用户名: 密码: 验证码:
电阻式纳米氧化物湿敏元件的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿度监测、控制在工业、农业、日常生活、科学研究等方面受到越来越多重视,电阻式湿度传感器是有着广泛应用的一类化学传感器,它是基于湿敏材料的吸附作用来工作的,即湿敏材料吸附和脱附水分子后能引起材料的阻抗发生变化,从而引起元件输出信号发生变化。在本论文中作者合成并表征了两类湿敏材料,研究了基于这两类功能材料的电阻型湿度敏感元件的电学特性及敏感机理。
     将柠檬酸法制备的具有不同X值的LaCo_xFe_(1-x)O_3纳米粉体材料用作厚膜技术制备敏感器件的敏感浆料,对其进行湿敏性能参数测试,结果显示敏感性能相对最佳的材料为LaCo_(0.3)Fe_(0.7)O_3。对此材料进行碱金属的物理掺杂、化学掺杂改性,有效地降低了材料的电阻,使该材料的湿敏元件能够在整个湿度量程内工作,元件的感湿灵敏度大大提高。
     以钛酸四丁酯为前驱物,在溶胶凝胶法合成样品的过程中添加正硅酸乙酯后HF处理制得的TiO_2的比表面积大大提高,显著改善了传统方法制备的TiO2在低湿区灵敏度差的现象,湿敏元件在整个湿度区对湿度的变化都有很好的响应。
     将电介质物理的理论用于解释这两类材料的湿敏元件的敏感机理,根据实验,得到了元件在不同的湿度环境下的复阻抗谱图,设计了直流瞬时极性反转实验得到了湿敏元件在不同的湿度环境下的具体导电粒子。认为这两类湿敏材料在整个湿度量程中均由两类粒子参与导电,即电子和离子。随着湿度的不断增大,电子参与导电的作用逐渐减弱,而离子参与导电的作用逐渐增强,实验得到的结果与目前较为流行的电子-离子导电理论相吻合。这些研究为寻找新型的湿敏材料和对当前一些湿敏材料的改性研究有一定的意义。
Monitoring and controlling humidity are more and more emphasized on industry, agriculture, daily life, science research etc. The resistance-type humidity sensor is a kind of the chemical sensors, which can be widely used in many fields. It plays a role through adsorption effect of the sensing materials, in other words, the impedance of the resistance-type humidity sensor will change when the sensor is exposed in different water vapor. In this paper, the author has prepared and characterized two kinds of materials sensitive to humidity, and the electrical properties and sensing mechanism to humidity of the two resistance-type humidity sensors based on the two materials have been investigated.
     In the first chapter, the concept of humidity sensors, the development process, and the direction of current research was introduced comprehensively. At the end of this chapter, we pointed out the significance of our work and summarized the important results obtained.
     Perovskite-type oxides LaCo_xFe_(1-x)O_3 was mainly applied in these areas such as solid oxide fuel cells, chemical sensors for the detection of alcohol and oxygen, methane oxidation catalysis. There were reports about the magnetism of this material. But the humidity sensitive properties of this material were rarely reported. In the second chapter, the nanocrystalline LaCo_xFe_(1-x)O_3 prepared by citrate method was ground to form the humidity sensing paste, and the paste was then screen printed on ceramic substrates with interdigitated electrodes to obtain the humidity sensitive thick films. The humidity response of LaCo_xFe_(1-x)O_3 showed that LaCo_(0.3)Fe_(0.7)O_3 has the highest sensitivity to change in humidity when compared with the other samples, and the optimal calcination temperature is 600°C.
     In view of the past, many reports have showed that the addition of alkali ions was effective in improving the performance of many different kinds of materials, the alkali ion can be dissolved in water to become the conduction carrier, and play a major role in improving the humidity properties of materials. In the third chapter, the doping of alkali cation was considered to improve the humidity-sensitive properties of material, the results showed that the optimal dopant was K+, the resistance of material reduced after alkali cation was doped into it, the humidity sensor based on it had good response in the whole humidity range, and the sensitivity was enhanced significantly. The shortage of this method was time-consuming and laborious, and the uniformity of doping was limited, moreover, the recovery characteristic of humidity sensor was poor.
