用户名: 密码: 验证码:
非线性控制理论在风力发电控制系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变速恒频双馈风力发电系统由于能够在较宽的风速范围内变速运行,风能捕获能力强,可以实现有功功率与无功功率的解耦控制,已经成为口前风力发电方面的研究热点。受国家自然科学基金项口(项目号:50677021)和教育部重点项口基金(项目号:105049)的资助,结合风力发电系统自身的特点,本论文重点研究了交流励磁发电机的功率控制和风力机的桨距角控制,主要研究内容和研究成果包括:
     (1)综述了风力发电机组控制技术的现状和非线性控制理论的研究发展状况。
     (2)对风力发电机组、交流励磁发电机进行了数学建模,推导出相应的非线性状态方程,并将之变换为仿射非线性形式。
     (3)综合运用非线性精确线性化理论和基于H∞优化指标的内模控制方法,设计了交流励磁发电机功率跟踪鲁棒控制律。仿真结果表明,该方法可以实现了有功、无功的完全解耦,具有较好的跟踪效果和满意的动、静态性能,同时对模型不确定性和外界扰动具有较好的鲁棒性。
     (4)由于风速的变化范围较宽,变化频繁,使得风力发电机组的工况点一般处于不断变化当中。针对机组的这一实际特点,采用基于非线性动态逆的方法进行了桨距角控制律的设计。从仿真结果可以看出,在工况点大范围变动时,控制系统仍然具有较好的控制效果,克服了局域近似线性化方法的不足,而且求解过程相对比较简单。
     (5)为了减小风速扰动产生的不利影响,提出了基于非线性干扰抑制理论的桨距角控制律的设计方法。仿真结果表明,该方法对风速扰动具有抑制效果,同时对工况点的大范围变动也具有适应能力,可以实现额定风速以上功率的平稳输出。
Variable speed constant frequency (VSCF) wind turbine using Double-fed induction generator (DFIG) has become an advanced research hotspot in the aspect of wind power, because it can run in a variable speed within a relatively wide range of wind speed, has the stronger wind power capturing capability and can realize the decoupling control of active and reactive power. Supported by the ministry of education key project (NO:105049) and the national natural science fund project (NO:50677021), this thesis mainly studied the power control of AC excited generator and the pitch angle control of wind turbine according to the characters of wind power system itself. The primary contents and research results are as follows:
     (1) Brief reviews of the control techniques for wind power system and the development of nonlinear control theory research are given.
     (2) The mathematical models of wind power system and AC excited generator are established. Nonlinear state equations are derived and are transformed to affine nonlinear forms.
     (3) By comprehensive use of exact linearization theory of nonlinear system and internal model control method based on H∞ptimization criterion, the power tracking robust control law of AC excited generator is designed. The simulation results show that this method can realize the completely decoupling control of active power and reactive power, has satisfactory tracking effect and dynamic and static characteristics, and has better robustness to model uncertainty and external disturbance.
     (4) Due to the wide range and frequent change of wind speed, the operation point of system is usually in constant variation. Corresponding to this characteristic, the pitch angle controller is designed based on nonlinear dynamic inverse method. The simulation shows that when the operation point changed widely, the control system still has better control effect, and this method can overcome the shortcomings of local domain approximate linearization method, furthermore, it has relatively simple solution process.
     (5) In order to reduce the bad influence of wind disturbance, a pitch angle control method based on nonlinear disturbance attenuation theory is proposed. The simulation shows that this method has good inhibitory effect to the wind turbulence, adapts to the large range variety of operation point and can realize the steady power output above the rated wind speed.
引文
[1]张光寅.能源危机与对策[J].科学中国人,2003,(8):23-25.
    [2]周篁,陈和平.关于加快风力发电发展的几点建议[J].21世纪中国风能发展研讨会会议文集.北京:清华大学北京能源中心,2000,1-13.
    [3]中国能源战略研究课题组.2000-2050年中国能源战略研究[M].北京:中国电力出版社,1997:495.
    [4]吴新年,刘全根.风能—世纪人类理想的替代能源[J].中国科学院资源环境科学信息中心年研究报告,1999:44-47.
    [5]李亚西,武鑫,赵斌,等.世界风力发电现状及发展趋势[J].太阳能,2004,(1):6-7.
    [6]龙泽强,肖劲松.风力发电研究和开发的现状与展望[J].世界科技研究与发展,2003,(4):26-30.
    [7]许洪华,郭金东,鄂春良.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,(10):106-108.
