用户名: 密码: 验证码:
联合型连续运行基准站网的动态定位服务机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外的CORS应用领域呈现出“建设规模化”和“服务实时化”的发展态势,即在已有的行业型、区域型等多个独立型CORS系统(iCORS)的基础上,将各个覆盖区域相邻的iCORS进行互联,形成拥有相当数量基准站的、更高层次的联合型连续运行基准站网(cCORS),在静态定位服务技术较为成熟完善的基础上,提供大范围、高动态、高精度的实时定位服务。要打破目前iCORS区域分割、独立运行的局面,实现向跨地区、跨行业、跨机构的cCORS的顺利过渡,除了统筹兼顾各方面需求,制定合理的规范标准体系,有目标地增加点位分布密度之外,还需要利用新的理念和技术手段,建立新的数据处理与服务模式,推动各类iCORS互联、互通和互操作。通过对网格技术在地学领域(尤其是大地测量领域)的应用研究发现,网格技术可以有效解决CORS领域中的系统异构、系统互操作和资源服务管理等瓶颈问题。本文基于Web服务(WS)和网格服务(GS)技术,对面向cCORS的动态定位服务机制开展了相关研究,概况起来,主要包括:
     (1)定位用户需求模型。对cCORS用户群落从服务类型、服务内容、定位技术等作了详细分析,对各类定位技术的应用领域、精度要求、时间可用性和有效性等作了汇总,得到了cCORS的服务谱系和详细需求。分析了定位用户需求多样化对系统异构的影响,提出了“需求包容、逻辑重组”的解决思路。提出并定义了一种以域、类型、属性、值和条目为主体的树状结构用户需求模型,给出了较为精细合理的语义描述方法。建立了用户需求模型的映射机制,详细定义了用户需求模型、服务情景和业务流程之间的映射关系。提出了用户角色模型,进一步明确了CORS用户群与定位服务情景之间的对应关系。
     (2)cCORS体系结构。从协议规范、层次结构、物理结构和逻辑结构等4个视角,建立了以专业计算与综合服务为中心的网格体系结构。建立了由互联网协议簇、XML协议簇、网格协议簇、GNSS协议簇和GNSS应用协议等组成的面向协议的层次结构。建立了由基础层、通讯层、服务层、业务层和应用层组成的面向服务的层次结构。给出了一种“物理分散、逻辑集中”的松耦合分布式体系结构,可以融合现有的iCORS并保证其自治性,并可将计算任务分散到多个处理节点中,解决了资源利用的最大化和服务的最大限度提供问题。研究提出了面向服务的逻辑结构,一种是事后在线服务体系,另一种是实时动态服务体系,分别给出了直观具体的逻辑流程。在综合考虑内聚性与耦合性的基础上,构建了cCORS元服务和高级应用服务体系,并给出了构建原则、分层结构、职能列表和部署方法。
     (3)网格计算理论模型。提出了一种新的面向cCORS的网格计算理论模型——附有扩展指令集、语义集的并行多带主动存储计算模型(PM-CAM),用来研究网格计算的协议与机制、网格程序的算法设计与复杂度评估、网格服务的通信与资源调度、网格服务质量评估等问题。给出了PM-CAM模型与网格架构之间的映射关系,通过对用户动态定位服务的指令流案例分析,证明了该模型可用于实时动态定位相关计算的复杂性描述与性能表达,可为后续的软件设计和部署提供有效的理论指导。
     (4)数据特征分析。针对CORS数据多样性和数据异构问题,提出了对数据进行结构化和虚拟化的解决思路。分析了广义GNSS的多频多模数据源的增加对cCORS数据采集、数据处理、定位服务等一系列流程产生的影响。阐述了由CORS站形成的传感器网络的分布性、并行性、覆盖性、连通性和容错性等诸多特性要求。分析了与CORS定位业务密切相关的数据采集、存储和远程数据传输等多种协议标准。针对各个成员iCORS建设标准和测绘基准不统一、数据格式制式和采样率存在差异等问题,基于缓冲池和线程池技术,建立了数据实时聚集与融合机制,并给出了数据传输质量指标评估方法。
     (5)数据采集与分发机制。对原始观测数据和动态差分数据的传输量进行了计算分析,研究了并行传输、容错传输、并行容错传输、分布传输和汇集传输等多种实时数据采集与分发机制。针对非确定性网络连接环境和复杂多向数据流等状况,设计了CORS数据流服务协议(CSDS),针对4种应用场景完成了对数据传输服务的封装与部署,可以较好地适应cCORS较为繁杂的数据通讯链路。建立了面向广义GNSS多模多频观测数据的分布式采集、融合和分发体系,使得任意基准站采集的数据能被多个计算节点同时访问,形成了跨区域的多节点并行互联模式。面向多种互联方式形成的复杂网络拓扑结构,如中心互联、中心集成、站共用和站中继等,在应用层面提出了数据传输优化方案。建立了跨逻辑域传输的分层覆盖机制,并提出了相应的传输优化服务方法。为了增强数据传输链路的可靠性,提出了一种改进的前向式算法(MPA),在转发树中预留链路专用于树重构,并对备用链路建立后的树重构策略进行了分析。
     (6)系统异构问题与虚拟化技术。从系统异构、信息异构和服务模式异构等角度,详细分析了cCORS的异构问题,并对资源的动态性、自治性和二分性作了探讨,指出了上述资源特性给资源管理带来的挑战。按可复用特性、可复制特性、可移动特性和管理逻辑特性等4个方面对cCORS中各类资源进行了分类,指出随着CORS技术的发展和服务领域的拓宽,资源种类和功能更加多元化,使得资源协同变得愈加困难。针对上述挑战,提出了“资源虚拟化”和“服务标准化”的解决思路,即采用虚拟化技术实现资源(Resource)与服务(Service)的融合,基于现有WS和GS的各种协议规范实现服务的标准化,为所有部署在资源上服务提供通用界面,进而实现资源管理和服务协同,为构建基于网络的复杂GNSS业务应用提供支持。对WS和GS的技术体系及其发展状况作了详细分析,采用WSRF来实现cCORS资源与服务的一体化管理,并将WS-BPEL作为cCORS服务组合和工作流的编制语言。
     (7)资源管理与服务机制。提出了2种资源管理方法,建立了cCORS的资源管理模式,设计了由代理器、注册器、管理器和资源库等4部分组成的资源注册中心。提出了2个层次的服务组合方法,分别用于WS/WS-R组织维护和WS-BPEL业务流程编制。按照资源层、服务层、组合层和需求层等4个层次,设计了cCORS服务体系的逻辑结构。在服务资源匹配方面,面向单个服务遴选提出了映射服务集的概念,面向多个服务组合优选提出了组合适配器的概念,提高了匹配的自适应性。
     (8)基于虚拟基准站网(vCORS)的动态定位服务技术。提出了vCORS的概念,从应用层、服务层和设施层等3个概念层次阐述了vCORS的运作逻辑。从元服务体系的建立、生命周期管理、网型构造与优化、自动更新与切换机制和服务质量指标体系等多个环节,分析了基于vCORS的实时动态定位服务流程。建立了vCORS自动变更机制,提出并定义了一种服务策略描述语言(SEPL),对8类较典型的变更事件作了分析。利用SEPL对变更事件的发生、捕捉与处理机制做了规范化描述,使得变更事件与服务直接对应。对vCORS实时服务质量的评估方法进行了探讨,建立了面向用户的可量度性业务类QoS指标体系。在对事后在线精密定位服务分析的基础上,提出了实时在线精密定位服务的概念和实现思路。
     (9)软件原型。自主开发了面向cCORS的动态定位服务的软件原型,并在模拟环境下面向实时动态定位服务,分用户需求响应、数据传输、服务部署、vCORS生成与销毁、服务制品分发和用户定位质量等6个方面,对软件原型的关键环节和算法进行了验证和测试,对各部分计算服务的正确性和合理性进行了测试,并以图表和文字等方式给出了各项测试的结果和结论,验证了原型系统的功能可靠性和工程实用性。
The CORS application field shows the development trend of―extensive construction‖and―real-time service‖in domestic and overseas. Based on the existing specialty-oriented, region-oriented Independent CORS (iCORS), by interconnecting adjacent iCORS, a higher level and larger scale of Combined CORS (cCORS) can be formed which has a considerable number of base stations. It offers not only basis static positioning services, but also a wide range, high dynamic, high precision and real-time kinematic positioning services. To break the current situation of region segmentation, independently-operating of the iCORS and achieve a smooth transition to the trans-regional, cross-trade, inter-agency cCORS, we need to use new ideas and technology to establish a new data processing and service supply models, and promote all kinds of interconnection, interchange, and interoperability of iCORS, in addition to integrate all aspects of needs, develop appropriate standards system, increase the density of stations. Through research on grid computing applications of earth science (especially geodesy), it is found that the grid computing technology can effectively solve the bottlenecks of CORS, such as heterogeneous, interoperability, resource management, service virtualization, etc. In this paper, based on the technology of Web Services (WS) and the Grid Services (GS), the mechanism of kinematic positioning services for cCORS is researched, mainly including:
     (1) Model of positioning user demand. The service type, service content and positioning technology of cCORS user community are analyzed in detail. The applications, accuracy requirements, time availability and validity of various types of positioning technology are summed. Finally, cCORS service pedigree and user detailed requirement are obtained. By Analysis of the impact of the user demand diversity on the system heterogeneous, the paper put forward the―demand inclusiveness, logic restructuring‖solution. It proposes and defines a tree structure user demand model, with content of domain, type, attributes, values, entries. It gives a reasonable semantic description. It establishes the mapping mechanism of user demand model. The mapping relationships among the domain, type, service scene and business processes are detailed defined. A user role model is proposed, and the correspondence between user groups and positioning service scenarios is further clarified.
