用户名: 密码: 验证码:
吕宋海峡黑潮形变的机制及其与Rossby波和涡旋的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在吕宋海峡处,黑潮失去陆坡支持后其流径的位置和形态是西边界流动力学中的一个重要科学问题,引起了众多海洋学者的关注。本文针对目前研究中存在的争论,通过对观测数据分析和一系列的数值模式实验,运用准地转2.5层模型不稳定性分析、雷诺平均的能量诊断办法以及基于小波的MS-EVA分析方法等,澄清了前人研究中存在的争论和问题,得到以下有创新性的成果:
     再次证实了平均态黑潮是以“跨隙”路径跃过吕宋海峡。指出由于地形效应特别是巴林塘海峡附近的底地形和岛屿,决定了黑潮失去陆坡支持时的初始入射角;在外强迫涡度输入较弱的情况下,在黑潮流出巴林塘海峡失去陆坡支持后北上过程中,由于环境涡度增加,依据绝对涡度守恒黑潮必定会在台湾岛以南流出吕宋海峡。该结果解释了在不能准确分辨巴林塘海峡附近的底地形和岛屿的海洋数值模拟中会出现黑潮呈现流套路径进入南海的物理本质。
     首次提出了冬季风产生Ekman输运和输入的风应力负涡度是黑潮冬季在吕宋海峡以流套形式出现的主要原因;该结果纠正了前人提出的冬季黑潮流量小、惯性小,则导致黑潮在吕宋海峡以流套形式入侵的观点。
     研究证实黑潮“跨隙”路径和对应的温跃层向西抬升在吕宋海峡建立起很强的位势涡度(PV)纬向梯度,该PV梯度比行星PV梯度高一个量级,因此“跨隙”路径的黑潮能有效地阻碍西传的Rossby波和涡旋穿过吕宋海峡;而一旦黑潮呈流套路径进入南海,黑潮在吕宋海峡对Rossby波和涡旋能量西传的阻挡效应马上消失。
     通过对数值模式结果的能量分析指出,黑潮锋面处平均流向中尺度扰动的斜压能量输入是黑潮锋面西侧气旋涡成长和反气旋涡从黑潮主体脱落的能量来源;斜压能量转化大值区位于黑潮主轴西侧、黑潮反气旋式弯曲的上游;在黑潮出现反气旋弯曲并逐渐发展阶段,黑潮锋面处平均流同时向黑潮西侧的反气旋涡和诱生的气旋涡提供有效位能促其成长;在反气旋涡脱落阶段,黑潮锋面处平均流的能量转换逐渐偏移到气旋涡上,导致气旋涡的成长,使其足够强大将反气旋涡从黑潮主体上切断下来。
Kuroshio's pathway in the Luzon Strait when losing western boundary support isan important scientific issue in western boundary current dynamics and has drawn alot of oceanographers' attentions, as it plays a very important role in determining themomentum, vorticity as well as mass exchange between Pacific and South China Sea(SCS). In view of existing debates, in this paper, we analyzed the observations, did aseries of numerical experiments, and applied instability and energy conversiondiagnosis using2.5-layer quasi-geostrophic (QG) model, Reynold-averaging methodas well as wavelet-based Muti-Scale Energy and Vorticity Analysis (MS-EVA)method. Finally, we clarified the debates and arrived at some innovative conclusionsas follows.
     This paper proved again that the mean-state Kuroshio has a gap-leaping pathwayin the Luzon Strait. We pointed out that the topography, especially the bottomtopography and islands near Balintang Channel, constrains the initial incident angle ofKuroshio. When Kuroshio develops into an inertial jet after losing support from thewestern boundary, in the absence of external vorticity forcing, the conservation ofabsolute vorticity determines the gap-leaping pathway of Kuroshio in the Luzon Strait.This result also explains the physical essence for Kuroshio looping into SCS in lots ofnumerical simulations which do not fully resovle the bottom topography and islandsnear Balintang Channel.
     We first pointed out that the Kuroshio pathway transition to looping state inwinter is dominated by the Ekman transport and negative wind stress curl exerted bywinter Monsoon. This result corrects the previous viewpoint that Kuroshio loopinginto SCS in winter is determined by the week inertial effect associated with smallKuroshio transport in winter.
