用户名: 密码: 验证码:
塔克拉玛干沙漠地区气溶胶光学厚度卫星遥感产品验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于塔克拉玛干沙漠地区地基太阳光度计数据,系统验证2007-2008年星载多角度成像光谱仪(MISR)、中分辨率成像光谱仪(MODIS)和臭氧监测仪(OMI)气溶胶反演产品,旨在定量评估这些产品在我国沙漠地区的气溶胶光学厚度(AOD)反演精度。此外,还利用云-气溶胶正交偏振激光雷达(CALIOP)气溶胶反演产品对气溶胶垂直分布进行了研究。以及利用辐射传输模式(SBDART)的模拟结果对OMI/UVAI效果较差的原因进行了敏感性试验分析,结果表明:
     (1) MODIS/AOD的相关系数在四种产品中最高(0.91),OMI/AOD次之(0.87),其次为MISR/AOD (0.84), OMI/UVAI相关系数偏低(0.51)。MISR/AOD均方根误差(0.14),平均偏差(-0.06),在四种反演产品中最低。与地基观测相比,MISR/AOD, MODIS/AOD系统偏低,OMI/AOD, OMI/UVAI系统偏高。在相同比较条件下(地基观测气溶胶光学厚度值限定在2.0以内),MISR的均方根误差和平均偏差在四种反演产品中最低,且相关系数也较高(0.84)。尽管存在诸多不同,但三种探测器气溶胶反演产品均能较好的展示该地区的气溶胶季节变化。
     (2)塔克拉玛干沙漠春夏季AOD较大,秋冬季AOD相对较小。Angstrom波长指数的结果表明,春季(3-5月)最小(均值为0.11),夏季(6-8月)次之,秋季(9-11月),冬季(12-2月)较大(均值达到0.61),这表明在春夏季气溶胶粒子偏大,秋冬季气溶胶粒子偏小。此外,通过研究2000-2010年AOD年际变化表明,由于塔克拉玛干沙漠地区属于沙尘源区,气溶胶类型较为单一,所以总的来说,变化趋势不是较为明显。从反演结果来看,2003年的气溶胶含量在这十年中最高,年均值达到0.32,2005年的气溶胶含量在这十年中最低,年均值为0.28。
     (3)气溶胶消光系数随高度的增加而减小,对流层中上部的大气较为干净,气溶胶主要集中在对流层的中下层。就垂直递减率而言,冬季最小,这应该与冬季逆温层较低,导致对流不旺盛有关。与空气分子Rayleigh散射消光系数随高度的增加而单调递减不同,对流层气溶胶消光系数垂直分布的一个明显特点是具有多层结构,如春季1.5-2 km、3 km处分别存在着浓度较大的气溶胶层,层内气溶胶消光系数变大,它反映了气溶胶浓度垂直分布结构的复杂性。
     (4)利用SBDART模式模拟大气层顶辐亮度,用于计算得出气溶胶指数(AI),从而进行一些对比研究。研究发现,AI对气溶胶层高度极其敏感,与气溶胶高度几乎成线性关系,它对1-2 km,尤其是1 km的边界层气溶胶不敏感,随着气溶胶层高度的增加,AI也随着增加。除此之外,AI还对气溶胶单次散射反照率以及观测角度的变化较为敏感,随着观测角度的增加,AI随之减小,尤其是大于15°后,减小趋势较大。由于CALIOP探测器扫描宽度较窄,所以不是所有区域的气溶胶高度资料均能获取,在这种情况下,可以通过模拟获取所要研究区域的气溶胶高度信息。
Using ground-based Aerosol Optical Depth (AOD) data at Tazhong, Taklimakan Desert, four sets of satellite aerosol data, i.e., multi-angle imaging spectrometer (MISR), Moderate Resolution Imaging Spectrometer (MODIS) and the Ozone Monitoring Instrument (OMI) from 2007 to 2008 were validated. Besides, data from CALIOP are used to investigate the vertical distribution of aerosol. Result from radiative transfer model (SBDART) is also used to compare with OMI/UVAI for sensitivity experiment. The main contents of the study and their primary results are summarized as follows:
     (1)The correlation coefficient for MODIS/AOD is the largest (0.91), followed by OMI/AOD (0.87), MISR/AOD (0.84) and OMI/UVAI (0.51). MISR/AOD root mean square error (0.14) and the average deviation (-0.06) are the lowest in the four products. MISR/AOD and MODIS/AOD is relatively less than the ground-based AOD, however, OMI/AOD and OMI/UVAI exceed the ground-based ones. Under the same conditions (ground-based AOD is limited to less than 2.0), the root mean square error and the standard deviation of MISR is the lowest. Seasonal variation of aerosol loading is captured by satellite data.
