用户名: 密码: 验证码:
绳系卫星释放和回收的动力学控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绳系卫星系统是指采用细长系绳将两个或多个人造卫星连在一起飞行的组合体。绳系卫星是一项颇具发展前景的技术,有可能促成太空探索及开发领域的一次技术革命。然而,即便结构形式最简单的绳系卫星系统,其动力学及控制问题也非常复杂。由于系绳具有阻尼小、柔性大的特点,当它被置于空间环境并与卫星耦合时极易产生一系列复杂的天平动及振动。在绳系卫星释放及回收过程中,系绳长度的变化引起Coriolis加速度,可能导致系绳出现大幅摆动及振动。若不施加控制,系绳内的动应力幅值可能会超过材料的强度极限,导致系统失效。
     本文考虑绳系卫星系统应用中最关键的释放和回收环节,研究其相关动力学与控制问题。论文的主要研究内容和学术贡献如下:
     1.研究非线性最优控制问题的Legendre-Gauss-Lobatto (LGL)伪谱法,提出并证明Bolza型最优控制问题的直接二阶LGL伪谱法的协态映射关系。在此基础上,采用C++语言编写通用非线性最优控制程序包,并通过加入符号数学预处理器和利用矩阵稀疏结构,大大提高了计算效率。
     2.针对绳系卫星释放过程的固定及非固定时间区间轨道优化问题,提出基于二阶微分包含的控制律设计方法,使得优化变量数及约束数显著减少。考虑倾斜轨道上电动力绳系卫星的回收过程和轨道面内三体绳系卫星系统的释放过程,分别研究其非线性最优控制问题。利用LGL伪谱法将上述连续时间最优控制问题离散后,通过非线性规划方法进行求解。
     3.针对扰动影响下的绳系卫星释放控制问题,基于直接轨道产生方法设计反馈控制器,提出一种在线网格调整算法,使得计算时间大幅减少。考虑倾斜轨道上电动力绳系卫星回收控制问题,设计非线性模型预测控制器,并采用多体动力学模型对控制性能进行检验。
     4.通过时间尺度变换,研究绳系卫星回收过程的无限时域最优控制问题,分别利用两种Legendre-Gauss-Radau (LGR)伪谱法进行离散求解,并通过实时轨道产生方法初步设计了反馈控制器。
     5.利用气浮装置和喷管来模拟绳系卫星上的重力梯度力和Coriolis加速度作用,提出了新的绳系卫星系统地面模拟实验设计方案,并就卫星仿真器、计算机视觉和系绳控制等关键子系统研制过程中所涉及到的理论和技术问题进行讨论。
The concept of Tethered Satellite System (TSS), that is, two or more satellites connected by thin and long cables, promises to revolutionize many aspects of space exploration and exploitation. However, the dynamics and control of any TSS are quite complex. Because of their overall flexibility, the tethers are strongly susceptible to undergoing a complicated set of librations and vibrations when they are placed into a space environment and coupled with flexible satellites. The problem becomes even more challenging when the deployment and retrieval parts of a TSS mission are taken into consideration because the librations and vibrations of tether can grow dramatically due to the effect of the Coriolis accelerations. If not carefully controlled, motions with large amplitudes may result in an excessively high tensional stress beyond the strength of tether material and may lead to the failure of a whole TSS.
     This dissertation focuses on the dynamics and control problems concerning tether deployment and retrieval, which may be the most important but also delicate parts of a TSS mission. The main themes and contributions of the dissertation include:
     1. A detailed study is presented on the Legendre-Gauss-Lobatto (LGL) pseudospectral (PS) methods for solving nonlinear optimal control problems. Additionally, a costate estimation scheme is proposed for the Bolza problem of optimal control of a set of dynamic equations of the second order by using the direct LGL PS approach. The presented algorithms are coded into a reusable general optimal control package in C++ language, and the computation efficiency is improved by using a symbolic preprocessor and putting the sparse structures of involved matrices into full use.
     2. Optimal schemes are presented for controlling the deployment process of a tethered subsatellite model with fixed and free end-time, in which a second-order differential inclusion formulation is exploited to achieve a significant reduction of the number of optimization variables and constraints. The investigation is later extended to control the retrieval process of an electrodynamic tethered satellite system in an inclined orbit, and to achieve the optimal deployment of a three-body tethered satellite formation in the orbital plane. The optimal control is solved by discretizing the original continuous optimal control problem first, based on the LGL PS algorithm, and numerically solving the resulting large-scale optimization problem.