     Our research proved the gap-leaping Kuroshio and corresponding westwardshoaling of thermocline in Luzon Strait builds up very intense zonal potential vorticity(PV) gradient, which is one order higher than-induced planetary PV gradient.According to QG dynamics, this zonal PV gradient will be a strong constraint forRossby wave and eddy propagation, preventing them penetrating through Luzon Strait.While in looping state, Kuroshio's blocking effect vanishes.
     Through instability and energy diagnosis using numerical model results, we pointed out that baroclinic energy conversion from mean flow to eddy/perturbationfield is the energy source of anticyclonic eddy shedding and associated cyclonic eddygrowth west of Kuroshio front. High baroclinic energy conversion locates upstream ofthe anticyclonic loop on the western flank of Kuroshio axis. During Kuroshiodeformation and anticyclonic eddy growing stage, the energy source straddles boththe anticyclonic and accompanied cyclonic eddies, and the mean flow suppliespotential energy to both of them for growth; during the anticyclonic eddy sheddingstage, the energy source moves upon cyclonic eddy, and the mean flow suppliespotential energy only to the cyclonic eddy, makeing it strong enough to cut off theanticyclonic eddy from Kuroshio.
引文
[1] Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia (2006),World Ocean Atlas2005, Volume2: Salinity. S. Levitus, U.S. Government Printing Office,Washington, D.C.
    [2] Centurioni, L. R., and P. P.Niiler (2004), Observations of inflow of Philippine Sea surfacewater into the South China Sea through the Luzon Strait, J. Phys. Oceanogr.,34,113-121.
    [3] Chan, K. M.(1970), The seasonal variation of hydrological properties in the northern SouthChina Sea, in The Kuroshio—A Symposium on the Japan Current, pp.143–162, East-WestCenter Press, Honolulu.
    [4] Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke (2007), Globalobservations of large oceanic eddies, Geophys. Res. Lett.,34(15),1-5.
    [5] Cipollini, P.(2003), Multiple satellite observations of oceanic planetary waves: techniquesand findings, in Proceedings of2003Tyrrhenian International Workshop on RemoteSensing, edited by E. Dalle Mese, pp.134–143, Edizioni Plus, Uni. of Pisa, Italy.
    [6] Cronin, M., D. R. Watts (1996), Eddy–Mean Flow Interaction in the Gulf Stream at68°W,Part I: Eddy Energetics, J. Phys. Oceanogr.,26,2107–2131.
    [7] Cummings, J. A.(2005), Operational multivariate ocean data assimilation, Quart. J. RoyalMet. Soc., Part C,131(613),3583–3604.
    [8] Dale, W. L.(1956), Wind and drift current in the South China Sea, The Malayan Journal ofTropical Geography,8,1–31.
    [9] Ezer, T., H. Arangoand and A.F. Shchepetkin (2002), Developments in terrain-followingocean models: intercomparisons of numerical aspects, Ocean Modelling,4(3),249~267.
    [10] Fang, G., G. Wang, Y. Fang, and W. Fang (2012), A review on the South China Sea westernboundary current, Acta Oceanologica Sinica,31(5),1-10.
    [11] Fang, G., Susanto R. D., Soesilo I., et al.(2005), A note on the South China Sea shallowinterocean circulation, Adv Atmos Sci,22,946-954
    [12] Fang,Y., G. H. Fang and K.J.Yu (1996), ADI barotropic ocean model for simulation ofKuroshio intrusion into China southeastern waters, Chin. J. Oceanol. Limnol.,14(4),357–366.
    [13] Farris, A., and M. Wimbush (1996), Wind-induced Kuroshio intrusion into the South ChinaSea, J. Oceanogr.,52,771–784.
    [14] Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee (2002), The ModularOcean Data Assimilation System (MODAS), J. Atmos. Ocean. Technol.,19,240–252.
    [15] Gan, J., H. Li, E.N. Curchitser, and D.B. Haidogel (2006), Modeling south china seacirculation: response to seasonal forcing regimes, J. Geophys. Res.,111, C06034,doi:10.1029/2005JC003298.
    [16] Green, J. S.(1977), The weather during July1976: Some dynamical considerations of thedrought, Weather,32,120-126.
    [17] Haidvogel, D.B., H.Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A.Shchepetkin (2000), Model evaluation experiments in the North Atlantic Basin:Simulationsin nonlinear terrain-following coordinates, Dyn. Atmos. Oceans,32,239~281.
    [18] Hsin, Y. C., C. R. Wu, and P. T. Shaw (2008), Spatial and temporal variations of theKuroshio East of Taiwan,1982–2005: a numerical study, J. Geophys. Res.,113, C04002,doi:10.1029/2007JC004485.