     (2) The cCORS architecture. From four perspectives of the protocol specification, hierarchical structure, physical structure and logical structure, the cCORS system structure is established based on WS and GS, with the center of professional computing and comprehensive service. The protocol-oriented hierarchical structure is established, composed by the Internet protocol suite, XML protocol suite, Grid protocol suite, GNSS protocol suite and GNSS application interface standards. The service -oriented hierarchical structure is established, composed by the foundation layer, communication layer, service layer, business layer and application layer. A "physical scattered, logical focused" loosely coupled distributed architecture is given, which can integrate existing iCORS and ensure their autonomy, and handle computing tasks across multiple processing nodes. Two types of service-oriented logical structure are proposed, one is post-positioning online service system, the other is kinematic positioning online service system. Their specific logic and process workflow are also given respectively. Considering the cohesion and coupling of algorithms, the system structure of meta-services and advanced application services is built, and the building principles, hierarchical structure, functions list, and deployment method are given.
     (3) Theoretical model of Grid computing. A theoretical model, named Parallel Multi-type Computer with Active Memory (PM-CAM), is proposed, with extended instruction set and semantic set. PM-CAM is used to study some problems, such as Grid protocol and mechanism, Grid program’s algorithm design and complexity evaluation, Grid service communications and resource scheduling, Grid service quality evaluation, etc. The mapping relationship between the model and the grid framework is elaborated. By analyzing the instruction stream instances of user kinematic positioning services, the feasibility of the model applied to the complex description and performance expression of cCORS is proved. Thus, the model provides effective theoretical guidance for following software design and deployment.
     (4) Data characteristics analysis. Aiming at the problems of data’s diversity and heterogeneous, the solution of data structuring and virtualization is put forward. The impact on the cCORS data acquisition, data processing, positioning services and a series of processes is analyzed, caused by increasing of the general GNSS multi-mode multi-frequency data sources. The requirement properties of the distributed sensor networks formed by CORS stations, such as parallelization, distribution, coverage, connectivity, fault tolerance, and many other features, is explained. Several protocol standards closely related to the CORS positioning services, being used in data collection, storage, remote transmission and other occasions, is analyzed. In view of the problems between each iCORS, such as different standard of construction, disunity of geodesy datum, different data format and observation interval and other issues, the mechanism of data real-time aggregation and integration is built, and gives evaluate method to access the data transmission quality indicators, based on the buffer pool and thread pool technology.
     (5) The mechanism of data collection and distribution. The transmission quantity of original observation data and kinematic difference service data is calculated and analyzed. The real-time data collection and distribution mechanism, such as parallel transmission, fault-tolerant transmission, parallel fault-tolerant transmission, distribution transmission, congregate transmission and others, is studied. Aiming at the non-deterministic network connections environment and the complex multi-stream data flow and other conditions, the CORS Streaming Data Service (CSDS) protocol is designed, as well as the data transmission services’encapsulation and deployment for four application scenes, which proves that CSDS can better adapt to cCORS complicated data communication link. The acquisition, integration and distribution system for the generalized GNSS multi-mode multi-frequency observation data is established, enabling that any data collected by stations can be simultaneously accessed by multiple computing nodes, forming a cross-regional multi-node parallel interconnection mode. Facing the complex network topologies formed by a variety of interconnecting ways, such as the central interconnecting, central integrating, stations sharing and stations relaying, etc., data transfer optimization scheme is put forward in the application level. After establishing the layered covering mechanism for cross-domain transmission, the corresponding optimization service method is proved. In order to enhance the reliability of data transmission link, the Modified Proactive Approach Algorithm (MPA) is proposed, which can be used in tree reconstruction for the backup link and the establishment strategy of tree reconstruction is analyzed.