     3. The idea of direct real-time trajectory generation is exploited to design feedback controller for the deployment process of a TSS subject to perturbations with the aid of a grid adaptation scheme, which contributes a significantly reduction of computation burden. In addition, a model predictive control (MPC) scheme is proposed for stabilizing the retrieval process of an electrodynamic TSS in an inclined orbit, and the performance of the MPC scheme is demonstrated by using a multi-body dynamics model.
     4. Infinite-horizon optimal control schemes are also explored to stabilize the retrieval process of a TSS. The infinite-horizon optimal control problem is solved individually through two Legendre-Gauss-Radau (LGR) PS algorithms by using a straightforward domain-transformation. A preliminary exploration on feedback controller synthesis is further made about the idea of real-time trajectory generation.
     5. Furthermore, an innovative experiment design is presented for the ground-based experiments of TSS, where a combination of air-bearing facilities and on-board thrusts are proposed to simulate the microgravity field and the Coriolis forces experienced by a TSS. Additionally, a detailed discussion is presented on the theoretical and technical issues related to the development of some key subsystems, such as satellite simulator, computer vision module, tether reel device, etc.
引文
[1] Cosmo M L, Lorenzini E C. Tethers in Space Handbook (3rd ed.). Washington DC, NASA, 1997.
    [2] Modi V J, Lakshmanan P K, Misra A K. Dynamics and control of tethered spacecraft: A brief overview. AIAA Dynamics Specialist Conference, Long Beach, California, United States, 1990.
    [3] Kumar K D. Review of dynamics and control of nonelectrodynamic tethered satellite systems. Journal of Spacecraft and Rockets, 2006, 43(4): 705-720.
    [4] Cartmell M P, Mckenzie D J. A review of space tether research. Progress in Aerospace Sciences, 2008, 44(1): 1-21.
    [5] Estes R D, Lorenzini E C, Santangelo A. An overview of electrodynamic tethers. The 38th Aerospace Sciences Meeting and Exhibit, Reno, United States, 2000.
    [6] Kim M, Hall C D. Control of a rotating variable-length tethered system. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 849-858.
    [7] Kim M, Hall C D. Dynamics and control of rotating tethered satellite systems. Journal of Spacecraft and Rockets, 2007, 44(3): 649-659.
    [8] Pearson J. The real history of the space elevator. The 57th International Astronautical Congress, Valencia, Spain, 2006.
    [9] Artsutanov Y. To the cosmos by electric train. Komsomolskaya Pravda. 1960.
    [10] Pearson J. The Orbital Tower: A spacecraft launcher using the Earth's rotational energy. Acta Astronautica, 1975, 2(9-10): 785-799.
    [11] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58.
    [12] Iannotta B. Nanotubes lift hopes for space elevator. Aerospace America, 2006, 44(3): 30-35.
    [13] Edwards B C. Design and deployment of a space elevator. Acta Astronautica, 2000, 47(10): 735-744.
    [14] Aravind P K. The physics of the space elevator. American Journal of Physics, 2007, 75(2): 125-130.
    [15] Steindl A, Troger H. Is the sky-hook configuration stable? Nonlinear Dynamics, 2005, 40(4): 419-431.
    [16] Cohen S S, Misra A K. Elastic oscillations of the space elevator ribbon. Journal of Guidance,Control, and Dynamics, 2007, 30(6): 1711-1717.
    [17] Colombo G, Gaposchkin E M, Grossi M D, et al. The <>: A shuttle-borne tool for low-orbital-altitude research. Meccanica, 1975, 10(1): 3-20.
    [18] Bilén S G. Space-borne tethers. IEEE Potentials, 1994, 13(3): 47-50.
    [19] Sasaki S, Oyama K I, Kawashima N, et al. Results from a Series of Tethered Rocket Experiments. Journal of Spacecraft and Rockets, 1987, 24(5): 444-453.
    [20] Kruijff M. The Young Engineers' Satellite: Flight results and critical analysis of a super-fast hands-on satellite project. The 50th International Astronautical Congress, Amsterdam, Netherlands, 1999.
    [21] Williams P, Hyslop A, Stelzer M, et al. YES2 optimal trajectories in presence of eccentricity and aerodynamic drag. The 57th International Astronautical Congress, Valencia, Spain, 2006.
    [22] Gates S S, Koss S M, Zedd M F. Advanced tether experiment deployment failure. Journal of Spacecraft and Rockets, 2001, 38(1): 60-68.