     (2)Spring and summer AOD is relatively larger and AOD is relatively lower in the autumn and winter. The result of Angstrom exponent reflects that the spring has the minimum(0.11), followed by summer and autumn, and winter has the maximum(0.61), which shows that the aerosol particle is larger in spring and summer while it is smaller in autumn and winter. Besides, Taklimakan belongs to the sand source where aerosol type is single. So in summary, the annual variability tendency of AOD from 2000 to 2010 is not that obvious. The result of the retrieval shows that 2003 has the maximal aerosol contents during the decade, the annual average is up to 0.32, while 2005 has the minimal aerosol contents, the annual average is 0.28.
     (3) The extinction coefficient decreases with increasing altitude, the atmosphere in the upper troposphere is more clean, and aerosols mainly concentrated in the middle and lower troposphere. The value of the vertical lapse rate in winter is minimum, this attributes to the weak convection resulted from the relative low inversion layer in winter. Tropospheric vertical distribution of aerosol extinction coefficient is characterized by a multi-layer structure which is different from Rayleigh scattering of air molecules that decreases monotonically with increasing height. Large concentration of aerosol exists at 1.5-2 km and 3 km respectively in spring, the aerosol extinction coefficient becomes larger, which reflects the complexity of aerosols' vertical structure.
     (4)Aerosol Index calculated from SBDART is used for comparison research. The results show that AI is extremely sensitive to the aerosol layer height and they are of almost linear relationship. AI is not sensitive to the boundary layer at 1-2 km,1 km particularly and increases with the aerosol layer height. In addition AI is also very sensitive to the single scattering albedo. Research shows that AI is more sensitive to the change of observation angle, AI decreases with the increasing observation angle, especially when the angle is greater than 15°, the decreasing trend is larger. Because of the narrow scanning width of CALIOP, not all region have the information of aerosol height. So we can get aerosol height in certain areas by simulating experiment.
引文
1. Angstrom A.1929. On the atmospheric transmission of sun radiation and on dust in the air[J]. Geografiska Annaler,11:156-166.
    2. Beer-Lambert law. http://en.wikipedia.org/wiki/Beer-Lambert_law#References[DB/OL].
    3. Ben Mohamed A, J P Frangi, J Fontan, et al.1992. Spatial and temporal variations of atmospheric turbidity and related parameters in Niger[J]. J.Appl.Meteorol,31:1286-1295.
    4. Bokoye A I, Royer A, O'Neill N T, et al.2001. Characterization of atmospheric aerosols across Canada from a ground-based Sun-photometer network:AEROCAN[J]. Atmos.-Ocean, 39(4):429-456.
    5. Boucher O, Tanre D.2000. Estimation of the aerosol perturbation to the Earth's radiative budget over oceans using POLDER satellite aerosol retrievals[J]. Geophysical Research Letters,27(8):1103-1106.
    6. Boueher O, Anderson T L.1995. GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry[J]. J. Geophys. Res., 100:26061-26092.
    7. Catherine C C, Joyce E P, Karl E T, et al.1997. An assessment of the radiative effects of anthropogenic sulfate[J]. J. Geophys. Res.,102(D3):3761-3778.
    8. Changwoo Ahn, Omar Torres, Pawan K Bhartia.2008. Comparison of Ozone Monitoring Instrument UV Aerosol Products with Aqua/Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer observations in 2006[J]. J. Geophys. Res.,113, D16S27, doi:10.1029/2007JD008832.
    9. Charlson R J, Langner J, Rodhe H, et al.1991. Perturbation of the northern hemisphere radiative balance by back scattering from anthropogenic aerosol[J]. Tellus,43AB:152-163.
