用户名: 密码: 验证码:
星间激光通信中链路性能及通信性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星激光通信被誉为新一代的空间通信技术,具有数据率高、通信容量大的独特优势,是满足现代社会对信息快速、实时传输需求的最佳途径。星间高速激光通信链路作为未来太空信息高速公路的骨干链路,是实现未来天地一体化高速实时光通信网络的关键,具有重要的经济和战略地位。
     为了在链路距离高达数万公里的卫星间进行激光通信,激光束散角小的特点,以及星间相对运动、卫星平台振动等因素的影响,要求必须通过捕获、跟踪来完成星间激光链路的建立和保持。捕获的快速完成是在有限的链路时间内进行最大信息量传输的前提;高精度、高稳定的跟踪是链路进行可靠通信的保障。因此,为了充分发挥星间激光通信的优势,实现大容量高可靠性的通信,有必要对星间激光通信的链路性能和通信性能进行深入的理论研究。
     星间激光通信系统是集光、机、电于一体的高精密设备,具有结构复杂、功能多样以及系统参量相互制约等特性,因此,目前关于星间激光通信中链路性能和通信性能的研究还有待于进一步完善。此外,随着卫星激光通信空间实验的成功,为了推进星间激光通信的实用化和商业化,各国都致力于高度集成化、小型化、轻量化系统的研究。考虑到星间激光通信系统设计方案的改进以及核心元器件的更替,需要从实际情况出发对一些问题进行重新研究。
     鉴于上述情况,本论文首先对信标光捕获机制和无信标光捕获机制的捕获性能进行了理论和实验研究,然后对单CMOS探测器星间激光通信系统中精跟踪子窗口的优化问题进行了理论和实验研究,并探讨了CMOS探测器误差对跟踪性能尤其是双向闭环跟踪稳定性的影响,最后从理论上分析了随机跟瞄误差角抖动对星间激光通信中信道容量和错误概率的影响。具体内容包括以下几个方面:
     1.对适用于星间激光通信链路的捕获过程进行了理论建模。推导了全场扫描和步进式扫描两种捕获模式的单场扫描平均捕获时间,得到了解析表达式;基于解析表达式,对比分析了不同系统和链路参数下两种捕获模式的优劣。鉴于无信标光捕获机制在小卫星中的应用前景,且考虑到实际信号光扫描捕获过程中需要采用多场扫描来保证捕获概率,利用单场扫描平均捕获时间的解析表达式,对多场扫描平均捕获时间进行了推导并得到了解析表达式;基于该解析表达式,给出了多场扫描捕获时间的优化条件。最后进行了星间激光链路单场和多场扫描捕获的地面模拟实验,验证了理论分析的正确性。
     2.对卫星平台振动条件下单CMOS探测器星间激光通信系统中精跟踪子窗口优化问题进行了研究。在焦平面阵列探测器上,建立了卫星平台振动条件下接收光斑随机抖动的统计模型;基于该模型,得到了CMOS探测器上最佳精跟踪子窗口的约束方程;以OLYMPUS卫星平台振动特性为例,对最佳精跟踪子窗口的优化进行了数值仿真。最后,进行了平台振动对接收光斑随机抖动特性影响的模拟实验,验证了理论分析的正确性。
     3.研究了CMOS探测器测角误差对系统跟踪精度以及双向闭环跟踪稳定性的影响。分析了单向跟踪时系统跟踪误差与CMOS探测器误差之间的关系,建立了双向闭环跟踪时两个光终端上跟踪误差角方差的相互制约关系模型;重点对两光终端跟踪子系统全同条件下双向闭环跟踪链路的稳态问题进行了研究,给出了稳态存在、跟踪误差角方差收敛、以及稳态跟踪误差角方差等对CMOS探测器参数的依赖关系。
     4.针对OOK通信系统,研究了随机跟瞄误差角抖动对星间激光链路的通信能力和信息传输的可靠性的影响,对有、无静态偏差角时的情况进行了分别讨论。建立了随机跟瞄误差角抖动下星间激光链路的传输矩阵,给出了最大信息传输率时的最佳输入概率;研究了最佳输入概率和信道容量随系统各参量的变化规律。建立了随机跟瞄误差角抖动下星间激光链路的错误概率模型,给出了错误概率最小时的最佳束散角;在最佳束散角条件下讨论了其它系统参量对错误概率的影响。
     本论文的研究工作进一步完善了星间激光通信中关于捕获、跟踪以及通信的理论,为星间激光通信系统的优化设计提供了理论依据。
As next-generation free space communication technology, satellite lasercommunication possesses outstanding advantages in high data rate and largecommunication capability, which is an effective way to fulfill the real-time high-data ratecommunication requirements. Intersatellite laser communication is the future informationsuperhighway and the key to establish space-ground real-time high-data rate opticalnetwork. Therefore it is beneficial to national economy and defence.