    [23] Hoyt R, Slostad J, Twiggs R. The Multi-Application Survivable Tether (MAST) experiment. The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, United States, 2003.
    [24] Lorenzini E C. A three-mass tethered system for micro-g/variable-g applications. Journal of Guidance, Control, and Dynamics, 1987, 10(3): 242-249.
    [25] Hoffman J H, Mazzoleni A P. Investigation of a tethered satellite system for generating artificial gravity. The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, United States, 2003.
    [26] Padgett D A, Mazzoleni A P. Nullcline analysis as an analytical tethered satellite mission design tool. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 741-752.
    [27] Kumar K D, Yasaka T. Satellite attitude stabilization through kite-like tether configuration. Journal of Spacecraft and Rockets, 2002, 39(5): 755-760.
    [28] Menon C, Bombardelli C. Self-stabilising attitude control for spinning tethered formations. Acta Astronautica, 2007, 60(10-11): 828-833.
    [29] Williams P, Yeo S, Blanksby C. Heating and modeling effects in tethered aerocapture missions. Journal of Guidance, Control, and Dynamics, 2003, 26(4): 643-654.
    [30] Jokic M D, Daniel W J T. Aerogravity-assist maneuvering of a tethered satellite system. Journal of Spacecraft and Rockets, 2004, 41(4): 614-621.
    [31] Gl??el H, Zimmermann F, Brückner S, et al. Adaptive neural control of the deploymentprocedure for tether-assisted re-entry. Aerospace Science and Technology, 2004, 8(1): 73-81.
    [32] Lorenzini E C. Error-tolerant technique for catching a spacecraft with a spinning tether. Journal of Vibration and Control, 2004, 10(10): 1473-1491.
    [33] Williams P, Blanksby C. Prolonged payload rendezvous using a tether actuator mass. Journal of Spacecraft and Rockets, 2004, 41(5): 889-893.
    [34] Williams P. Spacecraft rendezvous on small relative inclination orbits using tethers. Journal of Spacecraft and Rockets, 2005, 42(6): 1047-1060.
    [35] Williams P. In-plane payload capture with an elastic tether. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 810-821.
    [36] Williams P. Dynamics and control of spinning tethers for rendezvous in elliptic orbits. Journal of Vibration and Control, 2006, 12(7): 737-771.
    [37] Lorenzini E C, Cosmo M L, Kaiser M, et al. Mission analysis of spinning systems for transfers from low orbits to geostationary. Journal of Spacecraft and Rockets, 2000, 37(2): 165-172.
    [38] Ziegler S W, Cartmell M P. Using motorized tethers for payload orbital transfer. Journal of Spacecraft and Rockets, 2001, 38(6): 904-913.
    [39] Williams P. Optimal orbital transfer with electrodynamic tether. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 369-372.
    [40] Williams P. Simple approach to orbital control using spinning electrodynamic tethers. Journal of Spacecraft and Rockets, 2006, 43(1): 253-256.
    [41] Bonometti J A, Sorensen K F, Dankanich J W, et al. 2006 status of the Momentum eXchange Electrodynamic Re-boost (MXER) tether development. The 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, United States, 2006.
    [42] Forward R L, Hoyt R P, Uphoff C W. Terminator Tether (TM): A spacecraft deorbit device. Journal of Spacecraft and Rockets, 2000, 37(2): 187-196.
    [43] Yamaigiwa Y, Hiragi E, Kishimoto T. Dynamic behavior of electrodynamic tether deorbit system on elliptical orbit and its control by Lorentz force. Aerospace Science and Technology, 2005, 9(4): 366-373.
    [44] Takeichi N. Practical operation strategy for deorbit of an electrodynamic tethered system. Journal of Spacecraft and Rockets, 2006, 43(6): 1283-1288.
    [45] Kawamoto S, Makidztb T, Sasaki F, et al. Precise numerical simulations of electrodynamic tethers for an active debris removal system. Acta Astronautica, 2006, 59(1-5): 139-148.
    [46] Pardini C, Hanada T, Krisko P H, et al. Are de-orbiting missions possible usingelectrodynamic tethers? Task review from the space debris perspective. Acta Astronautica, 2007, 60(10-11): 916-929.
    [47] Williams T, Moore K. Dynamics of tethered satellite formations. AAS/AIAA Spaceflight Mechanics Meeting, San Antonio, United States, 2002.