    10. Charlson R J, Schwartz S E, Hales J M, et al.1992. Climate forcing by anthropogenic aerosols[J]. Science,255:423-430.
    11. Che huizheng, Zhang xiaoye, Chen hongbin, et al.2009. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network[J]. J. Geophys. Res., 114, D03206, doi:10.1029/2008JD011030.
    12. Christopher S A, Chou J, Zhang J. et al.2000. Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data[J]. Geophysical Research Letters, 27(15):2197-2200.
    13. Christopher S A, Wang J.2004. Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China:implications for satellite aerosol retrievals and radiative forcing calculations[J]. Tellus, doi:10.1111/j.1600-0889.
    14. Christopher S A, Zhang J, Kaufman Y J, et al.2006. Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans[J]. Geophys.Res.Lett,doi:10.1029/2005GL025535.
    15. Diner D J, Abdou W A, Bruegge C J, et al.2001. MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign[J]. Geophys. Res. Lett.,28: 3127-3130.
    16. Diner D J, Martonchik J V, Kahn R, et al.2005. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sens. Environ.,94(2):155-171.
    17. Griggs M.1975. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data[J]. J. Air Pollut Control Assoc,25(6):622-626.
    18. Herber A L, W Thomason, V F Radionov, et al.1993. Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic[J]. J. GeoPhys.Res., 98:18441-18447.
    19. Herman J R, P K Bhartia, O Torres, et al.1997. Global distributions of UV-absorbing aerosols from NIMBUS 7/TOMS data[J]. J. Geophys. Res.,102(D14),16,911-16,922.
    20. Holben B N, D Tanre, A Smirnov, et al.2001. An emerging ground-based aerosol climatology:Aerosol optical depth from AERONET[J]. J. Geophys. Res.,106(12):67-97.
    21. Hsu N C,S C Tsay, M D King, J R Herman.2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia[J]. IEEE Trans.Geosci.Remote Sens.,9(44):3180-3195.
    22. Intergovernmental Panel on Climate Change (IPCC).2001. Third Assessment Report Climate Change 2001:The Scientific Basis[M]. New York Cambridge University Press, New York.
    23. Intergovernmental Panel on Climate Change (IPCC).2007. Chapter 1:Historical overview of climate change science[M], Cambridge University Press, New York.
    24. Jiang X, Liu Y, Yu B, et al.2007. Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area[J]. Remote Sensing of Environment, 107(12):45-53.
    25. Jinyuan Xin, Yuesi Wang, Zhanqing Li, et al.2007. Aerosol optical depth(AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005[J]. J. Geophys. Res.,112, D05203, doi:10. 1029/2006JD007075.
    26. King M D, Kaufman Y J, Tanre D, et al.1999. Remote sensing of tropospheric aerosols from space:Past, present, and future[J]. Bull. Amer. Meteor. Soc,80(11):2229-2259.
    27. Langner J, Rodhe H.1991. A global three-dimensional model of the tropospheric sulfur cycle[J]. J. Atmos. Chem.,13:52-63.
    28. Lee K H, Li Z, Wong M S, et al.2007. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements [J]. J.Geophys. Res., 112(D22):1-17.
    29. Lee T Y, Kaufman Y J.1986. Non-Lambertian Effects on Remote Sensing of Surface Reflectance and Vegetation Index[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1986a:699-708.
    30. Lee T, Kaufman Y J.1986. The effect of surface non-Lambertianity on remote sensing of ground reflectance and vegetation index[J]. IEEE Trans. Geosci. Remote Sens,1986b, 24:699-708.
    31. Li Z, Niu F, Lee K H, et al.2007. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products(C5) using ground-based measurements from the handheld Sun photometer network in China[J]. J. Geophys. Res.,112(D22):1-16.
    32. M de Graaf, P Stammes, O Torres, et al.2005. Absorbing aerosol index:sensitivity analysis, application to GOME and comparison with TOMS[J]. J. Geophys. Res., vol.110, D01201, doi:10.1029/2004JD005178.
    33. Martonchik J V, Diner D J, Kahn R, et al.2004. Comparison of MISR and AERONET aerosol optical depths over desert sites[J]. Geophys. Res. Lett.,31(16):1-4.
