理技术的应用与发展趋势[J].给水排水,2003,29(11):19-22
    [16] 张宁生,周强泰,苗新红.污泥的焚烧处理技术[J].能源研究与利用,2003,1:35-37
    [17] 周少奇编著.城市污泥处理处置与资源化[M].广州:华南理工大学出版社,2002.3
    [18] 张杰,谢时伟.污泥制砌块探索[J].中国皮革,2000,29(7):38-40
    [19] 赵由才,宋立杰,张华.实用环境工程手册:固体废物污染控制与资源化[M].北京:化学工业出版社,2002.5
    [20] 王中平,徐基璇.利用苏州河底泥制备陶粒[J].建筑材料学报,1999,2(2):176-181
    [21] 赵丽君,杨意东,胡振苓.污泥处理与处置技术的进展[J].中国给水排水,2001,17(6):23-25
    [22] 陈萍丽,赵秀兰.城市污泥特征及其资源化利用[J].微量元素与健康研究,2006,23(1):54-56
    [23] 邹绍文,张树清,王玉军等.中国城市污泥的性质和处置方式及土地利用前景[J]. Chinese Agricultural Science Bulletin. 2005, 21(1): 198-202
    [24] 陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569
    [25] 王新,陈涛,粱仁禄,等.污泥土地利用对农作物及土壤的影响研究[J].应用生态学报,2002,13(2):163-166
    [26] 周立祥,胡霭堂,戈乃玢,等.城市污泥土地利用研究[J].生态学报,1999,19(2):185-193
    [27] 李国学,黄焕忠,黄铭洪.施用污泥堆肥对土壤和青菜(Brassica chinensis)重金属积累特性的影响[J].中国农业大学学报,1998,3(1):113-118
    [28] 张学洪,陈志强,吕炳南,等.污泥农用的重金属安全性试验研究[J].中国给水排水,2000,16(12):18-21
    [29] 赵乐军,杨津义.污泥填埋技术综述[J].天津市政设计,2003,3(4):13-17
    [30] Zimmie, Thomas F. ; Moo-Young, Horace K. Hydraulic conductivity of paper sludges used for landfill covers[J]. Geotechnical Special Publication, 1995, 46:932-946
    [31] Moo-Young, Horace K. Jr.; Zimmie, Thomas F. Effects of freezing and thawing on the hydraulic conductivity of paper mill sludges used as landfill covers[J].Canadian Geotechnical Journal, 1996,33 (5): 783-792
    [32] Zimmie, Thomas F.; Quiroz, Juan D.; Moo-Young, Horace K. Jr. Paper mill sludge applications in geotechnical construction[C]. Hazardous and Industrial Wastes-Proceedings of the Mid-Atlantic Industrial Waste Conference, 1999, 551-560
    [33] Quiroz, JuanD.;Zimmie,Thomas F. Paper mill sludge landfill cover construction[J].Geotechnical Special Publication, Recycled Materials in Geotechnical Applications, 1998, 79:19-36
    [34] Quiroz, Juan D.; Simpson, Pickett T.; Zimmie, Thomas F. Evaluation of paper sludge landfill cover settlement[J]. Geotechnical Special Publication, 2000, 105: 16-31
    [35] Horace K. Moo-Young Jr and Thomas E Zimmie. Waste Minimization and Re-use of Paper Sludges in Landfill Covers: a Case Study [J]. Waste Management & Research, 1997, 15:593-605
    [36] Juan D. Quiroz. Shear strength, slope stability and consolidation behavior of paper mill sludge landfill covers [M]. Rensselaer Polytechnic Institute. USA,2000.5
    [37] R.Otte-Witte. Influence on the Mechanical Preoperties of Sewage Sludge for Disposal to Landfill. European Water Pollution Control Association, 1990,307-324
    [38] Knut Wichmannn, Andreas Riehl. Mechanical properties of waterwork sludges-shear Strength [J]. Water Science and Technology, 1997,36(11): 43-50