    [8]Thomas Aekermann, Lennart soder. Wind energy technology and current status:a review[J]. Renewable and Sustainable Energy Reviews 2000, (4):315-374.
    [9]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [10]Ezzeldin S, Abdin, Wilson Xu. Control design and dynamic performance analysis of a wind turbine-induction generator unit[J]. IEEE Trans On EC, 2000,3(15):91-96.
    [11]王承熙等.风力发电[M].北京:中国电力出版社,2003.
    [12]陈严,胡士山,叶枝全.定桨距风力机气动优化设计优化方向分析[J].太阳能学报,1997,(7):291-296.
    [13]张明惠,雎刚,赵亮.风力机定桨距和变桨距工况下叶片风能利用特性分析[J].华东电力,2009,(7):1209-1213.
    [14]吴刚,李小明.大型风力发电机的典型控制策略[J].新疆工学院学报,2000,21(3):213-216.
    [15]张新房,徐大平,柳亦兵.定桨距变速风力发电机组的控制策略研究[J].华北电力大学学报,2004,31(5):37-43.
    [16]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998,(1):32-34.
    [17]倪受元,许洪华,孙晓.30千瓦风/光互补联合发电系统[J].新能源,1996,(12).
    [18]倪受元.风力发电讲座 第二讲风力机的工作原理和气动力特性[J].太阳能, 2000,(3):21-23.
    [19]杰克.帕克,孙云龙译.风能及其利用[M].北京:能源出版社,1984.
    [20]叶启明.大型风力发电机组系统的结构与特点[J].华中电力,2002,15(2):67-68.
    [21]叶杭冶,刘琦.风力发电机组的变距控制系统.机电工程,1999,(5):140-143.
    [22]Eduard Muljadi, Butterfield C P.Pitch controller variable speed wind turbine generation[J]. IEEE Trans On IA,2001,1(37):240-246.
    [23]林勇刚,李伟,陈晓波等.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,(12):780-786.
    [24]吴政球,干磊,曾议,冷贵峰.风力发电最大风能追踪综述[J].电力系统及其自动化学报,2009,(8):88-93.
    [25]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,(24):32-38.
    [26]张宏立,于书芳.变速恒频风力发电机数学模型及控制策略研究[J].新疆农业大学学报,2001,24(2):73—76.
    [27]李辉,杨顺昌,廖勇.变速恒频双馈发电机励磁控制策略综述[J].电工技术杂志,2002,12:5—8.
    [28]S. Muller, M.Deicke and Rik W. De Doncker. Adjustable speed generators for wind turbine based on doubly-fed induction machines and 4-quadrant IGBT converters linked to the rotor [J]. IEEE Industry Applications Conference, 2000, (4):2249-2254.
    [29]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志,2000,(10):31-34.
    [30]Dajib Datta. Rotor side control of grid-connected wound rotor induction machine and its application to wind power generation. Ph.D. dissertation, Dept. Elect, Eng, India Inst. Sci, Bangalore, India,2000.
    [31]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析.电工技术杂志,2000,10:1-4.
    [32]D. Zhou, R. Spee, A. K. Wallace. Laboratory control implement for double-fed machines. Proceedings of 19th Annual Conference of IEEE Industrial Electronics, Control and Instrumenttation, IECON'93:1181-1185.
    [33]Hopfenspger, B. Field oriented control of single and cascaded double-fed induction machines. Ph.D.Thesis, Dept. of Electrical Engineering, Univ. of Newcastle,UK.,1998.
    [34]Ruqi Li, Wallace and R. Spee. Two-axis model development of cage-rotor brushless doubly-fed machines[J]. IEEE Tran. Energy Conversion,1991, 6(3):453-460.
    [35]S.Williamson, A. C. Ferreira, A.K.Wallace. Generalized theory of the brushless doubly-fed machine:Part 1:Analysis. IEE Proc., Electrical Power Application,1997,144(2):72-78.
    [36]Dongsheng Zhou, R. Spee. Synchronous frame model and decoupled control development for doubly-fed machines. Proceedings of IEEE Industry Electronics Specialist Conference,1994:1229-1236.
    [37]黄守道.变速恒频恒压发电技术及其应用前景[J].大众用电,2003,(2):16-17.
    [38]高为炳, 程勉, 夏小华.非线性控制系统的发展[J].自动化学报,1991,17(5):512-523.
    [39]高为炳.非线性控制系统导论[M].北京:科学出版社,1988.