    [19] Hu, J., H. Kawamura, H. Hong, F. Kobashi, and D. Wang (2001),3–6months variation ofsea surface height in the South China Sea and its adjacent ocean, J. Oceanogr.,57,69–78,doi:10.1023/A:1011126804461.
    [20] Hu, J., H. X. Liang, and X. B. Zhang (1999), Sectional distribution of salinity and itsindication of Kuroshio’s intrusion in southern Taiwan Strait and northern South China Sealate summer,1994, Acta Oceanologica Sinica,18(2),225–236.
    [21] Hu, J., Q. Zheng, Z. Sun, and C. K. Tai (2012), Penetration of nonlinear Rossby eddies intoSouth China Sea evidenced by cruise data, J. Geophys. Res.,117, C03010,doi:10.1029/2011JC007525.
    [22] Hurlburt, H. E., and J. D. Thompson (1980), A numerical study of Loop Current intrusionsand eddy shedding, J. Phys. Oceanogr.,10,1611–1651.
    [23] Hurlburt, H. E., and J. D. Thompson (1982), The dynamics of the loop current and shededdies in a numerical model of the Gulf of Mexico, in Hydrodynamics of Semi-enclosedSeas, edited by J. C. J. Nihoul, pp.243–297, Elsevier Science, New York, NY.
    [24] Hurlburt, H. E., E. J. Metzger, P. J. Hogan, C. E. Tilburg, and J. F. Shriver (2008), Steeringof upper ocean currents and fronts by the topographically constrained abyssal circulation,Dyn. Atmos. Ocean.,45,102–134, doi:10.1016/j.dynatmoce.2008.06.003.
    [25] Jia, Y., and E. P. Chassignet (2011), Seasonal variation of eddy shedding from the Kuroshiointrusion in the Luzon Strait, J. Oceanogr.,67(5),601-611.
    [26] Jia, Y., and Q. Liu (2004), Eddy shedding from the Kuroshio bend at Luzon Strait, J.Oceanogr.,60,1063–1069, doi:10.1007/s10872-005-0014-6.
    [27] Kara, A. B., P. A. Rochford, and H. E. Hurlburt (2000), An optimal definition for oceanmixed layer depth, J. Geophys. Res.,105(C7),16803–16821, doi:10.1029/2000JC900072.
    [28] Kuehl, J., and V. A. Sheremet (2009), Identification of a cusp catastrophe in a gap-leapingwestern boundary current, J. Mar. Res.,67,25–42.
    [29] Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W. S. Chuang (2003), Upper oceancurrent around Taiwan, Deep-Sea Res., Part2,50,1085–1105.
    [30] Liang, W. D., Y. J. Yang, T. Y. Tang, and W. S. Chuang (2008), Kuroshio in the LuzonStrait, J. Geophys. Res.,113, C08048, doi:10.1029/2007JC004609.
    [31] Li, L., and T. Qu (2006), Thermohaline circulation in the deep South China Sea basininferred from oxygen distributions, J. Geophys. Res.,111, C05017,doi:10.1029/2005JC003164.
    [32] Li, L., C. Jing, and D. Y. Zhu (2007), Coupling and propagating of mesoscale sea levelvariability between the western Pacific and the South China Sea, Chin. Sci. Bull.,52(12),1699–1707, doi:10.1007/s11434-007-0203-3.
    [33] Li, L., Nowlin W., Su J.(1998), Anticyclonic rings from the Kuroshio in the South ChinaSea, Deep-Sea Research (Part I),45,1469~1482.
    [34] Li, L., W. D. Nowlin, and J. Su (1998), Anticyclonic rings from the Kuroshio in the SouthChina Sea, Deep Sea Res. Part I,45,1469–1482, doi:10.1016/S0967-0637(98)00026-0.
    [35] Li, M., L. Zhong, W. C. Boicourt, S. Zhang and D. L. Zhang (2006), Hurricane-inducedstormsurges, currents and destratification in a semi-enclosed bay, Geophys. Res. Lett.,33,L02604, doi:10.1029/2005GL024992.
    [36] Li, M., L. Zhong, W. C. Boicourt, S. Zhang and D. L. Zhang (2007), Hurricane-induceddestratification and restratification in a partially-mixed estuary, J. Mar. Res.,65(2),169-192.