    [39] A. Koenig, J.N.Key, I.M.Wan. Physical properties of dewatered wastewater sludge for landfilling[J]. Water Science and Technology, 1996, 34 (3-4): 533-540
    [40] A. Koenig, Q.H. Bari. Vane shear strength of dewatered sludge from Hong Kong[J]. Water Science and Technology, 2001,44 (2-3): 389-397
    [41] Debra R.Reinhart, Manoj B.Chopra, etc. Design and Operational Issues Related to the Co-Disposal of Sludges and Biosolids in Class I Landfills. Report#0132010-03
    [42] 赵乐军,戴树桂等.掺添加剂改善脱水污泥填埋特性研究[J].中国给水排水,2005, 21(2):47—49
    [43] 张鹏,吴志超,陈绍伟,章非娟,员小峰,秦峰,陈善平.污水厂污泥作填埋场覆盖材料的试验研究[J].环境科学研究,2002,15(2):45-47
    [44] 陈绍伟,吴志超,张鹏等,自来水厂污泥作填埋场覆盖材料的试验研究[J].环境污染治理技术与设备,2002,3(1):23-26;
    [45] 秦峰,陈善平,吴志超等.苏州河疏浚污泥作填埋场封场覆土的实验研究[J].上海环境科学,2002,21(3):163-165
    [46] 赵爱华.老港填埋场终场规划及覆盖材料应用研究[D].同济大学硕士论文,2001,3
    [47] 赵乐军,戴树桂,辜显华.污泥填埋技术应用进展[J].中国给水排水,2004,20(4):27-30
    [48] Klein, Arieh ; Sarsby, Robert W. Problems in defining the geotechnical behaviour of wastewater sludges. ASTM Special Technical Publication, 2000,1374:74-87
    [49] Irene M.C.Lo,W.W.Zhou,and K.M.Lee. Geotechnical characterition of dewatered sewage for landfill disposal [J]. Canada Geotech. January.2002,39:1139-1149
    [50] U.S.EPA. Biosolids Technology Fact Sheet:Alkaline Stabilization of Biosolids. EPA 832-F-00-052. September 2000
    [51] Valls, S.; Vazquez, E. Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems[J]. Waste Management, 2002, 22(1):37-45
    [52] Valls, S.; Vazquez, E. Stabilisation and solidification of sewage sludges with Portland cement[J]. Cement and Concrete Research, 2000,30 (10): 1671-1678
    [53] Beeghly, J. H. Roller compacted base course construction using lime stabilized fly ash and flue gas desulfurization sludge byproduct[J]. Fuel and Energy Abstracts, 1996,37(6): 425
    [54] Lim, Sungjin; Jeon, Wangi; Lee, Jaebok; Lee, Kwanho; Kim, Namho. Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess[J]. Water Research, 2002, 36(17): 41774184
    [55] Lee, K.; Cho, J.; Salgado, R.; Jeon, W.; Kim, N. Engineering properties of wastewater treatment sludge modified by hydrated lime and fly ash[J]. Journal of Solid Waste Technology and Management, 2002, 28 (3): 145-153
    [56] Jean Benoit, T.Taylor Eighmy, and Bradley S.Crannell. Landfilling ash/sludge mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(10):877-888
    [57] 赵乐军,戴树桂等.掺添加剂改善脱水污泥填埋特性研究[J].中国给水排水,2005,21(2):47-49
    [58] 杨石飞,辛伟. 改性污泥作填埋场覆盖材料室内试验研究[J].上海地质,2004,(3):19-23
    [59] Lester.B.Lave. Municipal Solid Waste Recycling Issues[J]. Journal of Environmental Engineering, October 1981
    [60] 唐平.模拟准好氧填埋场的稳定化进程研究[D].西南交通大学研究生学位论文,2005,3-6
    [61] 赵由才 郭兴民 朱琳楠.垃圾填埋场稳定化研究(Ⅰ)[J].重庆环境科学,1994,16(5): 8-11
    [62] 朱青山 赵由才 徐迪民.垃圾填埋场中垃圾降解与稳定化模拟试验[J].同济大学学报(自然科学版),1996,24(5):596-600