     To communicate between satellites, the distance ranging from several thousand toten thousand kilometers, pointing and tracking is necessary to establish and maintainintersatellite laser links, considering narrow laser beam, satellite relative motion,platform vibration, and so on. Only fast acquisition can guarantee largest informationtransmitted in limited link time, and high precise and stable tracking ensures reliablecommunication. Therefore, in order to take the advantages of laser communication andrealize the large capacity communication, it is critical to research the link andcommunication performance in detail.
     Intersatellite laser communication system is an advanced equipment which involvesoptics, mechanics, and electronics. Hence, the system is of complicated structure,multi-functional, and with interaction among many parameters. Therefore, the currentresearch on link and communication performance is still needed to be pushed forward.With the success of spatial experiments for intersatellite laser communication, it is urgedto promote this technology to practical applications. Thus, smart system structures aredesigned and key modules are developed. These bring new problems to be investigated.
     To address the problems stated above, this dissertation deals with the followingaspects: the acquisition performance was studied for beacon and beaconlessconfiguration; the optimum fine tracking sub-window (FTSW) was theoreticallyinvestigated and simulation was carried out for intersatellite laser communications whichadopts CMOS as single focal-plane detector array (FPAD); taking consideration ofCMOS detector error, the tracking performance especially the tracking stability wasanalyzed; and the influence of random pointing and tracking error angular jitter onchannel capacity and outage probability is investigated.
     Firstly, theoretical analysis and optimization are performed for acquisition ofintersatellite laser links. The single-scan mean acquisition for serial and parallelacquisition mode are derived, and analytical expressions were obtained. The acquisitionperformances of these two acquisition modes were compared taking different system andlink parameters. Beaconless acquisition configuration is suitable for LEO links, in whichmulti-scan is needed. Therefore, the multi-scan mean acquisition time was also derived,based on which the optimum uncertainty scan area is deduced.
     Secondly, the optimum FTSW of CMOS in single FPAD system was studied in the presence of satellite platform vibration. In the focal plane, the random jitter model ofreceived beam spot is established. And the equations about optimum FTSW size arepresented. Based on these equations, numerical simulation was performed for theoptimum FTSW, taking OLYMPUS platform vibration as an example.
     Thirdly, the influence of CMOS detector error on system tracking error and thestability of bi-directional closed tracking loop are investigated. The relation betweensystem tracking error and CMOS detector error was analyzed. The interaction relationbetween the two optical terminals’ tracking error is modeled. The stability ofbi-directional tracking was studied in case of identical tracking sub-systems. And theinfluence of CMOS parameters on tracking stability, the convergence range of varianceof tracking error and stable variance of tracking error were obtained.
     Fourthly, the channel capacity and outage probability is investigated in the presenceof pointing and tracking error angular random jitter with and without static bias errors,respectively. The transfer matrix is derived in the presence of random pointing andtracking error angular jitters. The optimum source input distribution and channel capacitywere obtained, on which the influences of system parameters are discussed. The outageprobability is modeled in the presence of random pointing and tracking error angularjitters, based on which the optimum beam divergence angle is obtained. And theinfluences of system parameters on outage probability are also discussed.
     What achieved in this dissertation contributes to the theory of acquisition trackingand communication for intersatellite laser communications, and can benefit theoptimization of intersatellite laser communication systems.
引文
1R. J. Cesarone, D. S. Abraham, and L. J. Deutsch. Prospects for a Next GenerationDeep Space Network[J]. Proceedings of the IEEE,2007,95(10):1902-1915.
    2H. Kunimori, Y. Shoji, M. Toyoshima and Y. Takayama. Research and DevelopmentActivities on Space Laser Communications in NICT[J]. Proc. of SPIE,2009,7199:(719904-1)-(719904-7).
    3M. Toyoshima. Trends in laser communications in space[J]. Space Japan Review,2010, November(70):1-6.
    4R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski. NFIRE-to-TerraSAR-XLaser Communication Results: Satellite Pointing, Disturbances and other AttributesConsistent with Successful Performance. Proc. of SPIE.2009,7330:(73300Q-1)-(73300Q-15).