    [37] Liu, Q.Y., C.T.Liu, S.P.Zheng, Q.C.Xu and W.Li (1996), The deformation of Kuroshio inthe Luzon Strait and its dynamics, Journal of Ocean University of Qingdao,26(4),413–420
    [38] Liu Z.Y., Yang H.J., Liu Q.Y.(2001), Reginal dynamics of seasonal variability in the SouthChina Sea, Journal of Physical Oceanography,31,272-284.
    [39] Liu, Q., and L. Li (2007), Baroclinic Stability of Oceanic Rossby Wave in the North PacificSubtropical Eastwards Countercurrent, Chinese J. Geophys.,50(1),84–93, doi:CNKI:ISSN:0001-5733.0.2007-01-010.
    [40] Liu, Q., Z. T. Liu, S. P. Zheng, Q. C. Xu, and W. Li (1996), The deformation of Kuroshio inthe Luzon Strait and its dynamics, Journal of Ocean University of China (in Chinese),26(4),413-420.
    [41] Liu, Y., and R.H. Weisberg (2011), A review of Self-Organizing Map applications inmeteorology and oceanography, In Self-Organizing Maps-Applications and NovelAlgorithm Design, Edited by J. I. Mwasiagi, pp.253-272, InTech, Rijeka, Croatia.
    [42] Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia (2006),World Ocean Atlas2005, Volume1: Temperature. S. Levitus, U.S. Government PrintingOffice, Washington, D.C.
    [43] Ma Hong (1987), On the winter circulation of the northern South China Sea and its relationto the large scale oceanic currents:Par I Nonwind-driven circulation of the norther SouthChina Sea and numerical experiments, Chin. J. Oceanol. Limnol.,5(1),9~21.
    [44] Mao, M., W.Z. Wang, Q.Z. Huang, S.C. Fu, Y.S. Li and C.W. Li (1992), Athree-dimensional numerical simulation of the South China Sea circulation, TropicOceanology,11(4),34–41.
    [45] Mellor, G.L., and Yamada T.(1982), Development of a turbulence closure model forgeophysical fluid problems, Rev. Geophys. Space Phys.,20,851~875.
    [46] Metzger, E. J., and H. E. Hurlburt (1996), Coupled dynamics of the South China Sea, theSulu Sea, and the Pacific Ocean, J. Geophys. Res.,101(C5),12331~12352.
    [47] Metzger, E. J., and H. E. Hurlburt (2001), The importance of high horizontal resolution andaccurate coastline geometry in modeling South China Sea inflow, Geophys. Res. Lett.,28,1059–1062.
    [48] Nan, F., H. Xue, F. Chai, L. Shi, M. Shi, and P. Guo (2011a), Identification of differenttypes of Kuroshio intrusion into the South China Sea, Ocean Dynamics,61(9),1291–1304.
    [49] Nan, F., H. Xue, P. Xiu, F. Chai, M. Shi, and P. Guo (2011b), Oceanic eddy formation andpropagation southwest of Taiwan, J. Geophys. Res.,116, C12045,doi:10.1029/2011JC007386.
    [50] Nitani, H.(1972), Beginning of the Kuroshio, in Kuroshio, Its Physical Aspects, edited by H.Stommel and K. Yoshida, pp.129–163, Univ. of Tokyo Press, Tokyo, Japan.
    [51] Niino, H., K. O. Emery (1961), Sediments of shallow portions of East China Sea and SouthChina Sea, Geo. Soc. Am. Bull.,72,731~762.
    [52] Phillips, N. A.(1957), A coordinate system having some special advantages for numericalforecasting, J. Meteor.,14,184~185.
    [53] Pohlmann, T.(1987), A three dimensional circulation model of the South China Sea, InThree-Dimensional Models of Marine and Estuarine Dynamics, ed. by J. J. Nihoul and B. M.Jamart, pp.245–268, Elsevier, New York.
    [54] Pu, S. Z., H. L. Yu and S. N. Jiang (1992), Branchings of Kuroshio into Bashi Channel andSouth China Sea, Tropic Oceanology,11(2),1–8
    [55] Pu, S. Z., H. L.Yu and S. N. Jiang (1993), The upper layer circulation in the Bashi Channeland the northeastern South China Sea, In Proceedings of the Symposium on the Physical andChemical Oceanography of the China Seas, pp.10–18, China Ocean Press, Beijing.