    34. Mi W, Li Z, Xia X, et al.2007. Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China[J]. J. Geophys. Res.,112(D22):1-14.
    35. Mitchell J F, B Johns T C, Gregory J M, et al.1995. Climate response to increasing levels of greenhouse gases and sulphate aerosols[J]. Nature,376:501-504.
    36. Omar Torres, Aapo Tanskanen, B Veihelmann, et al.2007. Aerosols and surface UV products from Ozone Monitoring Instrument observations:An overview[J]. J. Geophys. Res., 112,D24S47,doi:10.1029/2007JD008809.
    37. Omar Torres, Aapo Tanskanen, et al.2007. Aerosols and surface UV products from Ozone Monitoring Instrument observations:An overview[J]. J. Geophys. Res., vol.112, doi:10.1029/2007JD008809
    38. Paul Ginoux, Dmitri Garbuzov, N Christina Hsu.2010. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer(MODIS) Deep Blue level 2 data[J]. J. Geophys. Res.,115, D05204, doi:10.1029/2009JD012398.
    39. Paul Ricchiazzi, Yang S, Gautier C, et al.1998. SBDART:A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere[J]. Bulletin of the Amer. Mete. Society.,79(10):2101-2114.
    40. Pham M, Megie G, Muller J F, et al.1996. A three-dimensional study of the tropospheric sulfurcycle[J]. J. Geophys. Res.,100:26061-26092.
    41. Qin Y, R M Mitchell.2009. Characterisation of episodic aerosol types over the Australian continent[J]. Atmos. Chem. Phys.,9:1943-1956.
    42. Ramanathan V, Crutzen P J, Kiehl J T, et al.2001. Aerosols, Climate, and the Hydrological Cycle[J]. Science,294(5549):2119-2124.
    43. Remer L A, Kaufman Y J.2006. Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data[J]. Atmos. Chem. Phys, 6:237-253.
    44. Remer L A, Y J Kaufman, D Tanre, et al.2005. The MODIS Aerosol Algorithm, Products and Validation[J]. J. Atmos. Sci.,62:947-973.
    45. Roosen R G, R J Angione, et al.1973. World wide variations in atmospheric transmission: 1.baseline results from Smithsonian observations [J]. Bull.Am.Meteorol.Soc.,54:307-316.
    46. Satheesh S K, O Torres, L A Remer, et al.2009. Improved Assessment of Aerosol Absorption using OMI-MODIS Joint Retrieval [J]. J. Geophys. Res.,114, D05209, doi:10. 1029/2008JD011024.
    47. Satheesh S K, Ramanathan V.2000. Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface[J]. Nature, doi:10.1038/35011039.
    48. Shaw G E.1982. Atmospheric turbidity in the Polar regions[J].Appl.Met.,21:1080-1088.
    49. Stamnes K, Tsay S, Wiscombe W.1988. Numerically stable algorithm for discreteordinate method radiative transfer in multiple scattering and emitting layered media[J]. Appl.Opt,27: 2502-2509.
    50. Sundar A Christopher, Pawan Gupta, James Haywood, et al.2008. Aerosol optical thicknesses over North Africa:1. Development of a product for model validation using Ozone Monitoring Instrument, Multiangle Imaging Spectroradiometer, and Aerosol Robotic Network[J]. J. Geophys. Res.,113, D00C04, doi:10.1029/2007JD009446.
    51. Sundar A, Christopher.Pawan Gupta et al.2008. Aerosol optical thicknesses over North Africa:1. Development of a product for model validation using Ozone Monitoring Instrument Multiangle Imaging Spectroradiometer and Aerosol Robotic Network[J]. J. Geophys. Res., vol.113, doi:10.1029/2007JD009446.
    52. Twomey S A.1977. The Influence of Pollution on the Short wave Albedo of Clouds[J]. Atmos.Sci,34:1149-1152.
    53. Uchiyama A, Yamazaki A, Togawa H, et al.2005. Characteristics of Aeolian dust observed by sky-radiometer in the Intensive Observation Period 1 (IOP1)[J]. J. Meteor. Soc.,83A: 291-305.