    [40]A. M. Lyapunov. The general Problem of the stability of motion[J]. Internation Journal of Control,1992, (55):531-773.
    [41]王艳奎.Lyapunov方法在姿态机动控制律设计中的应用[J].航天控制,2009,(5):20-23.
    [42]张元文,郭振云,鲁中华.导弹高度控制变结构设计中Lyapunov方法应用[J].弹箭与制导学报,2009,(10):58-61.
    [43]高为炳,程勉.变结构控制系统的质量控制[J].控制与决策,1989,(4):1-6.
    [44]S.B.Giuseppe, M.Roberto and I. V Maria. Variable structure control of an SRM drive[J]. IEEE Trans, Industrial Electronics,1993,40(1):56-63.
    [45]Yasutaka Fujimoto, Atsuo Kawamur. Robust servo-system based on two-degree of freedom control with sliding mode[J]. IEEE Trans.on Ind Electron,1995,42 (3):272-280.
    [46]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [47]A. Isidori. Nonlinear control systems[M]. New York:SPring-Verlag, 1989.
    [48]杨成梧.非线性控制系统的几何理论[M].武汉:华中理工大学出版社,1987.
    [49]黄琳,秦化淑.复杂控制系统理论:构想与前景[J].自动化学报,1993,19(2):129-137.
    [50]Brockett, R. W. Feedback invariants for nonlinear system. In Proceeding VII IFAC. Helsinki, Finland,1978:1115-1120.
    [51]Su, R. On the linear equivalents of nonlinear systems[J]. System and Control Letters,1982, (22):48-52.
    [52]Krener. A. J., Isidori. A Linearization by output injection and nonlinear observers. System and Control Letters,1983, (3):47-52.
    [53]Boothby, W. M. Some comments on global linearization of nonlinear systems. System and Control Letters,1984, (4):143-147.
    [54]Dayawansa, W.P., Boothby, W.M., Elliott, D. Global state and feedback equivalence of nonlinear system[J].System and Control Letters, 1985, (5):229-234.
    [55]Isidori, A.,Ruberti, A. On the synthesis of linear input-output response for nonlinear system[J]. System and Control Letters,1984, (4):17-22.
    [56]Isidori, A., Ruberti, A. On the synthesis of linear input-output response for nonlinear system[J]. System and Control Letters,1984,(4):17-22.
    [57]Isidori, A. The matching of a prescribed linear input-output behavior in a nonlinear system[J]. IEEE Trans on AC,1985,30(3):258-265.
    [58]Lejeune, R., Rugh, W. Linearization of nonlinear systems about constant points[J]. IEEE Trans on AC,1985,30(8):804-808.
    [59]Cheng,D.Z., Tarn,T.J.,Isidori. A. Global external linearization of nonlinear systems via feedback[J]. IEEE Trans on AC,1985,30(8):808-811.
    [60]Rugh, W. An extended linearization approach to nonlinear system inversion[J]. IEEE Trans on AC,1986,31(8)725-733.
    [61]Baumann, W. T. Feedback control of multi-input nonlinear systems by extended linearization[J]. IEEE Trans on AC,1988,33(2):193-197.
    [62]Marino, R. On the largest feedback linearizable subsystem[J]. System and Control Letters,1986,6(5):345-351.
    [63]M. D. Di Benedetto, J. W. Grizzle, C. H. Moog. Rank invariants of nonlinear systems[J]. AIAM J. Contr.Optimiz.,1989, (27):659-672.
    [64]D. Tilbury and S. Sastry. The multi-steering n-trailer system:A case study of Goursat normal forms and Prolongations[J]. International Journal of Robust and Nonlinear Control,1995,5(4):343-364.
    [65]X. H. Xia. Parameterization of decoupling control laws of affine nonlinear control systems [J]. IEEE Trans.on AC.,1991.
    [66]T. J. Koo and S. S. Sastry. OutPut tracking control design of a helicopter model based on approximate linearization[J].37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998.
    [67]C. Tomlin, J. Lygeros, L. Benvenuti and S, Sastry. A multi-steering trailer system:Conversion into chained form using dynamic feedback[J]. IEEE Transaction on Robotics and Automation,1995,1 (6):807-818.
    [68]黄云云,林桐.磁悬浮转子的非线性控制[J].福州大学学报,1999,(4):36-38.
    [69]关巍,张显库.王新屏.航向保持系统简捷非线性鲁棒控制[J].大连海事大学学报,2009,(8):43-47.