    [56] Qiu, B.(1999), Seasonal eddy field modulation of the North Pacific SubtropicalCountercurrent: TOPEX/POSEIDON observations and theory, J. Phys. Oceanogr.,29,2471–2468, doi:10.1175/1520-0485.
    [57] Qu, T.(2000), Upper layer circulation in the South China Sea, J. Phys. Oceanogr.,30,1450–1460, doi:10.1175/1520-0485.
    [58] Qu, T.(2002), Evidence for water exchange between the South China Sea and the PacificOcean through the Luzon Strait, Acta Oceanol. Sinica,21(2),175–185.
    [59] Rodi, W.(1987), Examples of calculation methods fro flow and mixing in stratified fluids, J.Geohpys.Res.,92,5305~5328.
    [60] Shaw, P. T.(1989), The instruction of water masses into the sea southwest of Taiwan, J.Geophys. Res.,94,18213–18226.
    [61] Shaw, P.T., and S.Y. Chao (1994), Surface circulation in the South China Sea, Deep-SeaRes.I,40(11/12),1663–1683.
    [62] Shaw, P.T., S.Y. Chao, and L.L. Fu (1999), Sea surface height variations in the South ChinaSea from satellite altimetry, Oceanologica Acta,22(1),1-17.
    [63] Shaw, P.-T., S.Y. Chao, and L.L. Fu (1998), Sea surface height variations in the SouthChina Sea from satellite altimetry, Oceanologica Acta,22,1-17.
    [64] Shchepetkin, A.F., and J. C. McWilliams (2003), A method for computing horizontalpressure-gradient force in an oceanic model with nonaligned vertical coordinate, Journal ofGeophysical Research,108(C3), doi:10.1029/201JC001047.
    [65] Sheremet, V. A.(2001), Hysteresis of a western boundary current leaping across a gap, J.Phys. Oceanogr.,31,1247–1259.
    [66] Sheremet, V. A., and J. Kuehl (2007), Gap-leaping western boundary current in a circulartank model, J. Phys. Oceanogr.,37,1488–1495.
    [67] Sheu, W. J., C. R. Wu, and L. Y. Oey (2010), Blocking and westward passage of eddies inthe Luzon Strait, Deep Sea Res. Part II,57,1783–1791, doi:10.1016/j.dsr2.2010.04.004.
    [68] Song, Y., and D.B.Haidvogel,(1994), A semi-implicit ocean circulation model using ageneralized topography-following coordinate system, J.Comp.Phys.,115(1),228~244.
    [69] Su, J.(2005), Overview of the South China Sea circulation and its dynamics, Acta Oceanol.Sin.,27(6),1–8.
    [70] Takano, K., A. Harashima, and T. Nnmba (1998), A numerical simulation of the circulationin the South China Sea-Preliminary results, Acta Oceanographica Taiwanica,37,165-186.
    [71] Tsui, I. F., and C. R. Wu (2012), Variability analysis of Kuroshio intrusion through LuzonStrait using growing hierarchical self-organizing map, Ocean Dynamics,62(8),1187-1194.
    [72] Umlauf, L., H.Burchard, and K.Hunter (2002), Extending the k-model towards oceanicapplications, Ocean Modelling,5,195~218.
    [73] Umlauf, L., and H.Burchard (2003), A generic length-scale equation for geophysicalturbulence models, J. Mar. Res.,61,235~265.
    [74] Wang, G., J. Su, and P. C. Chu (2003), Mesoscale eddies in the South China Sea observedwith altimeter data, Geophys. Res. Lett.,30(21),2121, doi:10.1029/2003GL018532.
    [75] Wang, J. and C.-S.Chern (1987), The warm-core eddy in the northern South China Sea, I.Preliminary observations on the warm-core eddy, Acta Oceanographica Taiwanica,18,92-103.
    [76] Wang, L., C. J. Koblinsky, and S. Howden (2000), Mesoscale variability in the South ChinaSea from the TOPEX/Poseidon altimetry data, Deep Sea Res. Part I,47,681–708, doi:10.1016/S0967-0637(99)00068-0.
    [77] Wang, Z., D. Yuan, and Y. Hou (2010), Effect of meridional wind on gap-leaping westernboundary current,Chinese Journal of Oceanology and Limnology,28(2),354-358.
    [78] Wilox, D.C.(1988), Reassessment of the scale-determining equation for advancedturbulence models, AIAA J.,26(11),1299~1310.