    5K. Miyatake, Y. Fujii, M. Hanuna, et al. Development of acquisition and trackingsensors for next generation optical intersatellite communicaiton[C]. Proc. of IEEE,2011:132-133.
    6B. Smutny, H. Kaempfner, G. Muehlnikel et al.5.6Gbps Optical IntersatelliteCommunication Link. Proc. of SPIE.2009,7199:(719906-1)-(719906-8).
    7M. Toyoshima, W. R. Leeb, H. Kunimori, T. Takano. Comparison of Microwaveand Light Wave Communication Systems in Space Application[C]. Proc. of SPIE,2005,5296:1-12.
    8R. G. Marshalek, G. S. Mecherle, P. R. Jordan. System-Level Comparison of Opticaland RF Technologies for Space-to-Space and Space-to-Ground CommunicationLinks[J]. Proc. of SPIE,1996,2699:134-145.
    9V. W. S. Chan. Optical Satellite Networks[J]. Journal of Lightwave Technology,2003,21(11):2811-2827.
    10V. W. S. Chan. Optical Space Communications[J]. IEEE Journal on Secected Topicsin Quantum Electronics,2000,6(6):959-975.
    11S. Arnon, and D. Kedar. Sensing and Communication Trade-offs in PicosatelliteFormation Flying Missions[J]. Journal of the Optical Society of America A,2009,26(10):2128-2133.
    12T. A. Gronland, P. Rangsten, M. Nese, et al. Miniaturization of Components andSystems for Space Using MEME-Technology[J]. Acta Astronomy,2007,61:228-233.
    13J. E. Freidell. Why Commercial Broadband Satellites Absolutely must have LaserInter-Satellite Links and How the Free-Spcae Laser Communications CommunictyCould Let Them dow[J]. Proc. of SPIE,1998,3266:99-110.
    14B. Smutny. German-US Cooperation in Space: Transatlantic Laser Links[R].[2006-10-16].
    15杨清龙.基于波长路由的全天基星座光网络特性研究[D].哈尔滨:哈尔滨工业大学,2010:11-12.
    16J. N. Tanzillo, C. B. Dunbar, S. Lee. Development of Lasercom Testbed for thePointing Acquisition and Tracking Subsystem of Satellite to Satellite LaserCommunications Link[C]. Proc. of SPIE,2008,6877:(687704-1)-(687704-12).
    17A. A. Kazemi, A. Panahi. Space based laser systems for intersatellitecommunications[C]. Proc. of SPIE,2012,83680:(83680H-1)-(83680H-9).
    18Z. Sodnick, B. Furch, and H. Lutz. Optical Intersatellite Communication[J]. IEEEJournal of Selected Topics in Quantum Electronics,2010,16(5):1051-1052.
    19A. Panahi, A. Kazemi. High Speed Laser Communication Network for SatelliteSystems[C]. Proc. of SPIE,2011,8026:1-12.
    20G. Baister, and P. V. Gatenby. Pointing Acquisition and Tracking for Optical SpaceCommunications[J]. Electronics&Communication Engineering Journal,1994,6:271-280.
    21F. Fidler, M. Knapek, J. Horwath, et al. Optical Communications for High-AltitudePlatforms[J]. IEEE Journal of Selected Topics in Quantum Electronics,2010,16(5):1058-1070.
    22F. Fidler, M. Knapek, J. Jorwath, W. R. Leeb. Optical communications for high-altitude platforms[J]. IEEE Journal of selected topics in quantum electronics,2010,16(5):1058-1070.
    23T. Jono, M. Toyoda, K. Nakagawa, et al. Acquisition Tracking and Pointing Systemof OICETS for Free Space Laser Communications[C]. Proc. of SPIE,1999,3692:41-50.
    24A. C. Clarke. Extra-terrestrial Relays[J]. Wireless World,1945:305-308.
    25K. E. Wilson, J. Kovalik, A. Biswas, W. Roberts. Development of Laser BeamTransmission Strategies for Future Ground-to-Space Optical Communications [C].Proc. of SPIE,2007,6551:(61892I-1)-(61892I-11).
    26Z. Sodnik, B. Furch, and H. Lutz. Free Space Laser Communication Activities inEurope: SILEX and beyond[C]. Proc. IEEE,2006,78-79.
    27T. Jono, Y. Takayama, N. Kura, et al. OICETS On-orbit Laser CommunicationExperiments[J]. Proc. of SPIE,2006,6105:13-24.