    [63] 王罗春.城市生活垃圾填埋场稳定化进程研究[D].上海:同济大学环境工程学院,1999.6
    [64] 唐翔宇,俞觊觎,Runyuzi Sylvester.模拟垃圾填埋场稳定化过程研究[J].上海环境科学,2000,19(7):345-348
    [65] 王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究[J].环境污染治理技术与设备,2001,2(4):15-17
    [66] 王罗春,赵由才,陆雍森.垃圾填埋场稳定化评价.环境卫生工程,2001,9(4):157-159
    [67] 王罗春,赵由才,陆雍森.垃圾填埋场稳定化及其研究现状[J].城市环境与城市生态,2000,11(5):36-37
    [68] 赵由才 边炳鑫 王罗春 徐迪民.中等规模模拟填埋场垃圾降解规律的研究[J].黑龙江科技学院学报,2003,13(3):1-5
    [69] Stamm,J.W.,and J.J.Walsh.1988. Pilot-scale evaluation if sludge Landfilling: Four years of operation. EPA/600/2-88/027
    [70] 丁立强,胡伟,徐泽等.添加剂对污泥渗滤液性质影响研究[J].环境卫生工程,2005,13(1):10-13
    [71] 袁聚云.土工试验与原理[M].上海:同济大学出版社,2006
    [72] 陈仲颐,周景星,王洪谨.土力学[M].北京:清华大学出版社,1994
    [73] 南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.4
    [74] 王保田.土工测试技术[M].南京:河海大学出版社,2000.12
    [75] 胡中雄,土力学与环境土工学[M],同济大学出版社,1997
    [76] 朱小林,杨桂林.土体工程[M].上海:同济大学出版社,1996.7
    [77] 赵由才,龙燕,张华.生活垃圾卫生填埋技术[M].北京:化学工业出版社,2005
    [78] 侯志琳.用粉煤灰土种植树木的研究[J].粉煤灰综合利用,2001,6:15-17
    [79] 孙克刚,杨占平,郭井水,王明堂.粉煤灰及其复肥对土壤物理性质和重金属淀积的影响[J].粉煤灰综合应用,2000,2:22-23.
    [80] 高占国,华珞,郑海金,张志刚.粉煤灰的理化性质及其资源化的现状与展望[J].首都师范大学学报(自然科学版),2003,24(1):70-76.
    [81] 唐景春,赵艳通.恶臭污染的测定及评价方法.环境保护,2001,5:27-29
    [82] 国家环境保护总局.空气和废气监测分析方法(第四版)[M].北京:中国环境科学出版社,2003
    [83] 赵由才,朱青山.城市生活垃圾卫生填埋场技术与管理手册[M].北京:化学工业出版社,1999
    [84] 贺延龄编著.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.1
    [85] 任南琪,王爱杰编著.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004
    [86] 刘克锋,韩劲.土壤肥料学[M],北京:中国建筑工业出版社,1995.7
    [87] 李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    [88] 郭媚兰,米尔芳,田若涛,等.城市污泥和污泥与垃圾对方的农田利用对土壤性质的 影响[J].农业环境保护,1994,13(5):204-209
    [89] 张雪英,周顺桂,周立祥,等.堆肥处理对污泥腐殖质形态及其重金属分配的影响[J].生态学杂志,2004,23(1):30-33
    [90] 张雪英,黄焕忠,周立祥.堆肥处理对污泥腐殖质组成和光谱学特征的影响[J].环境化学,2004,23(1):96-100
    [91] 刘艳华,魏颖,李成.生活垃圾接种微生物堆肥对腐殖组分的影响[J].东北农业大学学报,2006,37(1):43-47
    [92] 魏自民,席北斗,赵越.城市生活垃圾外源微生物堆肥对有机酸变化及堆肥腐熟度的影响[J].环境科学,2006,27(2):377-381
    [93] Jaromir Novak, Josef Kolzler, Pavel Janos, Jirina Cezikova, Venceslave Tokarova, Humic acids from coals of the North-Bohemian coal field I. Preparation and characterization [J]. Reactive & Functional Polymers, 2001, 47:101-109
    [94] Inbar Y, Chen Y, Hadar Y, et al.. New approaches to compost maturity[J]. Biocycle, December, 1990:64-69
    [95] 李承强,魏源送,樊耀波等.不同填充料污泥好氧堆肥的性质变化及腐熟度[J].环境科学,2001,22(3):60-65
    [96] 谢强,张永兴,张建华.重庆地区城市垃圾填埋场稳定化研究进程[J].地下空间,2003,23(3):330-335
    [97] 刘之春,蒋永生.深厚垃圾填埋场地上多层建筑地基基础的设计[J].建筑技术,2002,33(3):204-205
    [98] HOEL, LECHCHINSKY., DOV.MOHRI. Estimation of municipal solid waste landfill settlement [J]. Journal of Geotechnical and Geoenviromental Engineering, 1998, 124(1): 21-28