     (6) System heterogeneity and virtualization technologies. In view of systems heterogeneous, information heterogeneous and service model heterogeneous, a detailed analysis of cCORS heterogeneous problems is given. Then, the dynamic, autonomy and dichotomy properties are studied, and resource management challenge is pointed out. According to reusable features, replicable features, mobile features and management logic features, the resources in the cCORS are classified. The development of the technology is pointed out, with expanding service sector, the diversion of resource’s types and functions make resource synergy more and more difficult. In response to these challenges, a―resources virtualization‖and―services standardization‖solution is proposed, that is, using integration of resources and services by virtualization technology, based on the existing WS and GS protocol specification, to realize services standardization and provide on a common interface for all service deployed in resources, thus achieving resource management and service cooperation, and supporting complex web-based GNSS applications. On analyzing technology development condition of WS and GS, WSRF is used to achieve cCORS integrated management of resources and services, and WS-BPEL is used as orchestration language of cCORS service composition and workflow.
     (7) Resource management and service mechanism. Two kinds of resource management method is proposed, and a cCORS resources management mode is established. A 4-part registration center is designed composing of the proxy, registrar, manager and database. A two-layer service composition method is given, that applied to the WS/WS-R organization and WS-BPEL orchestration respectively. According to resources layer, service layer, composition layer and demand layer, the cCORS services logical structure is designed. In term of the service resources matching, the concept of mapping service set is proposed for single service selection, and the concept of services combination adapter for multiple services selection, which can enhance the matching adaptability.
     (8) Kinematic positioning service technology based on virtual CORS (vCORS). The concept of vCORS is proposed. From the application layer, service layer and facility layer, its operation logic is described. From the establishment of meta-service system, management of life cycle, construction and optimization of network, automatic updates and switching mechanism of vCORS, QoS indicators and other aspects, the vCORS process of real-time kinematic positioning services is analyzed in detail. The automatic change mechanism of vCORS is established, the Service Event Policy Language (SEPL) is proposed and defined, and 8 kinds of typical change events is analyzed. Using SEPL, a standardized description of the change events’occurrence, capture and handling mechanisms is given, making change events directly relate to services. The evaluation method of real-time service quality of vCORS is discussed; user-oriented measurable business QoS indicators system is established. On the basis of analyzing the online high-precision post-positioning service system, the concept and realization method of the online high-precise kinematic positioning service system are put forward.
     (9) Software prototype. Facing cCORS real-time positioning service, a software prototype is developed independently. Under the simulation environment, for real-time kinematic positioning services, the software key prototype and algorithm are verified from six aspects, including user demand response, data transmission, service deployment, vCORS formation and destruction, service products distribution, product quality and other aspects. The correctness and rationality of some computing services are tested. The test results and conclusions are given with charts and figures, and the reliability and practicability of software prototype are verified.
引文
[1] Rizos, C., Higgins, M., Hewitson, S. New GNSS Developments and their Impact on Survey Service Providers and Users. Spatial Sciences Conference, Melbourne, Australia, 12-16 September, 2005, 1100-1113, CD-ROM procs.
    [2]李健,吕志平,乔书波.连续运行参考站网的演化与发展趋势[J].测绘科学, 2008, 33(S1):44-46.
    [3]过静珺,王丽,张鹏.国内外连续运行基准站网新进展和应用展望[J].全球定位系统, 2008, 34(1):20-25.
    [4]陈小明.高精度GPS动态定位的理论与实践[D].武汉:武汉测绘科技大学博士论文, 1997.06.
    [5]何海波.高精度GPS动态测量及质量控制[D].郑州:解放军信息工程大学博士论文, 2002.06.
    [6]高星伟. GPS/GLONASS网络RTK的算法研究与程序实现[D].武汉:武汉大学博士学位论文, 2002.04.
    [7]周扬眉. GPS精密定位的数学模式、数值算法及可靠性理论[D].武汉:武汉大学博士学位论文, 2003.04.
    [8]吴北平. GPS网络RTK定位原理与数学模型研究[D].武汉:中国地质大学博士学位论文, 2003.03.
    [9]喻国荣.基于移动参考站的GPS动态相对定位算法研究[D].武汉:武汉大学博士学位论文, 2003.10.
    [10]王仁谦. GPS动态定位的理论研究[D].长沙:中南大学博士论文, 2004.01.
    [11]张成军.虚拟参考站误差分析与算法研究[D].郑州:解放军信息工程大学硕士学位论文, 2005.04.
    [12]张峰.基于多参考站网络的VRS算法研究与实现[D].郑州:解放军信息工程大学硕士学位论文. 2007.04.
    [13]周乐韬.连续运行参考站网络实时动态定位理论算法与系统实现[D].成都:西南交通大学博士学位论文, 2007.06.
    [14]吕志伟.基于连续运行基准站的动态定位理论与方法研究[D].郑州:解放军信息工程大学博士学位论文, 2010.04.
    [15]许其凤. GPS卫星导航与精密定位[M].北京:解放军出版社, 1989.
    [16] Rizos, C. Network RTK Research and Implementation - A Geodetic Perspective [J]. Journal of Global Positioning Systems, 2002, 2(1):144-150.
    [17]周其焕.建立GPS基准站网系统的探讨[J].中国民航学院学报, 1997.6, 15(3):17-23.
    [18]刘经南,刘晖,邹蓉,魏娜.建立全国CORS更新国家地心动态参考框架的几点思考[J].武汉大学学报(信息科学版), 2009, 34(11):1261-1265.
    [19]陈俊勇.构建全球导航卫星中国国家级连续运行站网[J].测绘通报, 2009(9):1-3.
    [20]刘经南,刘晖.连续运行卫星定位服务系统——城市空间数据的基础设施[J].武汉大学学报(信息科学版), 2003.6, 28(3):259-264.
    [21]黄丁发,丁建伟,夏捷.差分GPS连续运行参考站(网)建设研究[J].西南交通大学学报, 2000.8, 35(4):375-378.
    [22]刘晖.地球空间信息网格及其在连续运行卫星定位网络中的应用研究[D].武汉:武汉大学, 2005.05.
    [23]李昌贵.网格及其在大地测量与卫星定位数据共享中的应用[D].郑州:解放军信息工程大学硕士论文,2005.05.