    28T. Jono, Y. Takayam, K. Shiratama, et al. Overview of the Inter-orbit andOrbit-to-ground Laser Communication Demonstration by OICETS[C]. Proc. ofSPIE,2007,6457:(645702-1)-(645702-1-10).
    29Z. Sodnik, H. Lutz, B. Furch, R. Meyer. Optical Satellite Communications inEurope[C]. Proc. of SPIE.2010,7587:(758705-1)-(758705-9).
    30J. L. Vanhove, C. Nldeke. In-Orbit Demonstration of Optical IOL/ISL—the SilexProject[J]. International Journal of Satellite Communications.1988,6:119-126.
    31B. Laurent, G. Planche. Silex Overview after Flight Terminals Campaign[C]. Proc.of SPIE,1997,2990:10~22.
    32T. T. Nielsen. Pointing Acquisition and Tracking System for the Free Space Lasercommunication System, SILEX[C]. Proc. of SPIE,1995,2381:194-205.
    33T. T. Nielsen, and G. Oppenhaeuser. In Orbit Test Result of an Operational OpticalIntersatellite Link between ARTEMIS and SPOT4, SILEX[C]. Proc. of SPIE,2002,4635:1-15.
    34T. Tolker-Nielsec, B. Demelenne, E. Desplats. In Orbit Test Results of the FirstSILEX Terminal[C]. Proc. SPIE.1999,3615:31-42.
    35R. Lange, Berry Smutny. BPSK Laser Communication Terminals to be Verified inSpace[C].2004IEEE Military Communications Conference,2004:441-444.
    36R. Lange, and B. Smutny. Optical Inter-satellite Links Based on Homodyne BPSKMudulation: Heritage, Status and Outlook[C]. Proc. of SPIE,2005,5712:1-12.
    37S. Seel, H. Kampfner, F. Heine, et al. Space to Ground Bidirectional OpticalCommunication Link at5.6Gbps and EDRS Connectivity Outlook[J]. IEEEAC,2010,1111:1-7.
    38B. Smutny, R. Lange, Hartmut Kampfner, et al. In-orbit Verification of OpticalInter-Satellite Communication Links Based on Homodyne BPSK[C]. Proc. of SPIE,2008,6877:(687702-1)-(687702-6).
    39M. Gregory, F. Heine, H. Kampfner, et al. TESAT Laser Communication TerminalPerformance Results on5.6Gbit Coherent Inter Satellite and Satellite to GroundLinks[C]. IEEE ICSO2010,2010:4-8.
    40R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski. NFIRE-to-TerraSAR-XLaser Communication Results: Satellite Pointing, Disturbances and other AttributesConsistent with Successful Performance. Proc. SPIE.2009,7330:(73300Q-1)-(73300Q-15).
    41F. Heine, H. Kampfner, R. Lange, et al. Optical intersatellite communicationoperational[C]. IEEE2010Military Communications Conferene,2010:1583-1587.
    42K. Araki, Y. Arimoto, M. Shikatani, et al. ETS-VI Laser CommunicationsExperimentat System[C]. AIAA14th International Communications SatelliteSystems Coference,1992, AIAA-92-1833-CP.
    43K. Araki, M. Toyoshima, Y. Arimoto, et al. Laser Beam Propagation MeasurementUsing a Ground-to-Satellite ETS-VI path[C].1997,3218:40-49.
    44K. Araki, M. Shikatani, M. Toyoda, et al. Devolpment of Laser CommunicationEquipment of the ETS-VI for Basic Experiments on Optical IntersatelliteCommunications[J]. CRL Review,1994,40(2):153-179.
    45Y. Arimoto, H. Okazawa, M. Shikatani, et al. Laser Communication ExperimentUsing ETS-VI Satellite[J]. CRL Journal.1995,42(3):285~292
    46Y. Yrimoto, M. Toyoshima, M. Toyoda, et al. Preliminary Result on LaserCommunication Experiment Using ETS-VI[C]. Proc. of SPIE,1995,2381:151-158.
    47K. Nakagawa, A. Yamamoto. Preliminary Design of Laser UtilizingCommunications Experiment (LUCE) Installed on Optical Inter-OrbitCommunications Engineering Test Satellite (OICETS)[C]. Proc. of SPIE,1995,2381:14-25.
    48K. Nakagawa, A. Yamamoto and Y. Suzuki. OICETS Optical Link CommunicationsExperiment in Space[C]. Proc. of SPIE,1996,2886:172-183.