    [70]张玉锟,戴金海.卫星编队飞行的无速度测量非线性鲁棒控制[J].宇航学报,2003,(1):23-27.
    [71]Qu Zhihua. Robust control of nonlinear uncertain systems under generalized matching conditions[J]. Automation,1993,29(4):985-995.
    [72]Qu Zhihua. Robust control of nonlinear uncertain systems without generalized matching conditions [J]. IEEE Trans. AC,1995,40(8):1453-1460.
    [73]Federico Najson, Eliezer Kreindler. On the Lyapunov approach to robust stabilization of uncertain systems [J]. Int. of Robust and nonlinear control, 1996, (6):41-63.
    [74]Lee S H, Lim J T.Robust control in uncertain nonlinear systems with exogenous signals[J]. Int. J Syst. Sci,1999,30(1):19-23.
    [75]Lin W. Global robust stabilization of minimum phase nonlinear systems with uncertainty[J]. Automatiea,1997,33(3):453-462.
    [76]Su W, Xie L. Robust control of nonlinear feedback passive systems[J]. System and Control letters,1996,28:85-93.
    [77]Lin W, She T. Robust passivity and feedback design for minimum phase nonlinear systems with struvtureal uncertainty [J]. Automatiea,1999, 35(1):35-48.
    [78]Hill D J, Moylan P J. The stability of nonlinear dissipative systems [J]. IEEE Trans. Autom. Contr.,1976,2:708-711.
    [79]Lin W. Globalal asymptotic stabilization of general Nonlinear Systems with stable Free Dynamics via passivity and bounded feedbaek[J]. Automatica, 1996,32(6):915-924.
    [80]申铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社,2000:66-77.
    [81]ByrnesC I, Isidori A, Willems J C. Passivity. Feedback equivalence and the global stabilization of minimum phase nonlinear systems[J]. IEEE Trans. Autom. Contr.,1991,36(11):1228-1240.
    [82]Zames G. Feedback and optimal sensitivity:model reference transformations, multiplicative seminorms, and approximate inverse [J]. IEEE Trans. AC,1981,26:301-320.
    [83]Doyle J C. et al. state-space solutions to standard H2 and H∞ control problems[J]. IEEE Trans. A C,1989, (34):831-847.
    [84]Basar T, Bernhard P. H∞ optimal control and related minimal design problem. Boston:Birkhauser,1990.
    [85]Yung Chee-Fai, Wu Jeng-Lang, Lee Tsu-Tian. Parameterization of nonlinear H∞ state Feedback Controllers[J]. Automatica,1997,33(8):1587-1590.
    [86]Su weizhou, Souze C E D, Xie Lihua. H∞ control for asymptotically stable nonlinear systems[J]. IEEE Trans. AC,1999,44(5):989-993.
    [87]Ball J A, Helton J W, Walker M L.H∞ control for nonlinear systems with output feedbaek[J]. Automatic Control, IEEE Transactions on,1993,38(4): 546-558.
    [88]Isidori A.H∞ control via measurement feedback for affine nonlinear systems[J]. Int. of robust and nonlinear control,1994, (4):553-574.
    [89]Isidori A., A. A stolfi. Disturbance attenuation and H∞ control via measurement feedback in linear systems [J]. IEEE Trans. AC.1992,37:1283-1293.
    [90]James M R, Baras G. Robust H∞ output feedback control for nonlinear systems[J]. IEEE Trans. AC.1995,40:1007-1017.
    [91]Yung Chee-Fai, Lin Yung-pin, Yeh Fang-Bo. A family of nonlinear H∞ output feedback controllers[J]. IEEE Trans. AC.1996,41(2):232-235.
    [92]Lin W., Byrnes C I. Discrete-time nonlinear H∞ control with measurement feedback[J]. Automatiea,1995,31:419-434.
    [93]Lin w, Bymes C I. H∞ control of discrete-time nonlinear systems [J]. IEEE Trans. A C.1996,41:494-510.
    [94]Lu W M, Doyle J C. H∞ control for nonlinear system via output feedback: controllers parameterization[J]. IEEE Trans. A C.,1994,39(12):2517-2521.
    [95]Yung Chee-Fai, Wu Jeng-Lang, Lee Tsu-Tian.H∞ control for more general nonlinear systems[J]. IEEE Trans. A C,1998,43(12):1724-1727.
    [96]Isidori Alberto, Kang Wei. H∞ control via measurement feedback for general nonlinear systems[J]. IEEE Trans. A C.,1995,40(3):466-472.