    [79] Williamson, G. R.(1970), Hydrography and weather of the Hong Kong fishing ground,Hong Kong Fisheries Bulletin,1,43–49.
    [80] Wyrtki, K.(1961), Physical oceanography of the Southeast Asian waters, NAGA Rep.2,Scripps Institution of Oceanography, La Jolla, Calif.
    [81] Xue H., F. Chai, N. Pettigrew and D. Xu (2004), Kuroshio intrusion and the circulation inthe South China Sea, J. Geophys. Res.,109, C02017, doi:10.1029/2002JC001724.
    [82] Yang, H. and Q. Liu (1998), The seasonal features of the temperature distributions the upperlayer of the South China Sea, Oceanol. Limnol. Sinica,29(5),501–507(in Chinese withEnglish abstract).
    [83] Yang, H. and Q. Liu (2003), Forced Rossby Wave in the Northern South China Sea,Deep-Sea Res. I,50,917–926.
    [84] Yang, H., Q.Liu, Z.Liu, D.Wang, and X.Liu (2002), A general circulation model study ofthe dynamics of the upper ocean circulation of the South China Sea, J. Geophys. Res.,107(C7),3085, doi:10.1029/2001JC001084.
    [85] Yaremchuk, M., J. McCreary Jr., Z. Yu, and R. Furue (2009), The South China SeaThroughflow Retrieved from Climatological Data, Journal of Physical Oceanography39(3),753-767.
    [86] Yuan, D.(2006), Surface Kuroshio path in the Luzon Strait area derived from satelliteremote sensing data, J. Geophys. Res.,111, C11007, doi:10.1029/2005JC003412.
    [87] Yuan, D., and Z. Wang (2011), Hysteresis and Dynamics of a Western Boundary CurrentFlowing by a Gap Forced by Impingement of Mesoscale Eddies, J. Phys. Oceanogr.,41,878–888.
    [88] Zhang, F., Q. Z. Huang, W.Z. Wang, Y.S. Li, and K.W.Chau (1994), Diagnosticcalculations for the seasonal-averaged current field in the deep water zone of the SouthChina Sea, Tropic Oceanology,13(3),8-16.
    [89] Zhang, F., W. Z. Wang, Q. Z. Huang, Y. S. Li and K. W. Chau (1995), Summary currentstructure in Bashi Channel, In Proceedings of Symposium of Marine Sciences in TaiwanStrait and Its Adjacent Waters, pp.65–72, China Ocean Press, Beijing.
    [90] Zhang, M. Y., Y. S. Li, W. Z. Wang and Q. Z. Huang (1995), A three dimensionalnumerical circulation model of the South China Sea in winter, In Proceedings ofSymposium of Marine Sciences in Taiwan Strait and Its Adjacent Waters, pp.73–82, ChinaOcean Press, Beijing.
    [91] Zhang, Z., W. Zhao, and Q. Liu (2010), Sub-seasonal variability of Luzon Strait Transportin a high resolution global model, Acta Oceanol. Sin.,29(3),9–17, doi:10.1007/s13131-010-0032-0.
    [92] Zheng, Q., C. K. Tai, J. Hu, H. Lin, R. H. Zhang, F. C. Su and X. Yang (2011), SatelliteAltimeter Observations of Nonlinear Rossby eddy-Kuroshio Interaction at the Luzon Strait,J. Oceanogr.,67(4),365–376.
    [93]郭忠信(1985),冬季南海暖流及其右侧的西南向海流,热带海洋,4,1-9.
    [94]黄企洲,郑有任(1996),1992年3月南海东北部巴士海峡的海流,中国海洋学文集,第六集,海洋出版社,6,42~52.
    [95]李立,伍伯瑜(1989),黑潮的南海流套?-南海东北部环流结构探讨,台湾海峡,8(1),89-95.
    [96]李薇,刘秦玉(1997),西边界流在边界“豁口”的形变及其机制,青岛海洋大学学报,27(3),277-281.
    [97]仇德忠,杨天鸿,郭忠信(1984),夏季南海北部一支向西流动的海流,热带海洋,3(4),65-73.
    [98]孙成学,刘秦玉,(2011),卫星高度计资料揭示的冬季南海吕宋冷涡的双涡结构,热带海洋学报,30(3),9-15
    [99]王铮(2008),吕宋海峡黑潮流径变异的动力机制研究,[D]中国科学院研究生院(海洋研究所)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700