    49Y. Suzuki, K. Nakagawa, T. Jono, et al. Current Status of OICETSLaser-Communication-Terminal Development: Development of Laser Diodes andSensors for OICETS Program[C]. Proc. of SPIE,1997,2990:31-37.
    50G. Oppenhauser, M. Wittig. The European SILE Project–Concept, Performances,Status and Planning[C]. Proc. of SPIE,1990,1218:27-37.
    51T. Jono, Y. Takayama, N. Kura, et al. OICETS On-orbit Laser CommunicationExperiments[C]. Proc. SPIE.2006,6105:1-11.
    52S. Yamakawa, N. Takata. Coherent Lightwave Receivers with a Laser Diode LocalOscillator for Interorbit Optical Communication[C]. Proc. of SPIE,2003,4975:69-79.
    53G. Hyde, and B. I. Edelson. Laser Satellite Communications: Current Status andDirections[J]. Space Policy,1997,13(1):47-54.
    54J. E. Kaufmann, and V. W. S. Chan. Coherent Optical Intersatellite CrosslinkSystems[C]. Proc. of SPIE,1988,988:325-335.
    55I. I. Kim, B. Riley, N. M. Wong, et al. Lessons Lerned from the STRV-2Satellite-to-Ground Lasercom Experiment[C]. Proc. of SPIE,2001,4272:1-15.
    56E. Korevaar, J. Schuster, H. Hakakha, et al. Design of Ground Terminal for STRV-2Satellite-to-Ground Lasercom Experiment[C]. Proc. of SPIE,1998,3266:153-164.
    57J. R. Lesh. Overview of the NASA/JPL Lasercom program[J]. SpaceCommunications,1998,15:65-70.
    58D. Russell, and H. Ansari. Highly accurate tracking system for a lasercommunications link[C]. Proc. of SPIE,1994,2221:152-155.
    59H. Ansari. Digital Control Design of a CCD-based Tracking Loop for PrecisionBeam Pointing[J]. Proc. of SPIE,1994,2123:328-333.
    60S. Lee, J. W. Alexander, and M. Jeganathan. Pointing and Tracking SubsystemDesign for Optical Communications Link between the International Space Stationand Ground[C]. Proc. of SPIE,2000,3932:150-157.
    61A. Biswas, M. W. Wright, B. Sanii, et al..45Km Horizontal Path LinkDemonstrations[C]. Proc. of SPIE.2001,4272:60-71.
    62A. Biswas, M. W. Wright. Mountain-Top-to-Mountain-Top Optical LinkDemonstration: Part I[J]. California: Jet Propulsion Laboratory, Progress Report42-149,2002:1-27.
    63S. Arnon, N. S. Kopeika, D. Kedar, et al. Performance Limitation of Laser SatelliteCommunication Due to Vibrationa and Atmospheric Turbulence: Down LinkScenario[J], International Journal of Satellite Communications and Networking,2003,21:561-573.
    64N. P. Garaymovich, V. N. Grigoriev, A. P. Huppenen, et al. Free-Space LaserCommunication Systems-Internationally and in Russia[C]. Proc. of SPIE.2001,4354:197-213.
    65科技日报.国际空间站首次用激光传输数据[EB/OL].(20012-10-08)[2012-12-05]. http://tech.sina.com.cn/d/2012-10-08/17217681243.shtml.
    66A. Koujelev, D. Gratton, and L. Hotte. Free Space Gigabit Laser Link ExperimentIncorporation Japanese and Canadian Technology Development[C]. Proc. of SPIE.2010,7587:(758707-1)-(758707-8).
    67J. H. Lee, D. G. Oh, and S. H. O. Angular Error of LEO tracking System[C]. Proc.of SPIE.2000,4025:259-269.
    68W. H. Du, L. Y. Tan, J. Ma, et al. Temporal Frequencey Spectra for Optical WavePropagating through Non-Kolmogorov Turbulence[J]. Optical Express,2010,18(6):5763-5775.
    69L. Y. Tan, Y. Q. Yang, J. Ma. Pointing and Tracking Errors Due to LocalizedDeformation Induced by Transmission-Type Antenna in Intersatellite LaserCommunication links. Appl. Opt.2009,48:786-791.
    70Y. Q. Yang, L. Y. Tan, J. Ma, et al. Effects of Localized Deformation Induced byReflector Antenna on Received Power. Opt. Comm.2009,282(3):396-400.