    [24]李健,吕志平,赵冬青,李昌贵.基于网格的大规模连续运行基准站网的构建[J].测绘科学技术学报, 2009, 26(1):41-44.
    [25]李健,吕志平,乔书波,李昌贵.大规模连续运行基准站网的技术体系[J].测绘通报, 2009(1):10-13.
    [26]程鹏飞,蔡艳辉,王华. GridGNSS——网格化全球卫星导航系统[J].测绘科学, 2005(8):12-15.
    [27]魏子卿.论我国大地测量基础建设[J].武汉大学学报(信息科学版), 2003.5,28(Spe):4-7.
    [28]唐卫明,刘经南,陈日高. PowerNetwork软件关键技术介绍和性能分析[J].武汉大学学报(信息科学版), 2008.8, 33(8):868-871.
    [29]黄丁发,周乐韬,李成钢,徐锐.增强虚拟参考站网络系统软件(VENUS)研制[J].武汉大学学报(信息科学版), 2008.2, 33(2):172-176.
    [30]黄丁发,李成钢,吴耀强,等. GPS/VRS实时网络改正数生成算法研究[J].测绘学报, 2007.8, 36(3):256-261.
    [31]南方测绘.南方网络参考站系统软件系列—NRS V2.0网络参考站系统软件操作手册(第二版)[R].广州:南方测绘仪器有限公司, 2010.02.
    [32] Israel Kashani, Pawel Wielgosz, Dorota Grejner-Brzezinska. Datum Definition in the Long Range Instantaneous RTK GPS Network Solution [J]. Journal of Global Positioning Systems, 2003, 2(2):100-108.
    [33] Charles R. Schwarz, Richard A. Snay, Tomas Soler. Accuracy assessment of the National Geodetic Survey’s OPUS-RS utility [J]. GPS Solution, 2009(13):119–132.
    [34] Schleppe, J.B., Alves, P., Lemmon, D., Luo, N. MultiRefTM Network RTK Software User Manual (version 3). Calgary University CA, Sep 30, 2004.
    [35]福斯特等编,金海等译.网格计算(第二版)[M].北京:电子工业出版社, 2005.
    [36] Judith Myerson. Cloud Computing Versus Grid Computing [EB/OL]. IBM developerWorks, http://www.ibm.com/developerworks/web/library/wa-cloudgrid/, 2009.03.
    [37] D. Thomas, M. Petitdider. Egeode: a Grid Infrastructure for Research in Geosciences [EB/OL]. http://www.eu-egee.org
    [38] Dengrong Zhang, Le Yu , Liping Di. Standard-Based Data and Information Systems for Earth Observation [J], Springer Berlin Heidelberg: Lecture Notes in Geoinformation and Cartography, Dec 24, 2009:7-25.
    [39] Global Ring Network for Advanced Applications Development. Geosciences of GLORIAD [EB/OL], http://www.gloriad.org/gloriad/disciplines/geo/index.html
    [40] A. M. Fridman, Bradford Hager, etc. 2D and 3D Deformation Field over Bishkek Proving Ground Developed on the Base of the GPS Data [EB/OL], http://www.gloriad.org/gloriad/projects/.
    [41] Hirosh Takeuchi, Tetsuro Kondo. VLBI Correlator by Grid Computing System [EB/OL]. http://www2.nict.go.jp/w/w114/stsi/ivstdc/siryou/2004/ivs2004gm/.
    [42] Schrock, G.M. (2006) On-grid goal: Seeking support for high-precision networks [J]. GPS World, 2006, 17(10):34-40.
    [43] Harry R. Lewis, Christos H Papadimitriou. Elements of the Theory of Computation [M].北京:清华大学出版社, 2002. 210-22.
    [44] S. A. Cook, R. A. Reckhow. Time bounded random access machines[J]. Journal of Computer and SystemScience, 1973,7(4):354-375.
    [45] K. Hwang, Z. Xu. Scalable Parallel Computers: Technology[J]. Architecture, Programming. New York: McGraw-Hill, 1998.
    [46] Karp R. M., Schauser K. E. Optimal broadcast and summation in the LogP model[R]. Technical Report, UC Berkeley, 1992.
    [47] Zhiwei Xu, Xingwu Liu, Baiming Feng. Research on Working Modes of CAM [J]. Proceedings of the International Workshop on Grid Cooperative Computing. Beijing: Publishing House of Electrics Industry. 2002, 267-244.
    [48] Li Jian. Bottleneck Problems of LCORS and Feasibility of New Technologies[C], International Conference on Internet Technology and Applications (iTAP2010), IEEE, 978-1-4244-5143-2/10/, Aug 21, 2010, Wuhan, China.
    [49]杨浩,李敏. CORS信息资源共享中的异构问题研究[J].测绘信息与工程, 2008, 33(4):11-12.
    [50]黄丁发,周乐韬,李成钢,熊永良.增强参考站网络RTK算法模型及其实验研究[J].武汉大学学报(信息科学版), 2009, 34(11):1344-1349.
    [51]李健.卫星定位连续运行参考站网的系统架构与软件体系设计[D].郑州:解放军信息工程大学, 2007.05.
    [52]全球导航卫星系统连续运行参考站网建设规范[S].中华人民共和国测绘行业标准,CH/T 2008-2005,2005.12.
    [53]李昌贵,吕志平,赵冬青,李健,石善斌. CORS网络互联与虚拟CORS关键技术[J].测绘通报, 2008(1):56-58.
    [54] Chris Rizos. Network RTK Research and Implementation– A Geodetic Perspective [J]. Journal of Global Positioning Systems, 2002, 1(2):144-150.
    [55] D. Laurichesse, F. Mercier, J.P. Berthias. Real-time PPP with undifferenced integer ambiguity resolution, experimental results [C]. ION GNSS 2010, Portland, Oregon, September 21-24, 2010.
    [56]魏子卿,葛茂荣. GPS相对定位的数学模型[M].北京:测绘出版社, 1998.
    [57]黄丁发,丁建伟,夏捷.差分GPS连续运行参考站(网)建设研究[J].西南交通大学学报, 2000.08, 35(4):375-378.
    [58]国家土地管理局.城镇地籍调查规程[S]. TD 1001-93, 1993.6.
    [59]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社, 2007:343.
    [60] Navigation Systems Panel. Amendment 79 to the International Standards and Recommended Practices, Aeronautical Telecommunications (ANNEX 10 to the Convention on International Civil Aviation) [R]. International Civil Aviation Organization, Montreal, Canada, 2004.2.23.