    [97]Teel A R, Praly L. On assigning the derivative of disturbance attenuation control Lyapunov function[J]. MCSS,2000,3:95-124.
    [98]Lu Weimin, Doyle J C. H∞ control of nonlinear systems:A convex characterization[J]. IEEE Trans. A C.1995,40(9):1668-1675.
    [99]Marino R, Respondek W, Van der Schaft, et, al. Nonlinear Hx almost disturbance Decoupling system[J]. Control Lett,1994,23:159-168.
    [100]Isidori A. A note on almost disturbance decoupling for nonlinear minimum phase systems[J]. Syst And Contr. Lett,1996,27:191-194.
    [101]Shen Tielong, Zang Huaiquan, Tamura Katsutoshi. Riccati equation approach to robust L2-gain synthesis for a class of uncertain nonlinear systems[J]. Int, J of Control,1996,64(6):1177-1188.
    [102]Nguang Sing Kiong. Robust nonlinear H∞ output feedback control [J]. IEEE Trans. A C,1996,41(7):1003-1007.
    [103]Jiang Z P, Hill D J. Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems [J]. IEEE. A C.,1998,43(7):992-997.
    [104]Su weizhou, Xie Lihua, Souze C E D. Global robust disturbance attenuation and almost disturbance decoupling for uncertain cascade nonlinear systems[J]. Automatica,1999,35:697-707.
    [105]Dalsmo M, Maas W C A. Singular H∞-suboptimal control for a class of nonlinear caseade system[J]. Automatica,1998,34(12):1531-1537.
    [106]Haddad W M, Chellaboina V, Fausz J L. Optimal nonlinear disturbance rejection control for nonlinear cascade systems [J]. Int. J. of Control,1997, 68(5):997-1018.
    [107]焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1993.
    [108]焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1995.
    [109]F. C. Chen and C. C. Liu. Adaptively controlling nonlinear continuous-time systems using neural networks[J].IEEE Trans. on AC. 1994,39(6):1306-1310.
    [110]A. U. Levin, K. S. Narendra. Control of nonlinear dynamical systems using neural networks:Controll ability and stabilization[J].IEEE Trans.on NN,1993,4(2):192-205.
    [111]史忠科.神经网络控制理论[M].西安:西北工业大学出版社,1997.
    [112]A. K. Bart. Structural stability of unsupervised learning in feedback neural networks [J]. IEE Trans. On AC.,1991,36(7):785-792.
    [113]席裕庚.预测控制[M].国防工业出版社,1993.
    [114]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [115]Xiang L. Z, Shi Y T. A Nonlinear Model Predictive Control Based on NARX[J]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,901-905.
    [116]刘斌,苏宏业,褚建.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402.
    [117]Miao Q, Wang s f. Nonlinear model predictive control based on support vector regression [J]. Proceedings of the first International Conference on Machine Learning and Cybernetics, Beijing,1657-1661.
    [118]李少远,席裕庚,陈增强.智能控制的新进展(1)[J].控制与决策,2000,15(1):1-5
    [119]S H Tan, Y Yu.Adaptive fuzzy modelling of nonlinear dynamical systems[J]. Automatica,1996,32(4):637-643.
    [120]S B Cher. L Wu, Q L Wang. Self-learning fuzzy neural networks for control of uncertain systems with time delays[J]. IEEE Trans SMC,1997, 27(1):142-148.
    [121]Lid D, Chen C. Decoupled control of speed and reactive power of doubly-fed induction generator[J]. IEEE 2004 International Conference on Power System Technonogy, Singapore,2004:356-366.
    [122]蒋超奇,严强.水平轴与垂直轴风力发电机的比较研究[J].上海电力, 2007,(2),163-165.
    [123]Div. L., Glauert.H. Aerodynamic Theory. Berlin:Springer Verlag.
    [124]Glauert H. Windmill and fans. Aerodynamics Theory. Springer, Berlin, Germany,1935.
    [125]Wilson R E, Lissaman P B S, Walker S N. Aerodynamics performance of wind turbine. Oregon State University,1976.
    [126]Hand M. M, Simms, D. A, Fingersh, et, al. Unsteady Aerodynamics Experiment Phase VI:Wind Tunnel Test Configurations and Available Data Campaigns. National Renewable Energy Laboratory.2001.
    [127]Du Z, Selig, M.S. A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction[J]. Proc.1998 ASME Wind Energy Symposium.36th AIAA Aero. Sci. Mtg., AIAA 1998-0021.