    71L. Y. Tan, W. H. Du, J. Ma, et al. Log-Amplitude Variance for a Gaussian-BeamWave Propagating through Non-Kolmogorov Turbulence[J]. Optical Express,2010,18(2):451-462.
    72W. H. Du, L. Y. Tan, J. Ma, et al. Measurements of Angle-of-Arrival Fluctuationsover an11.8km Urban Path. Laser Part. Beams.2010,28:91-99.
    73L. Y. Tan, J. J. Yu, J. Ma, Y. Q. Yang, M. Li, Y. J. Jiang, J. F. Liu, Q. Q. Han.Approach to Improve Beam Quality of Inter-Satellite Optical CommunicationSystem Based on Diffractive Optical Elements. Optics Express.2009,17(8):6311-6319.
    74J. Ma, Y. J. Jiang, L. Y. Tan, et al. Influence of Beam Wander on Bit-error Rate in aGround-to-Satellite Laser Uplink Communication System[J]. Optics Letters,2008,33(22):2611-2613.
    75Y. J. Jiang, J. Ma, L. Y. Tan, et al. Measurement of optical intensity fluctuation overan11.8km turbulent path[J]. Optical Express,2008,16(10):6963~6973.
    76胡渝.空间光通信专辑[J].电子科技大学学报,1998,27(5).
    77胡渝,刘华.空间激光通信技术及其发展.电子科技大学学报[J].1998,27(05):453-461.
    78张诚,胡薇薇,徐安士.星地光通信发展状况与趋势[J].中兴通信技术,2006,12:52-56.
    79王建民,汤俊雄,孙东喜等.卫星激光通信均匀信标光的研究[J].光学学报,2006,26:7-10.
    80陈纯毅,杨华民,佟首峰等.空间光通信卫星平台振动实时模拟[J].系统仿真学报,2007,19(16):3834-3837.
    81张景旭.卫星捕获与大气补偿技术[J].光机电信息,1999,16:3-6.
    82刘立人.卫星光通信II:地面监测和验证技术[J].中国激光,2007,34(2):147-153.
    83L. Y. Wan, L. R. Liu, and J. F. Sun. On-Ground Simulation of Optical Links forFree-Space Laser Communications[J]. OPTIK,2010,121:263-267.
    84新华社.国防科工局:海洋二号卫星工程创造五个“第一”[EB/OL].(20012-08-16)[2012-12-05]. http://www.gov.cn/jrzg/2011-08/16/content_1926728.htm.
    85中新社长春.海洋二号卫星交付使用激光通信试验获得成功[EB/OL].(2012-03-02)[2012-12-05]. http://www.chinanews.com/gn/2012/03-02/3714124.shtml.
    86P. R. Chakravarthi, and C. C. Chen. Spatial Acquisition in the Presence of SatelliteVibrations for Free Space Optical Communciation Link[C]. Proc. of SPIE,1994,2221:248-259.
    87M. Scheinfeild, and N. S. Kopeika. Acquisition System for Microsatellites LaserCommunication in Space[C]. Proc. of SPIE,2000,3932:166-175.
    88M. Scheinfeild, and N. S. Kopeika. Acquisition Time Calculation and Influence ofVibrations for Micro-Satellite Laser Communication in Space[C]. Proc. of SPIE,2001,4365:195-205.
    89P. V. Hove, V. W. S. Chan. Spatial Acquisition Algorithms and Systems for OpticalISL[C]. Proc. IEEE,1983, E1.6:19-22.
    90J. E. Kaufmann, V. W. S. Chan. Coherent Optical Intersatellite CrosslinkSystems[C]. Proc. IEEE,1988,32:0533-0540.
    91S. Y. Yu, H. D. Gao, J. Ma, et al. Selection of Acquisition Scan Methods inIntersatellite Optical Communications[J]. Chinese Journal of Lasers,2002, B11(5):364-368.
    92马晶,韩琦琦,于思源等.卫星平台振动对星间激光链路的影响和解决方案[J].光电子激光,2004,15(4):472-476.
    93于思源,马晶,谭立英等.激光星间链路中天线扫描捕获技术实验室模拟研究[J].中国激光,2002, A29(6):498-502.
    94于思源,马晶,谭立英.提高卫星光通信扫描捕获概率的方法研究.光电子激光,2005,16(1):57-62.
    95C. Hindman, and L. Toberton. Beaconless Satellite Laser Acqusiition—Modelingand Feasibility[C]. MILCOM2004—IEEE Military Communicatins Conference,2004:41-47.