    [61]李纬.基于实时数据流的GNSS综合服务系统数据管理技术研究[M].北京:清华大学硕士学位论文, 2005.5.
    [62] Samsung Lim, Yong Heo, Chris Rizos. A Web-Based Real-Time Monitoring System for GNSS Data Quality and Integrity [C]. Integrating Generations, FIG Working Week 2008, Stockholm, Sweden, 14-19 June 2008.
    [63]李英冰,陈中新.基于互联网的CORS数据管理与质量检查系统开发[J].测绘科学, 2009.11, 34(6):96-98.
    [64] Zhang Xiao-Hong, Li Xing-Xing, Guo Fei, Li Pan, Wang Lei. Server-based Real-time Precise Point Positioning and Its Application [J]. Chinese Journal of Geophysics, 2010, 53(3): 372-379.
    [65]李健,吕志平,梁率. CORS在线定位用户服务系统[J].测绘科学技术学报, 2008, 25(2):127-130.
    [66]顾国华,张晶.中国地壳运动观测网络基准站GPS观测的位移时间序列结果[J].大地测量与地球动力学, 2002, 22(2):61-67.
    [67]顾国华.基准站GPS连续观测得到的垂直位移时间序列[J].地震地质, 2005.6, 27(2):332-340.
    [68]隆华平. GPS连续运行参考站网络的解的精度及其稳定性研究[J].全球定位系统, 2005(2):30-35.
    [69]赵齐乐,楼益栋.基于Web的GNSS数据精密分析与服务—系统设计及产品定义[J].武汉大学学报(信息科学版), 2009, 34(11):1359-1362.
    [70]李健,李建伟.一种面向大规模基准站网的网格计算理论模型[J].武汉大学学报(信息科学版), 2009,34(8):992-995.
    [71] Zhiwei Xu, Xingwu Liu, Baiming Feng. Research on Working Modes of CAM [J]. Proceedings of the International Workshop on Grid Cooperative Computing. Beijing: Publishing House of Electrics Industry. 2002, 267-244.
    [72] Harry R. Lewis,Christos H. Papadimitriou. Elements of the Theory of Computation[M].北京:清华大学出版社, 2002, 210-22.
    [73] Karp R. M., Schauser K. E. Optimal broadcast and summation in the LogP model[R]. Technical Report, UC Berkeley, 1992, 142-153.
    [74] Li Jian, Qiao Shubo. A New Grid Theoretical M odel to Large-scale CORS[C], 2009 International Conference on Information Engineering and Computer Science (ICIECS 2009), IEEE, 978-1-4244-4994-1/09/, Dec 19, 2009, p663-666.
    [75]陈俊勇. GPS现代化和GPS信号重构技术的进展[J].全球定位系统, 2005(1):1-4.
    [76] Y. Yang. China National Administration of GNSS and Applications (CNAGA). COMPASS: View on Compatibility and Interoperability[C], ICG Working Group A Meeting on GNSS Interoperability. 2009.7.30-31.
    [77]王刚.广域增强系统现状[C].第一届中国卫星导航学术年会(CSNC2010).北京,2010.05.20.
    [78] United Nations Office For Outer Space Affairs. Current and Planned Global and Regional Navigation Satellite Systems and Satellite-based Augmentations Systems [C], International Committee on Global Navigation Satellite Systems Provider’s Forum.United Nations, New York, 2010.
    [79]王刚等. EGNOS系统及其在中国测试的初步结果[J].测绘科学技术学报, 2005.06, 22(2).
    [80]任玉品等.我国广域增强系统的基准站布局及数量分析[J].测绘工程, Vol.15 No.3,2006-06.
    [81]吕子平.广域精密定位技术与示范系统[J].卫星与网络, 2008.
    [82]李健,李建伟.卫星导航业务海量数据的实时接收、存储与管理[J].武汉大学学报(信息科学版), 2008, 12(33): 127-130.
    [83] Lingxuan Hu, David Evans. Localization for Mobile Sensor Networks. MobiCom’04, Sept. 26.–Oct. 1, 2004, Philadelphia, Pennsylvania, USA.
    [84] Abrams, S., Allen, P. K., Tarabanis, K. A. Dynamic sensor planning [C]. In Proceedings of the IEEE Conference on the Robotics and Automation, 1993, 605–610.
    [85] Chu, M., Haussecker, H., Zhao, F. 2002. Scalable information-driven sensor querying and routing for adhoc heterogeneous sensor networks. Int. J. High Perform. Comput. Appl. 16, 3, 293–313.
    [86] Werner Gurtner. RINEX: The Receiver Independent Exchange Format Version 2.10 [EB/OL]. 10-December 2007. http://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt
    [87] Werner Gurtner, Lou Estey. RINEX: The Receiver Independent Exchange Format Version 3.01[EB/OL]. 22 June 2009. http://igscb.jpl.nasa.gov/igscb/data/format/rinex301.pdf
    [88] UNAVCO data guru. BINEX: Binary Exchange Format[EB/OL]. 2010.3.18. http://binex.unavco.org/.
    [89] IERS Analysis Coordination. SINEX - Solution (Software/technique) INdependent EXchange Format Version 2.02 [EB/OL]. 01 December 2006. http://www.iers.org/nn_10880//sinex/sinex__v202__pdf
    [90] SINEX_TRO - Solution (Software/technique) INdependent EXchange Format for combination of TROpospheric estimates Version 0.01 [EB/OL]. 01 March 1997. http://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt
    [91] Nicholas C.. Compact Data Transmission Standard for High-Precision GPS v2.0 [EB/OL]. 7 May 2001, htttp://www.trimble.com/.
    [92] IGS Real TimeWorking Group. RT-IGS Message Protocol [EB/OL]. http://www.rtigs.net/protocol.php
    [93] Ron Muellerschoen. JPL SOC format [EB/OL]. http://gipsy.jpl.nasa.gov/igdg/papers/SOC_FORMAT.ppt
    [94] BKG. Global List of Real-Time GNSS Data Streams from Ntrip Broadcasters [EB/OL]. http://www.rtcm-ntrip.org/home
    [95] National Marine Electronics Association. NMEA 0183 Standard [EB/OL]. http://www.nmea.org/content/nmea_standards/nmea_083_v_400.asp
    [96] National Marine Electronics Association. NMEA 2000 Explained White Paper[EB/OL]. http://www.nmea.org/content/nmea_standards/white_papers.asp
    [97] Paul R. Spofford, Benjamin W. Remondi. The National Geodetic Survey Standard GPS Format SP3[EB/OL].1991. ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3_docu.txt
    [98] Steve Hilla. The Extended Standard Product 3 Orbit Format (SP3-c)[EB/OL]. 17 August 2010. ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt
    [99] Stefan Schaer, Werner Gurtner, Joachim Feltens. IONEX: The IONosphere Map Exchange Format Version 1[EB/OL]. 25 February 1998. ftp://igscb.jpl.nasa.gov/igscb/data/format/ionex1.pdf
    [100] M. Rothacher, R. Schmid. ANTEX: The Antenna Exchange Format, Version 1.4 [EB/OL]. 15 September 2010. ftp://igscb.jpl.nasa.gov/igscb/station/general/antex14.txt
    [101] Instrumentation and Methodologies Branch of NGS's Geodetic Services Division. GPS Antenna Calibration [EB/OL]. 15 July 2010. http://www.ngs.noaa.gov/antcal/.