    54. Volz F E.1968. Turbidity at Uppsala from 1909 to 1922 from Sjostroms solar radiation measurement[J].Sued.Meteorol.Hydrol.Inst.Rep,28:100-104.
    55. Winker, D. M., Hunt, W. H., Hostetler, C. A.2004, Status and performance of the CALIOP lidar[J]. Proc. SPIE Int. Soc. Opt. Eng.,5575:8-15.
    56. Winker, D. M., Hunt, W., McGill, M.2007, Initial performance assessment of CALIOP[J]. Geophys. Res. Lett.,34, doi:10.1029/2007GL030135.
    57. Winker, D. M., Pelon, J., McCormick, M. P.2003, The CALIPSO mission:Spaceborne lidar for observation of aerosols and clouds[J]. Proc. SPIE Int. Soc. Opt. Eng.,4893:1-11.
    58. World Meteorological Organization(WMO), Global Atmosphere Watch(GAW).2003. Aerosol measurement procedures guidelines and recommendations[R]. WMO/GAW, Report NO.153.
    59. Xia X, Chen H, Goloub P, et al.2007. A compilation of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China[J]. J.Geophys.Res.,112(D12).
    60. Xia X, Li Z, Holben B, et al.2007. Aerosol optical properties and radiative effects in the Yangtze Delta region of China[J]. J. Geophys. Res.,112(D22):1-16.
    61. Zhang J, Christopher S A, Remer L A. et al.2005. Shortwave aerosol cloud-free radiative forcing from Terra, Ⅱ:Global and seasonal distributions[J]. J. Geophys.Res., doi:10.1029/2004JD005008.
    62.陈渭南,董治宝,杨佐涛,等.1995.塔克拉玛干沙漠起沙风速[J].地理学报,50(4):360-367.
    63.邓学良.2008.卫星遥感中国海域气溶胶光学特性及其辐射强迫研究[D].南京信息工程大学博士学位论文.
    64.范学花.2007PARASOL卫星偏振信息遥感北京地区气溶胶光学特性的研究[J].中国科学院研究生院博士学位论文.
    65.高庆先,任阵海,姜振远.1998.人为排放气溶胶引起的辐射强迫研究[J].环境科学研究,11(1):5-9.
    66.高太长,刘磊,李浩.2007.近红外波段气溶胶粒子形状和性质对散射特性的影响[J].解放军理工大学学报(自然科学版),8(3):302-306.
    67.胡荣明,石广玉.1998.中国地区气溶胶的辐射强迫及其气候响应试[J].大气科学,22(6):919-925.
    68.胡秀清,张玉香.2001.中国遥感卫星辐射校正场气溶胶光学特性观测研究[J].应用气象学报,12(3):257-266.
    69.黄蔚薇,杨军,凌士兵,等.2007.沙尘气溶胶粒子表面变性对云滴形成过程的影响[J].南京气象学院学报,30(2):210-215.
    70.孔丹,何清,张瑞军,等.2008.塔克拉玛干沙漠腹地春季一次沙尘暴沙尘气溶胶的辐射特性[J].干旱气象,26(2):36-40.
    71.孔丹.2008.塔克拉玛干沙漠腹地2007年春夏季辐射及沙尘气溶胶特征分析[D].新疆师范大学硕士学位论文
    72.李成才,刘启汉,毛节泰,等.2004.利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染[J].应用气象学报,15(6):641-650.
    73.李成才,毛节泰,刘启汉,等.2003.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J].科学通报,48(019):2094-2100.
    74.李成才,毛节泰,刘启汉.2003.利用MODIS遥感大气气溶胶及气溶胶产品的应用[J].北京大学学报(自然科学版),39(z1):108-117.
    75.李成才,毛节泰,刘启汉.2005.利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度[J].大气科学,29(3):632-639.
    76.李娟,毛节泰.2006.冰晶性质对卷云辐射特征影响的模拟研究[J].气象.32(2):9-13.
    77.李晓静,刘玉洁,邱红,等.2003.利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究[J].气象学报,61(5):580-591.