    [99] SOWERS G F. Settlement of waste disposal Fills [C]. Mm-COW Proc..Int. Conf. on Soil Mechanics and Foundation Engineering. 1973,207-210
    [100] YEN B, SCANIZ. N B. Sanitory landfills settlement rates[J]. J. Geotech ASCE, 1975, 101 (5): 475-487
    [101]钱学德,郭志平.城市固体废弃物(MSW)的工程性质[J].岩土工程学报,1998,20(5):1-6
    [102] 胡敏云,陈云敏,温振统.城市垃圾填埋场垃圾土压缩变形的研究[J].岩土工程学报,2001,23(1):123-126
    [103] 钱学德,郭志平,施建勇等.现代卫生填埋场的设计与施工[M].北京:中国建筑工业出版社.2001.5:159-180
    [104] EDIL T B, RANGUETTE V J, UELLNER W. W. Settlement of municipal refuse. Geotechnics of Waste Fills-Theory and Practice [M]. Philadelphia: ASTM, 1990: 225-239
    [105] Dean K. Wall, Chris Zeiss, Municipal landfill biodegradation and settlement[J]. Journal of Environmental Engineering, 1995, 121 (3): 214-224
    [106] 张振营,陈云敏.城市垃圾填埋场沉降模型的研究[J].浙江大学学报(工学版),2004,38(9):1162-1165
    [107]柯瀚,陈云敏,填埋场封场后的次沉降计算[J].岩土工程学报,2003,25(6):742-746
    [108] 刘疆鹰,徐迪民,赵由才,等.城市垃圾填埋场的沉降研究[J].土壤与环境.2002,11(2):111-115
    [109] 高大钊,袁聚云.土质学与土力学[M],北京:人民交通出版社,2001.3
    [110] 王凯军,王晓惠,李宝林.城市污水污泥稳定性问题和试验方法探讨[J].给水排水,2002,28(5):5-8
    [111] 朱明权,周冰莲.污水厂污泥稳定方法及稳定化程度的评价指标[J].给水排水,1997,23(10):5-10
    [112] 张仁瑞.VFA作为厌氧生物学指标的可行性研究[J].青岛建筑工程学院学报,1997,18(2):51-55
    [113] 柴晓利,张华,赵由才.固体废物堆肥原理与技术[M].北京:化学工业出版社,2005.7
    [114] 赵由才,黄仁华,生活垃圾卫生填埋场现场运行指南[M].北京,化学工业出版社,2001
    [115] 王罗春,赵由才,陆雍森.垃圾BDM分析及其应用[J].环境卫生工程,2003.3,11卷(1):6-8
    [116] 刘春尧.准好氧填埋场稳定化进程的室内模拟研究[D].西南交通大学硕士学位论文,2004
    [117] J. G. Tounsend, W. L. Miller, Hyung-Jib Lee, and J. F. K. Earle, Acceleration of landfill stabilization using leachate recycle[J]. Journal of Environmental Engineering, 1996,22 (4):263-268
    [118] 李华,赵由才.填埋场稳定化垃圾的开采、利用及填埋场土利用分析[J].环境卫生工程,2000,8(2):56-57
    [119] 赵由才,黄仁华,赵爱华.大型垃圾填埋场稳定化过程与再利用[J].中国城市环境卫生,2000,1:20-24
    [120] 黄仁华,赵由才,周海燕.大型垃圾填埋场表面沉降研究[J].上海环境科学,2000,19(8):399-401
    [121] 林建伟,王里奥,刘元元.三峡库区垃圾堆放场稳定化程度的模糊综合判别[J].上海环境科学,2003,22(2):94-97
    [122] 国家环境保护总局《水和废水检测分析方法编委会》编.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [123] Tresselt, K. (Universitaet Hamburg); Miehlich, G.; Groengroeft, A.; Melchior, S.; Berger, K.; Harms, C. Harbor sludge as barrier material in landfill cover systems[J]. Water Science and Technology, 1998, 37(6~7): 307-313
    [124] George Tchobanoglous, Hilary Theisen, Samuel Vigil, Integrated Solid Waste Management—Engineering Principles and Management Issues[M], McGraw-Hill.
    [125] Guglielmetti, John L. ; Koerner, George R.; Battino, Frank S. Geotextile reinforcement of soft landfill process sludge to facilitate final closure: an instrumented case study[J]. Geotextiles and Geomembranes, 1996,14(7): 377-391
    [126] 中国土壤学会农业化学专业委员会编著.土壤农业化学常规分析方法[M].北京:科学出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700