    [128](法)D.勒古里雷斯,施鹏飞译.风力机的理论与设计[M].北京:机械工业出版社,1985.
    [129]Goldstein, S. On the Vortex Theory of Screw Propeller. Proc, Roy. Soc,1929,123-440.
    [130]Jianzhong Zhang, Ming Cheng, Zhe Chen, Xiaofan Fu. Pitch Angle Control for Variable Speed Wind Turbines[J]. Electric Utility Deregulation and Restructuring and Power Technologies,2008,2691-2696.
    [131]T. Senjyu, R. Sakamoto, N. Urasaki, et, al. Output power control of wind turbine generator by pitch angle control using minimum variance control [J]. Electrical Engineering in Japan,2006.
    [132]Ezzeldin S Abdin, Wilson Xu. Control Design and Dynamic Performance Analysis of a Wind Turbine Induction Generator Unit[J]. IEEE Trans,2000, 3(15):91-96.
    [133]J.Gordon Leishman. Challenges in modeling the unsteady aerodynamics of wind turbins. Wind energy,2002,9:85-132.
    [134]Steinbuch M. Dynamic Modelling and Robust Control of a Wind Energy Conversion System. PhD Thesis,1990.
    [135]周鄂等.电机学(修订版).北京:水利电力出版社,1988.
    [136]李润生,潘根.异步电机发电.北京:水利电力出版社,1982.
    [137]Longya Xu, Wei Cheng. Torque and reactive power control of a doubly fed induction machine by position sensorless scheme [J]. IEEE Transactions on Industry Application,1995,31(3):636-642.
    [138]Cadirci, Ermesm. Performance Evalution of a Wind Driven DFIG Using a Hybrid Model. IEEE Trans Energy Conversion.1997,13(2):148-155.
    [139]Ioannedes M. G. Doubly Fed Induction Machine State Variables Model and Dynamic Response. IEEE Trans Energy Conversion,1991,16(1):55-61.
    [140]Andes Dei jo. A Third Order Model for the Doubly-Fed Induction Machine. Electric Power Systems Research,2000:121-127.
    [141]Kim H, Akagi. The instantaneous power theory based on mapping matrices in three-phase four-wire system[J]. Proceedings of Power Conversion Conference,1997.
    [142]程代展.非线性系统的几何理论[M].北京:科学出版社,1991.
    [143]Tarn T J, Bejczy A K, Isidori A. Nonlinear feedback in robot arm control[J]. In Proceedings of 23rd IEEE conf. Dec. Contr,1984:736-751.
    [144]Tarn T J, Bejczy A K, Yun X. New nonlinear control algorithms for multiple robot arms [J]. IEEE Trans. on Aerospace and Electronic Systems,1988,24(5): 571-583.
    [145]郭磊,廖启征,魏世民.自行车机器人动力学建模与MIMO反馈线性化[J].北京邮电大学学报,2007,30(1):79-85.
    [146]Meyer G, Su Rand Hunt L R. Application of nonlinear transformation to automatic flight control. Automatic,1984,20(1):103-107.
    [147]胡春华,朱纪洪,孙增圻.纵列式无人直升机建模及其精确线性化方法研究[J].控制与决策,2004,19(9):1075-1077.
    [148]郑友胜,王良明.微分几何方法在火箭控制器中的应用[J].弹箭与制导学报,2008,6:56-59.
    [149]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [150]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005.
    [151]M Morari, Zafiriou E. Robust Process Control [M]. Prentice-Hall,1988.
    [152]C. E Garcia, M. Morari. Internal Model Control, Paret2:Design Procedure for Multivariable Systems [J]. Ind Eng Chem Proc Des Dev,1985,24(2):472-484.
    [153]C.G Econmou, M Morari. Internal Model Control, Paret5:Extension to Nonlinear Systems[J]. Ind Eng Chem Proc Des Dev,1986,25(2):403-411.
    [154]赵曜.基于内模结构的鲁棒有限拍控制及其与预测控制的比较[J].1995年中国控制会议论文集,1995,157-162.
    [155]K.J.Hunt. Neural Network for control Systems-A Survey. Automatica, 1992,28:1083-1112.
    [156]周涌,陈庆伟,胡维礼.内模控制研究的新发展[J].控制理论与应用,2004,21(3):475-479.
    [157]Garcia C E, Morari M. Internal model control-1, A unifying review and some news results. Ind. Eng. ChemProc,1982,21:308-323.