    [102] AC Coordinator. New IGS ERP Format (version 2) [EB/OL].10 July 1998.ftp://igscb.jpl.nasa.gov/igscb/data/format/erp.txt
    [103] IERS. Earth orientation data [EB/OL]. http://www.iers.org/IERS/EN/DataProducts/.
    [104] G. Weber. Real-Time GNSS - EUREF-IP [C]. Symposium of the IAG Subcommission for Europe (EUREF), June 6-9, 2007, London, England.
    [105] BKG GDC site. Real-time Satellite Orbit and Clock Corrections to Broadcast Ephemeris from IGS and EUREF Resources [EB/OL]. http://igs.bkg.bund.de/ntrip/orbits/.
    [106]黄俊华,陈文森.连续运行卫星定位综合服务系统建设与应用[M].北京:科学出版社. 2009.01.
    [107]谭志彬,戴连君,过静珺,杨晓军. GPS连续运行参考站网数据存储[J].测绘通报, 2003(11):8-10.
    [108] Yuki Hatanaka. A Compression Format and Tools for GNSS Observation Data [J]. Bulletin of the Geographical Survey Institute, Vol.55. March, 2008. P21-30.
    [109] Kesselman, C., Pearlman, L. and Mehta, G. Proposed Design for NEESgrid Telepresence Referral and Streaming Data Services[R]. NEESgrid, Technical Report NEESgrid-2003-09, 2003.3. http://www.neesgrid.org/documents/TR_2003_09.pdf.
    [110] W3C. XML Schema [EB/OL]. http://www.w3.org/XML/Schema
    [111] Martin Peterzon. Distribution of GPS-data via Internet [R]. Reports in Geodesy and Geographical Information Systems, LMV-report 2004:01. 2004.01.
    [112] BKG. BKG Ntrip Client (BNC) Version 2.3 Manual[[EB/OL]]. Federal Agency for Cartography and Geodesy, Frankfurt, Germany. 2010.08. http://igs.bkg.bund.de/index_ntrip_down.htm
    [113] BKG. BKG Ntrip State Space Server (BNS) Version 1.3 Manual[[EB/OL]]. Federal Agency for Cartography and Geodesy, Frankfurt, Germany. 2010.10. http://igs.bkg.bund.de/index_ntrip_down.htm
    [114] Sylvia Ratnasamy , Scott Shenker and Ion Stoica. Routing Algorithms for DHTs : Some Open Questions. In Proceedings of First International Workshop on Peer-to-Peer Systems , 2002.
    [115] Ion Stoica , Daniel Adkins , Shelley Zhuang , Scott Shenker , and Sonesh Surana. Internet Indirection Infrastructure. In Proceeding of ACM SIGCOMM 2002.
    [116]赵军,王继龙,吴建平.基于互联网的导航定位增强信息大规模实时播发研究[J].宇航学报, 2006.7,27(4):821-823.
    [117] Bawa, M. Transience of peers and streaming media [C]. Proc. Of ACM Sigmetries 2003, SanDiego, CA.
    [118] Banerjee, S. Resilient multieast using over lays [C]. Proc. Of ACM Sigmetries 2003, SanDiego, CA.
    [119]林予松.大规模网络环境下的组播通信技术研究[D].解放军信息工程大学博士论文, 2005.12.
    [120]王鹏.法方程层面地球参考框架数据融合及其网格计算应用研究[D].郑州:解放军信息工程大学硕士学位论文, 2010.04.
    [121] I. Foster, C. Kesselman, S. Tuecke. Anatomy of Grid [EB/OL]. Global Grid Forum(GGF), http://www.ggf.org/.
    [122] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The physiology of the Grid: An Open Grid Services Architecture for Distributed System Integration [EB/OL]. http://www.globus.org/research/papers/. 2002.
    [123] Heather Kreger. Web Services Conceptual Architecture (WSCA 1.0)[ EB/OL], IBM Software Group. http://www.4.ibm.com/software/solutions/webservices/pdf/ wsca.pdf. 2001
    [124] W3C. SOAP Version 1.2 Part 1: Messaging Framework, W3C Recommendation[EB/OL]. http://www.w3.org/TR/2003/REC-soap12-part1-20030624/, 2003-6-24.
    [125] W3C. Web Services Description Language(WSDL) Version 2.0 Part1: Core Language, W3C Candidate Recommendation[EB/OL]. http://www.w3.org/TR/wsdl20/, 2006-3-27.
    [126] UDDI Version 3.0.2, UDDI Spec Technical Committee Draft[EB/OL]. http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.
    [127] Computer Associates ?, IBM?, Microsoft?, Oracle?, SAP?, SeeBeyond Technologies?, Systinet?, and Others. UDDI v.3.0 [S]. OASIS Standard, 2005.
    [128] W3C. Web Services Architecture, W3C Working Group Note 11 February 2004 [EB/OL].http://www.w3.org/TR/ws-arch/, 2004-2-11.
    [129] Ian Foster, Jeffrey Frey, Steve Graham, et al. Modeling Stateful Resources with Web Services[EB/OL]. http://www.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf, 2004.5.3.
    [130] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maquire, T., Sandholm, T., Snelling, D. and Vanderbilt, P. Open Grid Services Infrastructure (OGSI) version 1.0. https://forge.gridforum.org/docman2/ViewProperties.php?group_id=43&category_id=392&document_content_id=347. 2003
    [131] Bart Jacob.网格计算:关键组件是什么?利用网格计算来实现应用程序[EB/OL]. IBM developerWorks. http://www.ibm.com/developerworks/cn/grid/gr-overview/, 2003.6.1.
    [132] Karl Czajkowski, et al. From Open Grid Services Infrastructure to WS-Resource Framework Refactoring and Evolution[EB/OL]. http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf, 2006-6-2.