    [48] Bombardelli C, Lorenzini E C, Quadrelli M B. Retargeting dynamics of a linear tethered interferometer. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1061-1067.
    [49] Tragesser S G, Tuncay A. Orbital design of earth-oriented tethered satellite formations. Journal of the Astronautical Sciences, 2005, 53(1): 51-64.
    [50] Eiden M J, Cartmell M P. Overcoming the challenges: Tether systems roadmap for space transportation applications. AIAA International Air and Space Symposium and Exposition, Dayton, United States, 2003.
    [51] Pearson J. High-payoff space tethers. The 57th International Astronautical Congress, Valencia, Spain, 2006.
    [52] Beletsky V V, Levin E M. Dynamics of Space Tether Systems. Advances in the Astronautical Sciences, 1993, 83.
    [53] Carroll J A. Tether applications in space transportation. Acta Astronautica, 1986, 13(4): 165-174.
    [54]程俊仁,崔乃刚,齐乃明.绳系卫星系统系绳展开及剪断后轨道参数的计算.哈尔滨工业大学学报, 1995, 27(1): 97-100.
    [55] Iess L. Space tethers: An overview. The 7th Spacecraft Charging Technology Conference, Noordwijk, Netherlands, 2001.
    [56] Okawa Y, Kitamura S, Kawamoto S, et al. An experimental study on carbon nanotube cathodes for electrodynamic tether propulsion. Acta Astronautica, 2007, 61(11-12): 989-994.
    [57] Peláez J, Sanjurjo M. Generator regime of self-balanced electrodynamic bare tethers. Journal of Spacecraft and Rockets, 2006, 43(6): 1359-1369.
    [58] Johnson L, Estes R D, Lorenzini E, et al. Propulsive Small Expendable Deployer System experiment. Journal of Spacecraft and Rockets, 2000, 37(2): 173-176.
    [59] Rega G. Nonlinear vibrations of suspended cables - Part I: Modeling and analysis. 2004, 57(1-6): 443-478.
    [60] Peláez J, Lorenzini E C, Lopez-Rebollal O, et al. A new kind of dynamic instability in electrodynamic tethers. Journal of the Astronautical Sciences, 2000, 48(4): 449-476.
    [61] Krupa M, Poth W, Schagerl M, et al. Modelling, dynamics and control of tethered satellitesystems. Nonlinear Dynamics, 2006, 43(1-2): 73-96.
    [62] Yu S H. Dynamic model and control of mass-distributed tether satellite system. Journal of Spacecraft and Rockets, 2002, 39(2): 213-218.
    [63] Takeichi N, Natori M C, Okuizumi N, et al. Periodic solutions and controls of tethered systems in elliptic orbits. Journal of Vibration and Control, 2004, 10(10): 1393-1413.
    [64] Peláez J, Andrés Y N. Dynamic stability of electrodynamic tethers in inclined elliptical orbits. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 611-622.
    [65] Peláez J, Lorenzini E C. Libration control of electrodynamic tethers in inclined orbit. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 269-279.
    [66] Williams P, Watanabe T, Blanksby C, et al. Libration control of flexible tethers using electromagnetic forces and movable attachment. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 882-897.
    [67] Mankala K K, Agrawal S K. Equilibrium-to-equilibrium maneuvers of rigid electrodynamic tethers. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 541-545.
    [68] Mankala K K, Agrawal S K. Equilibrium-to-equilibrium maneuvers of flexible electrodynamic tethers in equatorial orbits. Journal of Spacecraft and Rockets, 2006, 43(3): 651-658.
    [69] Zhou X, Li J F, Baoyin H, et al. Equilibrium control of electrodynamic tethered satellite systems in inclined orbits. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1451-1454.
    [70] Lanoix E L M, Misra A K, Modi V J, et al. Effect of electrodynamic forces on the orbital dynamics of tethered satellites. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1309-1315.
    [71] Barkow B, Steindl A, Troger H. A targeting strategy for the deployment of a tethered satellite system. IMA Journal of Applied Mathematics, 2005, 70(5): 626-644.
    [72] Steindl A, Troger H. Optimal control of deployment of a tethered subsatellite. Nonlinear Dynamics, 2003, 31(3): 257-274.
    [73] Steindl A, Steiner W, Troger H. Optimal control of retrieval of a tethered subsatellite. Solid Mechanics and Its Applications, 2005, 122: 441-450.
    [74] Williams P. Application of pseudospectral methods for receding horizon control. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 310-314.