    [158]Garcia C E, Morari M. Internal model control-2, Design procedure for multivariable systems. Ind. Eng. Chem. proc,1985,24:472-484.
    [159]E. G. Collins, T. L. Song. A delta operator approach to diserete—time H∞ control. Int. J. Control,1999,72(4):315-320.
    [160]I. Postethwaite, M. C. Tsai, S. D.O Young, et al. State-space formulae for discrete-time H∞ Optimization. Int. J. Control,1989,49(1):247-268.
    [161]B. M. Chen, A. Saberi, Y. Smhash, er al. Construction and Parameterization of all Static and Dynamic H2-optimal State Feedback Solution for Diserete-time Systems. Automatic,1994,30(10):1617-1624.
    [162]周克敏等著,毛剑琴等译.鲁棒与最优控制[M].北京:国防工业出版社,2002.
    [163]申铁龙.H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [164]Morari M, Zaf irious E. Robust process control [M]. New Jeresy:Prentice Hall,1989.
    [165]Zafirious E, Morari M. Internal Model Control:Robust Digital Controller Synthesis for Multivariable Open-Loop Stable or Unstable Processes[J]. Int. J. Control,1991,54(3):665-704.
    [166]潘立登.LJ最优化方法的改进[J].化工自动化及仪表,1985,12(1),10-15.
    [167]Rein Luus, Jaakola. Optimization by Direct Search and Systematic Reduction of the Size of Search Region. AICHE.1973,19(4):760.
    [168]邓禹,邹旭东,康勇,等.变速恒频双馈风力发电系统最优风能捕获控制.电源技术应用,2005,(3):21-31.
    [169]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,(20):62-67.
    [170]D. Zinger, E. Muljiadi. Annualized wind energy improvement using variable speed[J]. IEEE Trans on Industry Application,1997,33 (6):1444-1447.
    [171]高景德,王祥晰,李发海.交流电机及其系统的分析[M].北京:清华大学出版社,1993.
    [172]Novak P, Ekelund T. Modeling and control of variable-speed wind turbine drive-system dynamics[J]. IEEE control systems,1995,8:28-37.
    [173]马洪飞,许殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志,2000,10:44-49.
    [174]潘文妞,艾斯卡尔,史林军,等.变速恒频风力发电系统控制方案的分析与比较[J].太阳能,2004,6:14-17.
    [175]Ezzeldin S, Abdin, Wilson Xu. Control design and dynamic performance analysis of a wind turbine-induction generator unit[J]. IEEE Trans. On EC 2000,3(15):91-96.
    [176]Z. Chen, E. Spooner. Grid power quality with variable speed wind turbines [J]. IEEE Trans-actions on energy conversion,2001,16(2):148-154.
    [177]W. J. Rugh. Nonlinear System Theory:The Volterra/Wiener Approach[M]. The John Hopkins University Press,1981:London.
    [178]韩崇昭,党映农.非线性控制系统综合的频域逆系统方法研究[J].控制与决策,2000,15(5):545-547.
    [179]胡钋,陈允平.非线性逆系统的一种求解方法[J].武汉大学学报,2005,38(2):113-117.
    [180]R. W. Brockett, M. D. Mesarvic. The Reproducibility of Multivariable Systems[J]. Mathematical Analysis and Its Applications,1965,11(2): 548-563.
    [181]C. W. Li, Y. K. Feng. Functional Reproducibility of General Multivariable Nonlinear Systems. Int. J. Control,1987,45(1):255-268.
    [182]W. Respondek. On Local Right-Invertibility of Nonlinear Control Systems[J]. Control Theory and Advanced Technology,1988,4(3):325-348.
    [183]L. M. Silverman. Inversion of Multivariable Linear Systems[J]. IEEE Automat Cotrol,1979,14(2):270-276.
    [184]张腾.神经网络逆系统方法及其在电力系统控制中的应用.东南大学博士论文,2002.
    [185]胡钋,陈允平.非线性逆系统的一种求解方法[J].武汉大学学报,2005,38(2):113-117.
    [186]陈检根,杨军.逆系统方法在飞行器直接侧力控制中的应用[J].西北工业大学学报,2000,18(1):152-155.
    [187]杨华东,任晓军,燕永敦.基于逆系统理论的导弹控制系统仿真研究[J].战术导弹控制技术,2005,(2):7-10.
    [188]胡广,王勤,孟正大.神经网络α阶逆系统方法在开放式机器人控制器的应用[J].自动化与仪表,2005,20(5):5-9.