    78.刘玉杰,牛生杰,郑有飞.2004.用CE-318太阳光度计资料研究银川地区气溶胶光学厚度特性[J].南京气象学院学报,27(5):615-622.
    79.柳晶.2008.中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究[D]南京信息工程大学博士学位论文.
    80.罗云峰,吕达仁,李维亮,等.2000.近30年来中国地区大气气溶胶光学厚度的变化特征[J].科学通报,45(5):549-554.
    81.闵敏.2010.中国地区卷云特性的星载激光雷达遥感及其辐射强迫研究[D].中国科学院研究生院博士学位论文.
    82.钱云,符涂斌,胡荣明,等.1996.工业排放对东亚和我国温度变化的影响[J].气候与环境研究,1(2):143-149.
    83.邱金桓.1997.中国10个地方大气气溶胶1980-1994年间变化特征研究[J].大气科学,21(6):725-733.
    84.谭浩波,吴兑,毕雪岩.2006.南海北部气溶胶光学厚度观测研究[J].热带海洋学报,25(5):21-25.
    85.王明新.1991.大气化学[M].气象出版社.
    86.王明星,张仁健.2001.大气气溶胶研究的前沿问题[J].气候与环境研究,6(1):119-124.
    87.王明星.2000.气溶胶与气候[J].气候与环境研究,5(1):1-5.
    88.王体健.2004.一个区域气候-化学耦合模式的研制及初步应用[J].南京大学学报,40(6):711-727.
    89.王新炜,白洁,刘健文,等.2003SBDART辐射传输模式及其在飞机潜在积冰区反演中的应用[J].气象科技,31(3):152-155.
    90.王跃启,江洪,张秀英,等.2009.基于OMI卫星遥感数据的中国对流层NO2时空分布[J].环境科学研究,22(8):932-937.
    91.吴兑.2003.华南气溶胶研究的回顾与展望[J].热带气象学报,19(增刊):145-151.
    92.吴涧,蒋维相,刘红年,等.2002.硫酸盐气溶胶直接和间接辐射气候效应的模拟研究[J].环境科学学报,22(2):129-134.
    93.夏祥鳌,王明星.2004.气溶胶吸收及气候效应研究的新进展[J].地球科学进展,19(4):630-635.
    94.夏祥鳌,王普才,陈洪滨,等.2005.中国北方地区春季气溶胶光学特性地基遥感研究[J].遥感学报,9(4):429-437.
    95.夏祥鳌.2006.全球陆地上空MODIS气溶胶光学厚度显著偏高[J].科学通报,51(10);2297-2303.
    96.延昊,矫梅燕,毕宝贵,等.2006.塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J].中国沙漠,26(3):389-393.
    97.杨军,李子华,黄世鸿.1999.相对湿度对大气气溶胶粒子短波辐射特性的影响[J].大气科学,23(2):239-247.
    98.杨志峰.2008.中国特征区域大气气溶胶光学特性研究[D].中国气象科学研究院硕士学位论文.
    99.张冰.2007.地基与星载激光雷达探测青岛地区大气消光特性的研究[D].中国海洋大学硕士学位论文.
    100.张彦军,牛铮,王力等.2008.基于OMI卫星数据的城市对流层NO2变化趋势研究[J].地理与地理信息科学.24(3):96-99.
    101.赵柏林,王强,毛节泰,等.1983.光学遥感大气气溶胶和水汽的研究[J].中国科学(B辑),10:951-962.
    102.周军,岳古明,戚福第,等.1998.大气气溶胶光学特性激光雷达探测[J].量子电子学报,15(2):140-148.
    103.周秀骥,李维亮,罗云峰.1995.中国地区大气气溶胶辐射强迫及区域气候效应的数值 模拟[J].大气科学,22(4):418-427.
    104.宗雪梅,邱金桓,王普才.2005.宽带消光法反演气溶胶光学厚度与AERONET北京站探测结果的对比研究[J].大气科学,29(4):645-653.
    105.宗雪梅.2005.中国陆地上空气溶胶光学厚度遥感方法及其应用[D].中国科学院研究生院博士学位论文.
    106.俎瑞平,张克存,屈建军.2005.塔克拉玛干沙漠风沙活动强度特征[J].地理研究,24(5):699-707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700