    96陈云亮,于思源,马晶,谭立英,王骐.卫星间光通信中多场扫描捕获的仿真优化.中国激光,2004,31(8):975-978.
    97A. Harris, T. A. Giuma. Minimization of Acquisition Time in a WavelengthDiversigied FSO Link Between Mobile Platforms[C]. Proc. of SPIE,2007,6551:(655108-1)-(655108-10).
    98罗彤.星间光通信ATP中捕获跟踪技术研究[D].成都:电子科技大学,2005:76-109.
    99A. Bismoot, A. Zaltzman, S. Arnon. Novel method for acquisition and identificationof satellite in a cluster for laser communication applications[C]. Proc. of SPIE,2002,4489:215-221.
    100杨玉强,谭立英,马晶.星间光通信中局部波前畸变对捕获精度的影响[J].强激光与粒子束,2009,21(2):161-165.
    101G. Marola, D. Santerini, and G. Prati. Stability Analysis of Direct-DetectionCooperative Optical Beam Tracking[J]. IEEE Transactions on Aerospace andElectronic Systems,1989,25(3):325-333.
    102R. M. Gagliardi, and M. Sheikh. Pointing Error Statistics in Optical BeamTracking[J]. IEEE Transactions on Aerospace and Electronic Systems,1980,AES-16(5),674-682.
    103K. J. Held, and J. D. Barry. Precision optical pointing and tracking from spacecraftwith vibrational noise [C]. Proc. of SPIE,1986,616:1-12.
    104C. C. Chen, M. Jeganthan, and J. R. Lesh. Spatial acquisition and tracking for deepspace [C]. Proc. of SPIE,1991,1417:240-250.
    105L. Germann, J. Braccio. Fine steering mirror technology supports10nanoradiansystem[J]. Optical Engineering,1990,29(11):1351-1359.
    106R. M. Gagliardi, and M. Sheikh. Pointing Error Statistics in Optical BeamTracking[J]. IEEE Transactions on Aerospace and Electronic Systems,1980,AES-16(5),674-682.
    107R. M. Gagliardi, and S. Karp. Optical Communications[M]. New York: Wiley,1976,chapter11.
    108Robert M. Gagliardi, Sherman Karp.光通信技术与应用[M].陈根祥,秦玉文,赵玉成,王勇.电子工业出版社.1998:215-220.
    109I. I. Kim, B. Riley, N. M. Wong, et al. Lessons Lerned from the STRV-2Satellite-to-Ground Lasercom Experiment[C]. Proc. of SPIE,2001,4272:1-15.
    110H. Ansari, and L. A. Voisinet. CCD-based Control Loop for Precision BeamPointing[C]. Proc. of SPIE,1994,2221:148-151.
    111H. Tian, B. Fowler, and A. E. Gamal. Analysis of temporal noise in CMOS APS[C].Proc. of SPIE,1999,3649,177-185.
    112J. Li, J. Liu, and Z. Hao. Geometrical modulation transfer function of differentactive pixel of CMOS APS[C]. Proc. of SPIE,2006,6150:(61501Y-1)-(61501Y-6).
    113B. R. Hancock, R. C. Stirbl, and T. J. Cunningham. CMOS active pixel sensorspecific performance effects on star tracker imager position accuracy[C]. Proc. ofSPIE,2001,4284:43-53.
    114高宠.大气湍流对星地激光链路瞄准捕获跟踪的影响研究[D].哈尔滨:哈尔滨工业大学,2007:49-52.
    115R. C. Stirbl, B. Pain, T. J. Cunningham, et al. Next Generation CMOS Active PixelSensors for Satellite Hybrid Optical Communications/Imaging Sensor Systems[C].IEEE Conference on Sensors, Systems, and Next-Generation Satellite II,1998,3498:255-264.
    116M. Toyoshima, T. Jono, K. Nakagawa, et al. Optimum Divergence Angle of aGaussian Beam Wave in the Presence of Random Jitter in Free-space LaserCommunication Systems[J]. Journal of of the Optical Society of America A,2002,19:567~571.
    117C. C. Chen, and C. S. Gardner. Impact of Random Pointing and Tracking Errors onthe Design of Coherent and Incoherent Optical Intersatellite CommunicationLinks[J]. IEEE Transactions on Communications,1989,37(3),252-260.