    [189]梁新荣,吴智铭.基于任务的两协调机械手的关节轨迹优化[J].上海交通大学学报,1999,33(4):473-477.
    [190]孟正大,戴先中.基于神经网络逆系统方法的机器人柔顺性控制[J].东南大学学报,自然科学版,2004,34(11):108-112.
    [191]李春文,张平.一种基于逆系统方法的化学反应器改进控制方案[J].控制与决策,1998,13(5):577-580.
    [192]董翠英,陈娟.基于逆系统方法的内模控制在伺服系统低速问题中的研究[J].北京化工大学学报,2005,32(2):98-100.
    [193].李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [194]S. Antony Snell, Dale F. Enns, William L. Nonlinear inversion flight control for a super maneuverable Aircraft [J]. Journal of Guidance Control, and Dynamics,1992,15(4).
    [195]X. D. Sun, K. G. Woodgate, J. C. Nonlinear inverse dynamics control of aircraft using spoilers[J]. Journal of Guidanee, Control, and Dynamics, 1996,19(2).
    [196]夏小华,高为柄.非线性系统控制及解耦[M].北京:科学出版社,1997.
    [197]李春文,苗原,冯元馄等.非线性系统控制的逆系统法一单变量控制理论[J].控制与决策,1997,12(5):529—535.
    [198]唐超颖,沈春林.逆系统方法在航天器姿态控制系统中的应用[J].航天控制,2003,(1):32-36.
    [199]包能胜,陈庆新,姜桐.百千瓦级风机建模与仿真[J].太阳能学报,1997,(1) : 51-58.
    [200]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003.
    [201]Ball, J. A., Cohen, N. The sensitivity minimization in an H∞ norm: Parameterization of all optimal solutions[J]. Int. J of Control,1987, 46:785-816.
    [202]Van Schaft.H2-gain analysis of nonlinear systems and nonlinear state feedback H∞ control[J].IEEE Trans. AC,1992,33(6):770-784.
    [203]Vander Schaft A T. L2-gain and passivity techniques in nonlinear control. London:Springer Press:1996.
    [204]Isidori A, Astolfi A. Disturbance attenuation and H∞ control via measurement feedback in nonlinear systems [J]. IEEE Trans. AC,1992,37(10): 1283-1293.
    [205]Tarn T J, Bejczy A K, Isidori A, et al. Nonlinear feedback in robot arm control[J].23rd IEEE Conf.Dec. Contr, Las Vegas,1984.
    [206]Lu Q, Mei S, Hu W, et al. Decentralized nonlinear H∞ excitation control based on regulation linearization[J]. IEEE Proc-Gener. Transm. Distrib., 2000,147(4):245-251.
    [207]Lu Q, Zheng S, Mei S, et al. NR-PSS(Nonlinear Robust Power System Stabilizer)for large synchronous generators and its large disturbance experiments on real time digital simulator[J].Science in China(Series E), 2008,51(4):337-352.
    [208]Senjyu T, Sakamoto R, Urasaki N, et al. Output power leveling of wind turbine generator for all operating regions by pitch angle control [J]. IEEE Transactions on Energy Conversion,2006,21(2):467-475.
    [209]包能胜,陈庆新,姜桐.百千瓦级风机建模与仿真[J].太阳能学报,1997,18(1):51-58.
    [210]Lescher F, Zh JingYun, Borne P. Robust gain scheduling controller for pitch regulated variable speed wind turbine[J]. Studies in Informatics and Control,2005,14(12):299-315.
    [211]Bianchi F D, Mantz R J, Christiansen CF. Gain scheduling control of variable speed wind energy conversion systems using quasi-LPV models[J]. Control Engineering Practice,2005,13(2):247-255.
    [212]Balas M J, Wright A, Hand M, et al. Dynamics and control of horizontal axis wind turbines[J]. The American Control Conference, Denver, Colorado, 2003.
    [21 3]张先勇,吴捷,杨金明,等.额定风速以上风力发电机组的恒功率H∞鲁棒控制[J].控制理论与应用,2008,25(2):321-324.
    [214]刘新海,于书芳.神经网络在大型风力发电机电控系统中的应用[J].微特电机,2004,32(2):37-42.
    [215]Q. Wasynczuk, D. T, Man, J. P. Sullivan. Dynamic behavior of a class of wind turbine generators during random wind fluctuations[J]. IEEE Trans on Power Apparatus and Systems,1981,100(6):2837-2845.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700