    [133] Borja Sotomayor. The Globus Toolkit 4 Programmer's Tutorial [EB/OL]. http://gdp.globus.org/gt4-tutorial/. 2005.11.26.
    [134] OASIS committees. OASIS Web Services Resource Framework (WSRF) TC [EB/OL]. http://www.oasis-open.org/committees/wsrf/. 2006.4.1.
    [135] N.Milanovic, M.Malek. Current solutions for Web service composition[J]. IEEE Transactions on Internet Computing, 2007, 8(6):51-59.
    [136] Sharanya Eswaran, David Del Vecchio, Glenn Wasson, Marty Humphrey. Adapting and Evaluating Commercial Workflow Engines for e-Science [C]. the 2nd IEEE International Conference on e-Science and Grid Computing. Amsterdam, Netherlands, Dec 4-6, 2006.
    [137]周进刚,纪勇,王伟. WS-BPEL研究综述[EB/OL].中国科技论文在线, http://www.paper.edu.cn/.
    [138] Apache Software Foundation. Apache Axis2 [EB/OL]. http://ws.apache.org/axis2.
    [139] R. H. High Jr., M. Kloppmann. WebSphere Programming Model and Architecture [J]. Datenbank-Spektrum, 2004(8):18-31.
    [140] G. Nyberg. WebLogic 6.1 Server Workbook for Enterprise JavaBeans [M]. O’Reilly & Associates, Inc., 981 Chestnut Street, Newton, MA 02164, USA, 3 edition, 2002.
    [141] Mercury Interactive Corporation. Systinet server for Java [EB/OL]. http://www.systinet.com/.
    [142] Sun Microsystems. The Web Services Development Pack [EB/OL]. http://java.sun.com/webservices/.
    [143] Clemens Utschig, Jesus Rodriguez, Heidi Buelow. Pratical Interoperability Approaches, WS-Security and WS-Addressing Explained [EB/OL]. Feb 12, 2007. http://soa.sys-con.com/read/291043.htm.
    [144] Argonne National Laboratory. Globus Toolkit 5 [EB/OL]. http://www.globus.org/. 2010.
    [145] pyGridWare: Python Web Services Resource Framework [EB/OL]. http://dsd.lbl.gov/gtg/projects/.
    [146] WSRF::Lite—Perl Grid Services [EB/OL]. http://www.sve.man.ac.uk/research/atoz/ilct/.
    [147] Glenn Wasson. WSRF.NET 3.0 Programmer’s Reference [EB/OL]. http://www.cs.virginia.edu/~gsw2c/.
    [148] Koon Leai Larry, Kenneth J. Turner. Orchestrating Grid Services using BPEL and Globus Toolkit 4 [C]. In Proceedings of the 7th PGNet Symposium, Liverpool, June 2006,p31-36.
    [149] BEA, IBM. BPELJ: BPEL for Java[EB/OL]. ftp://www6.software.ibm.com/software/developer/library/.
    [150] BEA. BEA WebLogic Integration [EB/OL]. Weblogic Journal, https://weblogic.sys-con.com/.
    [151]刘旭东.Web服务技术综述与思讯中间件平台[J].四方国件, 2011(1):33-47.
    [152] Borja Sotomayor, Lisa Childers. Globus Toolkit 4 Programing Java Services[M]. Morgan Kaufmann publications, Elsevier Inc. 2006.
    [153] Microsoft Visual Studio 2010 Help. WCF Development [EB/OL]. MSDN Developer Centers, http://msdn.microsoft.com/zh-cn/library/ms735119.aspx
    [154]李健,吕志平,李建伟,李凯峰.面向CORS的精密定位服务中间件平台的设计[J].测绘科学与工程. 2007, 27(3):42-46.
    [155]李健,吕志平,李建伟,乔书波.面向CORS的精密定位服务软件体系设计[C].全国第18届计算机技术与应用学术会议(CACIS 2007),浙江宁波, 2007.08.
    [156]许其凤.空间大地测量学—卫星导航与精密定位[M].北京:解放军出版社, 2001:206-222.
    [157] Xiong Jinhua, Fan Jianping. Probabilistic-Constrained Fuzzy Logic for Situation Modeling [C]. Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’09), Jeju Island, Korea. Piscataway, J,USA: IEEE, Aug 20-24, 2009.
    [158] Brittenham, P. An Overview of the Web Services Inspection Language [EB/OL]. 2001, http://www.ibm.com/developerworks/webservices/library/ws-wsilover/.
    [159]徐志伟,冯百明,李伟.网格计算技术[M].北京:电子工业出版社, 2004.05, p230-248.
    [160] Lawson C. Software for Cl Surface lnterpolation. Mathematical Software III [M]. [s.1.]:[s.n.], 1977, p161-194.
    [161]武晓波,王世新,肖春生. Delaunay三角网的生成算法研究.测绘学报, 1999,28(1):28-35.
    [162]张先迪,李正良.图论及其应用[M].北京:高等教育出版社, 2002:40-43.
    [163] Dong D N., YehudaB. Global Positioning System Network Analysis with Phase Ambjguity Resolution Applied to Crustal Deformation Studies in California [J]. Journal of Geophysical Research. 1989,94:3949-3966.
    [164]单煦翔,等.一种高效构建Delaunay三角网的算法[J].江南大学学报(自然科学版), 2010, 9(4):191-195.
    [165]文伟,杨耀权,于希宁.用Visual C语言实现Delaunay三角剖分算法[J].华北电力大学学报, 2000, 27(4) :54-58.
    [166]冯琐,施一民.基于区域性椭球面数字地面模型的研究[J].同济大学学报(自然科学版), 2003,30(8):964-967.
    [167]白建军,赵学胜,陈军.基于椭球面三角格网的数字高程建模[J].武汉大学学报(信息科学版), 2005,30 (5):383-387.
    [168]周乐韬,黄丁发,李成钢,周东卫.基于球面Delaunay三角网的GPS网络构造算法[J].西南交通大学学报, 2007.06,42(3):380-383.
    [169]辜声峰,胡羽中,唐卫明.大规模基准站组网与分区服务技术探讨[J].大地测量与地球动力学, 2010.08,30(4):146-150.
    [170]李鑫,程渤,杨国纬,刘启和.一种基于事件的Web服务组合方法[J].软件学报, 2009, 20(12):3101-3116.
    [171] Lobo L, Bhatia R, Naqvi S. A Policy Description Language [C]. In: Proc. of the 16th National Conf. on Artificial Intelligence (AAAI-99). AAAI Press, 1999. 291?298.