     In the fourth chapter, the K+ was doped by adding to precursor prepared by sol-gel method. The appropriate doping of K~+ improved the sensitivity of material in the low relative humidity. The resistance of material reduced after K~+ was doped into it, the humidity sensor based on it had good response in the whole humidity range, and the sensitivity was enhanced significantly. The advantages of this method are saving time and manpower, and easy to achieve uniform doping. At the same time, the recovery characteristic of humidity sensor has also been greatly improved.
     TiO_2 possess good properties such as chemical and physical stability, good humidity sensitivity and wide sources. Pure TiO2 is an intrinsic semiconductor, the humidity sensor based on the pure TiO2 have high intrinsic resistance, and bring some difficulties to accurate measure. In the past research, the humidity sensitive properties of TiO_2 were usually improved by doping or mixing with other compounds, which was called as TiO_2-based humidity sensitive material, and have been widely investigated. For the material sensitive to humidity, when the other factors about surface of material is roughly same, the greater the surface area, the more the center for absorption of water, and the material possess better humidity sensitive properties. In the fifth chapter, we try to prepared TiO_2 with larger surface area and pore volume by adding tetraethyl orthosilicate to precursor, followed by HF treatment. The sensitivity of synthesized TiO_2 in the low RH was improved significantly, and the humidity sensor had good response to change in humidity in the whole humidity range with little hysteresis and quick response and recovery.
     The theory of Dielectric Physics was applied to explain the sensing mechanism of the humidity sensors based on the two materials. The complex impedance was obtained, and a circuit was designed to do an experiment named ITIC (the isothermal transient ionic current) to deduce which kinds of the carriers of the sensing materials are domain in different humidity environment. The final results showed that there are two kinds of particles to participate electric conduction in all humidity range, i.e. electron and ion. The electron plays a role more and more weakly, and ion plays a role more and more strongly for electron conduction when relative humidity increases from low to high. The obtained conclusion is identical to the Electron and Proton (Ion) Theory, which is popular currently to explain the humidity sensing mechanism.
引文
[1] Janata J, Bezegh A. Chemical sensors [J].Anal. Chem.,1988,60:62R.
    [2] Sinha N, Ma J Z, Yeow J T W. Carbon nanotube-based sensors [J].Nanosci. Nanotechnol.,2006,6:573.
    [3] Abraham J K, Philip B, Witchurch A, Varadan V K, Reddy C C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor [J].Smart Mater. Struct.,2004,13:1045.
    [4] An K H, Jeong S Y, Hwang H R, Lee Y H. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites [J].Adv. Mater.,2004,16:1005.
    [5] Carroll D L, Czerw R, Webster S. Polymer-nanotube composites for transparent conducting thin films [J].Synth. Met.,2005,155:694.
    [6] Chen H W, Wu R J, Chan K H, Sun Y L, Su P G. The application of CNT/Nafion composite material to low humidity sensing measurement [J].Sens. Actuator B,2005,104:80.
    [7] Dai L M, Soundarrajan P, Kim T. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes [J].Pure Appl. Chem.,2002,74:1753.
    [8] Ferrer-Anglada N, Kaempgen M, Roth S . Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline PH sensors [J].Phys. Status Solidi. B-Basic So,2006,243:3519.
    [9] Gao M, Dai L, Wallace G G. Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes [J].Synth. Met.,2003,137:1393.
    [10] Johnson A T C, Staii C, Chen M, Khamis S, Johnson R, Klein M L, Gelperin A. DNA-decorated carbon nanotubes for chemical sensing [J].Phys. Status Solidi. B-Basic So,2006,243:3252.
    [11] Kaempgen M, Roth S. Transparent and flexible carbon nanotube/polyaniline PH sensors [J].J. Electroanal. Chem.,2006,586:72.
    [12] Kumar M K, Ramaprabhu S. Nanostructured Pt functionlized multiwalled carbonnanotube based hydrogen sensor [J].J. Phys. Chem. B,2006,110:11291.