    [75] Williams P. Libration control of tethered satellites in elliptical orbits. Journal of Spacecraft and Rockets, 2006, 43(2): 476-479.
    [76] Williams P. Optimal deployment/retrieval of tethered satellites. Journal of Spacecraft and Rockets, 2008, 45(2): 324-343.
    [77] Jin D P, Hu H Y. Optimal control of a tethered subsatellite of three degrees of freedom. Nonlinear Dynamics, 2006, 46(1-2): 161-178.
    [78] Okazaki M, Ohtsuka T. Switching control for guaranteeing the safety of a tethered satellite. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 822-830.
    [79] Padgett D A, Mazzoleni A P. Analysis and design for no-spin tethered satellite retrieval. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1516-1519.
    [80] Mantri P, Mazzoleni A P, Padgett D A. Parametric study of deployment of tethered satellite systems. Journal of Spacecraft and Rockets, 2007, 44(2): 412-424.
    [81] Williams P. Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dynamics, 2008, 52(1-2): 159-179.
    [82] Tragesser S G. Formation flying with tethered spacecraft. AIAA/AAS Astrodynamics Specialist Conference, Denver, United States, 2000.
    [83] Pizarro-Chong A, Misra A K. Dynamics of a multi-tethered satellite formation. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, United States, 2004.
    [84] Pizarro-Chong A, Misra A K. Dynamics of multi-tethered satellite formations. The 56th International Astronautical Congress, Fukuoka, Japan, 2005.
    [85] Kumar K D, Yasaka T. Rotating formation flying of three satellites using tethers. Journal of Spacecraft and Rockets, 2004, 41(6): 973-985.
    [86] Kumar K D, Yasaka T. Dynamics of rotating linear array tethered satellite system. Journal of Spacecraft and Rockets, 2005, 42(2): 373-378.
    [87] Corrêa A A, Gómez G. Equilibrium configurations of a four-body tethered system. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1430-1435.
    [88] Guerman A D, Smirnov G, Paglione P, et al. Stationary configurations of a tetrahedral tethered satellite, formation. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 424-428.
    [89] Kojima H, Iwasaki M, Fujii H A, et al. Nonlinear control of librational motion of tethered satellites in elliptic orbits. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 229-239.
    [90] Kojima H, Sugimoto T. Nonlinear control of a double pendulum electrodynamic tether system. Journal of Spacecraft and Rockets, 2007, 44(1): 280-284.
    [91] Williams P. Optimal deployment/retrieval of a tethered formation spinning in the orbital plane. Journal of Spacecraft and Rockets, 2006, 43(3): 638-650.
    [92] Williams P. Optimal control of a spinning double-pyramid earth-pointing tether formation. The 57th International Astronautical Congress, Valencia, Spain, 2006.
    [93] Mori O, Matunaga S. Formation and attitude control for rotational tethered satellite clusters. Journal of Spacecraft and Rockets, 2007, 44(1): 211-220.
    [94] Chung S J, Slotine J J E, Miller D W. Nonlinear model reduction and decentralized control of tethered formation flight. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 390-400.
    [95] Higuchi K, Natori M C. Ground experiment of motion control of retrieving space tether. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Kissimmee, United States, 1997.
    [96] Modi V J, Pradhan S, Misra A K. Controlled dynamics of flexible orbiting tethered systems: Analysis and experiments. Journal of Vibration and Control, 1997, 3(4): 459-497.
    [97] Schultz F W, Vigneron F R, Jablonski A M. Horizontally-configured ground-test method for tethered satellites. Canadian Aeronautics and Space Journal, 2002, 48(1): 97-106.
    [98] Misra A K, Amier Z, Modi V J. Attitude dynamics of three-body tethered systems. 1988, 17(10): 1059-1068.
    [99] Tan Z, Bainum P M. Tethered satellite constellations in auroral observation mission. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, United States, 2002.
    [100] Kim E, Vadali S R. Modeling issues related to retrieval of flexible tethered satellite systems. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1169-1176.
    [101]朱仁璋,雷达,林华宝.绳系卫星系统复杂模型研究.宇航学报, 1999, 20(3): 7-12.
    [102] Leamy M J, Noor A K, Wasfy T M. Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets. Computer Methods in Applied Mechanics and Engineering, 2001, 190(37-38): 4847-4870.
    [103] Betts J T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.
    [104] Biegler L T. An overview of simultaneous strategies for dynamic optimization. Chemical Engineering and Processing, 2007, 46(11): 1043-1053.