    118D. L. Fried. Statistics of Laser Beam Fade Induced by Pointing Jitter[J]. ApplyOptics,1973,12:422-423.
    119S. Arnon, and N. S. Kopeika. The Performance Limitations of Free Space OpticalCommunication Satellite Networks Due to Vibrations: Analog Case[J]. OpticalEngineering,1997,36(1):175-182.
    120S. Arnon, S. Rotman, and N. S. Kopeika. The Performance Limitations of FreeSpace Optical Communication Satellite Networks Due to Vibrations: DigitalCase[J]. Optical Engineering,1997,36(11):3148-3157.
    121P. R. Horkin. Impacts of Double-Ended Beam Pointing Error On System[C]. Proc.of SPIE,2000,3932:158-165.
    122D. M. Boroson. A Survey of Technology-Driven Capacity Limits for Free-SpaceLaser Communications[C]. Proc. of SPIE,2007,6707:1-10.
    123R. J. Barron, and D. M. Boroson. Analysis of Capacity and Probability of Outagefor Free-Space Optical Channels with Fading due to Pointing and Tracking Error[C].Proc. of SPIE,2006,6105:(6105B-1)-(6105B-12).
    124C. E. Shannon. A Mathematical Theory of Communciation[J]. Bell SystemTechnical Journal,1948,27:2619-2692.
    125顾学迈.光通信技术与应用[M].哈尔滨工业大学通信技术研究所.2004:5-66.
    126D. M. Boroson. Channel Capacity Limits for Free-Space Optical Links[C]. Proc. ofSPIE,2008,6951:(69510A-1)-(69510A-11).
    127T. Jono, M. Toyoshima, et al. Laser tracking test under satellite microvibrationaldisturbances[C]. Proc. of SPIE,2002,4714:97-104.
    128T. Jono, M. Toyoshima, et al. In orbit measurements of spacecraft microvibratins forsatellite laser communication links[J]. Optical Engineering,2010,49(8):(083604-1)-(083604-10).
    129田立国.具有开窗口功能的高帧频CMOS相机的研制[D].长春:长春理工大学,2011:5-14.
    130S. J. Dyne, D. E. L. Tunbridge, and P. P. Collins. The vibration environment on asatellite in orbit[C]. Optical Engineering,2010,49(8):(083604-1)-(083604-10).
    131M. Witting, L. V. Holtz, and D. E. L. Tunbridge. In orbit measurements ofmicroaccelerations of ESA’s communication satellite OLYMPUS[C]. Proc. SPIE,1990,1218:205-214.
    132许博谦.空间力学环境对光通信终端高速偏转镜动态特性影响研究[D].哈尔滨:哈尔滨工业大学,2008,21(2):10-17.
    133T. Tang, J. Ma, G. Ren, et al. Compensating for some errors related to time delay ina charge coupled deviced based fast steering mirror control system using a feedforward loop[C]. Proc. SPIE,2010,49(7):(073005-1)-(073005-7).
    134C. Racho, and A. Portillo. Tracking performance analysis and simulation of thedigital pointing system for the optical communication demonstrator[C]. Proc. SPIE,1999,42-136:1-13.
    135A. F. Popescu, P. Huber, and W. Reiland. Experimental investigation of theinfluence of tracking errors on the performance of free space laser links[C]. Proc.SPIE,1988,885:93-98.
    136AA. Polishuk, and S. Arnon. Optimization of a laser satellite communication systemwith an optical preamplifier[J]. Journal of Optical Society of America,2004,21(7):1307-1315.
    137S. Arnon, N. S. Kopeika, D. Kedar, et al. Performance limitation of laser satellitecommunicatin due to vibrations and atmospheric turbulence down link scenario[J].International Journal of Satellite Communications and Networking,2003,21(7):561-573.
    138姜义君.星地激光通信链路中大气湍流影响的理论和实验研究[D].哈尔滨:哈尔滨工业大学,2010:33-47.
    139A. A. Farid. Outage capacity optimization for free space optical links with pointingerrors[J]. Journal of lightwave technology,2007,25(7):1702-1710.
    140H. E. Nistazakis, D. Marinos, M. Hanias, et al. Estimation of Capacity Bound ofFree Space Optical Channels Under Strong Turbulence Conditions[C]. Proc. SPIE,2010,5540624.
    141M. A. Khalighi, N. Schwartz, N. Aitamer, et al. Fading reduction by apertureaveraging and spatial diversity in optical wireless systems[J]. Journal of OpticalCommunication Networking,2009,1(6):580-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700