    [172] Chomicki J, Lobo J, Naqvi S. Conflict Resolution Using Logic Programming [J]. IEEE Trans. onKnowledge and Data Engineering, 2003,15(1):244?249.
    [173] Tomoji Takasu. Real-time PPP with RTKLIB and IGS real-time satellite orbit and clock [C]. IGS Workshop 2010, 2010.
    [174]郭英,程鹏飞,吕洪标.基于DTIN的CORS基准站网络构造算法[J].大地测量与地球动力学, 2010.12, 30(6):108-111.
    [175]梅生强,宫煦利,姚宜斌,王泽民,黄石磊.基于Delaunay三角网的大规模CORS基准站组网技术研究[J].大地测量与地球动力学, 2008.2, 28(1):131-135.
    [176] J.Gozdecki, A.Jajszczyk, et al. Quality of Service Terminology in IP Network [J]. IEEE Communication Magazine, 2003:153-159.
    [177]刘经南,施闯,刘晖等.连续运行参考站网(CORS)的应用与发展(培训教材)[M].武汉大学卫星导航定位技术研究中心, 2010.12.
    [178]何薇. CORS服务质量体系结构及其关键技术的研究[D].武汉:武汉大学硕士论文, 2010.06.
    [179] R. Al-Ali, A. ShaikhAli, O. Rana, D. Walker. Supporting QoS-Based Discovery in Service-Oriented Grids [C]. International Parallel and Distributed Processing Symposium (IPDPS'03), Nice, France, 2003.
    [180]梁泉,杨扬,梁开健.网格系统的服务质量保障与控制综述[J].控制与决策, 2007,22(2):121-126.
    [181] G. Carpentier1, C. Bruyninx, F. Roosbeek. Quality and Latency of the data within the EUREF Permanent Network [C]. the EUREF Symposium, Bratislava, Slovakia, June 2-5, 2004.
    [182] Simon Fuller, Philip Collier, Allison Kealy. Real Time Quality Assessment for CORS Networks [J]. Journal of Global Positioning Systems, 2005, 4(1-2): 223-229.
    [183] Ruben Yousuf. Evaluation and Enhancement of the Wide Area Augmentation System (WAAS) [R]. UCGE Reports Number 20233, the University of Calgary, 2005.9.
    [184]袁林果,丁晓利,陈武,郭志和,陈少彬,洪本善,周锦添.香港GPS基准站坐标序列特征分析[J].地球物理学报, 2008, 51(5):1372-1384.
    [185] Oehler, V., et al. The Galileo Integrity Concept [C]. Proceedings of ION GNSS 2004, Long Beach California, 2004, 604-615.
    [186]赵春梅,程鹏飞,高星伟. GALILEO系统局域完备性监测设计与实现[J].测绘学报, 2008.02,37(1):23-29.
    [187]李晶,赵永望,刘旭东.基于QoS的服务组合研究概述[J].四方国件, 2011(3):53-63.
    [188] OPUS. U.S. National Geodetic Survey’s online processing user service [EB/OL]. http://www.ngs.noaa.gov/OPUS/.
    [189]SAPAC. SCOUT Scripp’s Coordinate Update Tool [EB/OL]. http://sopac.ucsd.edu/cgi-bin/scout.cgi
    [190] Geoscience Australia. Australian Online GPS Processing Service (AUSPOS) [EB/OL]. http://www.ga.gov.au/.
    [191]李健,吕志平.基于CORS的卫星定位在线服务系统[J].测绘通报, 2007(8):40-44.
    [192]赵齐乐,楼益栋.基于Web的GNSS数据精密分析与服务—系统设计及产品定义[J].武汉大学学报(信息科学版), 2009.11, 34(11):1359-1362.
    [193] JPL. Auto-Gipsy, Automatic Precise Positioning Service (APPS) [EB/OL]. http://apps.gdgps.net/.
    [194] Natural Resources Canada Geodetic Survey Division, CSRS-PPP [EB/OL]. http://webapp.csrs.nrcan.gc.ca/.
    [195] Rodrigo Leandro. GPS Analysis and Positioning Software (GAPS) [EB/OL]. University of New Brunswick. http://gaps.gge.unb.ca/.
    [196] GMV Aerospace and Defence S.A.U. magicGNSS [EB/OL]. http://magicgnss.gmv.com/.
    [197] Armatys, M., et al. Demonstration of decimeter-level real-time positioning of an airborne platform[C]. ION National Technical Meeting, Anaheim, CA, USA. 2003.1.22.
    [198]柯志宏,唐依珠.反差分GPS技术在车辆监控中的应用与分析[J].福州大学学报, 2000,108(3),55-59.
    [199]唐依珠,何志宏.逆向差分定位系统的实现及若干算法设计[J].计算机科学, 2001,28(9):307-311.
    [200] Masayuki Kanzaki. Inverted RTK system and its applications in Japan [C]. 12th IAIN Congress & 2006 Int. Symp. on GPS/GNSS, Jeju, Korea, 18-20 October, 2006, 455-458.
    [201] Chris Rizos. Alternatives to Current GPS-RTK Services & Some Implications for CORS Infrastructure and Operations[J]. GPS Solutions, 2007, 11(3), 151-158.
    [202]高星伟,刘经南.网络RTK基准站间基线单历元模糊度搜索方法[J].测绘学报, 2002(4):305-309.
    [203]阳仁贵,欧吉坤,王振杰,赵春梅.用遗传算法搜索GPS单频单历元整周模糊度[J].武汉大学学报(信息科学版), 2005.3, 3O(3):251-254.
    [204] Anthony Cole, Jinling Wang, Andrew G. Dempster, Chris Rizos. Single Epoch Integer Ambiguity Resolution after Pseudorange Adjustments [C]. International Global Navigation Satellite Systems Society IGNSS Symposium 2009, Holiday Inn Surfers Paradise, Qld, Australia. 1– 3 Dec, 2009.
    [205] Tomoji Takasu, Akio Yasuda. Evaluation of RTK-GPS Performance with Low-cost Single-frequency GPS Receivers [C]. International Symposium on GPS/GNSS, Tokyo, Japan, 2008.
    [206]民政部.中华人民共和国行政区划简册2007[M].中国地图出版社: 2008.1.
    [207]李昌贵,吕志平,王鹏,李健.基于网格的多时段GPS载波相位测量快速解算[J].大地测量与地球动力学, 2010.08, 30(4):133-136.
    [208] Tomoji Takasu. RTKLIB: An Open Source Program Package for GNSS Positioning (v2.4.1) [EB/OL]. 2011.06, http://gpspp.sakura.ne.jp/. ?????????????????????????????????????????

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700