    [105] Fahroo F, Ross I M. Trajectory optimization by indirect spectral collocation methods. AIAA/AAS Astrodynamics Specialist Conference, Denver, United States, 2000.
    [106] Ross I M, Fahroo F. Legendre pseudospectral approximations of optimal control problems. Lecture Notes in Control and Information Sciences, New York, Springer-Verlag, 2003: 327-342.
    [107] Gong Q, Ross I M, Kang W, et al. Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Computational Optimization And Applications, 2008, 41(3): 307-335.
    [108] Benson D A, Huntington G T, Thorvaldsen T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1435-1440.
    [109] Ross I M, Fahroo F. Issues in the real-time computation of optimal control. Mathematical And Computer Modelling, 2006, 43(9-10): 1172-1188.
    [110] Ross I M, Rea J, Fahroo F. Exploiting higher-order derivatives in computational optimal control. The 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, 2002.
    [111] Williams P. Jacobi pseudospectral method for solving optimal control problems. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 293-297.
    [112] Veeraklaew T. Extensions of optimization theory and new computational approaches for higher-order dynamic systems. Newark, University of Delaware, 1999.
    [113] Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods in Fluid Dynamics. New York, Springer-Verlag, 1988.
    [114] Kang W, Bedrossian N. Pseudospectral optimal control theory makes debut flight, saves NASA $1M in under three hours. SIAM News. 2007.
    [115] Elnagar G, Kazemi M A, Razzaghi M. Pseudospectral Legendre method for discretizing optimal control problems. 1995, 40(10): 1793-1796.
    [116] Fahroo F, Ross I M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 270-277.
    [117] Ross I M, Fahroo F. Pseudospectral knotting methods for solving optimal control problems. 2004, 27(3): 397-405.
    [118] Veeraklaew T, Agrawal S K. New computational framework for trajectory optimization of higher-order dynamic systems. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 228-236.
    [119] Fahroo F, Ross I M. On discrete-time optimality conditions for pseudospectral methods. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, United States, 2006.
    [120]吴受章.最优控制理论与应用.北京,机械工业出版社, 2008.
    [121] Ross I M, Fahroo F. A perspective on methods for trajectory optimization. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Monterey, United States, 2002.
    [122] Nocedal J, Wright S J. Numerical Optimization. New York, Springer-Verlag, 1999.
    [123] Wachter A, Biegler L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 2006, 106(1): 25-57.
    [124] Bryson A E, Ho Y C. Applied optimal control. New York, Hemisphere, 1975.
    [125] Bainum P M, Kumar V K. Optimal control of the shuttle-tethered-subsatellite system. Acta Astronautica, 1980, 7(12): 1333-1348.
    [126] Fujii H A, Anazawa S. Deployment/retrieval control of tethered subsatellite through an optimal path. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1292-1298.
    [127] Ross I M, Sekhavat P, Fleming A, et al. Optimal feedback control: Foundations, examples, and experimental results for a new approach. 2008, 31(2): 307-321.
    [128] Wen H, Jin D P, Hu H Y. Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dynamics, 2008, 51(4): 501-514.
    [129]钱积新,赵均,徐祖华.预测控制.北京,化学工业出版社, 2007.
    [130] Qin S J, Badgwell T A. A survey of industrial model predictive control technology. 2003, 11(7): 733-764.
    [131] Fahroo F, Ross I M. Pseudospectral methods for infinite-horizon optimal control problems. 2008, 31(4): 927-936.
    [132] Jaddu H. Numerical methods for solving optimal control problems using Chebyshev polynomials. Tatsunokuchi, Japan Advanced Institute of Science and Technology, 1998.
    [133] Davis T A. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software, 2004, 30(2): 165-195.
    [134] Shapiro L G, Stockman G C. Computer Vision. Upper Saddle River, Prentice Hall, 2001.
    [135] Matrox Electronic Systems Ltd., Matrox Imaging Library User Guide and Reference , 2005.
    [136] Brown R H, Schneider S C, Mulligan M G. Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE Transactions on Industrial Electronics, 1992, 39(1): 11-19.
    [137] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes : The Art of Scientific Computing (3rd ed.). New York, Cambridge University Press, 2007.
    [138] Menon C, Kruijff M, Vavouliotis A. Design and testing of a space mechanism for tether deployment. Journal of Spacecraft and Rockets, 2007, 44(4): 927-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700