    [13] Li J, Lu Y J, Meyyappan M. Nano chemical sensors with polymer-coated carbon nanotubes [J].IEEE Sens. Lett.,2006,6:1047.
    [14] Li Y, Yang M J, Chen Y. Nanocomposites of carbon nanotubes and silicone-containing polyelectrolyte as a candidate for construction of humidity sensor[J].J. Mater. Sci.,2005,40:245.
    [15] Luo X L, Killard A J, Morrin A, Smyth M R. Ehancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline [J].Anal. Chim. Acta,2006,575:39.
    [16] Ma X F, Wang M, Li G, Chen H Z, Bai R. Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature [J].Mater. Chem. Phys.,2006,98:241.
    [17] Ma X F, Li G, Wang M, Cheng Y N, Bai R, Chen H Z. Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies[J].Chem-Eur.J.,2006,12:3254.
    [18] Qu F L, Yang M H, Jiang J H, Shen G L, Yu R Q. Amperometric biosensor for choline [J].Anal. Biochem.,2005,344:108.
    [19] Santhanam K S V, Sangoi R, Fuller L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene) [J].Sens. Actuator B,2005,106:766.
    [20] Santhosh P, Manesh K M, Gopalan A, Lee K P. Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide [J].Anal. Chim. Acta,2006,575:32.
    [21] Su P G, Huang S C. Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly (2-acrylamido-2-methylpropane sulfonate) composite material [J].Sens.Actuator B,2006,113:142.
    [22] Su P G, Sun Y L, Lin C C. A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films [J].Sens. Actuator B,2006,115:338.
    [23] Sun Z Y, Zhang X R, Na N, Liu Z M, Han B X, An G M. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol [J].J.Phys. Chem. B,2006,110:13410.
    [24] Teh K S, Lin L W. MEMS sensor material based on polypyrrole-carbon nanotube nanocomposit:film deposition and characterization [J].J. Micromech. Microeng.,2005,15:2019.
    [25] Valentini L, Bavastrello V, Stura E, Armentano I, Nicolini C, Kenny J M. Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material [J].Chem. Phys. Lett.,2004,383:617.
    [26] Wang J, Musameh M. Carbon-nanotubes doped polypyrrole glucose biosensor [J].Anal.Chim.Acta,2005,539:209.
    [27] Yu H H, Cao T, Zhou L D, Gu E D, Yu D S, Jiang D S. Layer-by-layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films [J].Sens. Actuator B,2006,119:512.
    [28] Zhang B, Fu R W, Zhang M Q, Dong X M, Lan P L, Qiu J S. Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene [J].Sens. Actuator B,2005,109:323.
    [29] Zhang T, Nix M B, Yoo B Y, Deshusses M A, Myung N V. Electrochemically functionalized single-walled carbon nanotube gas sensor [J].Electroanalysis,2006,18:1153.
    [30] Cunningham M J. Development and performance of a small relative humidity sensor for indoor microclimate measurements [J].Build Environ.,1999,34:349.
    [31] Bruno P. Humidity sensors for automotive, appliances and consumer application [J].Sens. Actuator B,1999,59:231.
    [32] Ye D, Yang C Z, Chen Y M, Li Y G. A new approach for measuring predicted mean vote(PMV)and standard effective temperature(SET) [J]. Build Environ.,2003,38:33.
    [33] Fujita T, Maenaka K. Integrated multi-environmental sensing-system for the intelligent data carrier [J].Sens. Actuator B,2002,97-98:527.
    [34] Harpster T J, Hauvespre S, Dokmeci M R, Najafi K. A passive humidity monitoring system for in situ remote wireless testing of micropackages [J].J. Microelectromech. S,2002,11:61.
    [35] Keck T, Leiacker R, Heinrich A, Kuhnemann S, Rettinger G. Humidity and temperature profile in the nasal cavity [J].Rhinology,2000,38:167.
    [36] Rathgeber J, Kahle G, Schulze T, Zuchner K. Rapid measurement of water vapour pressure at the saturation point using a new hybrid humidity sensor [J].Biomedizinische Technik.,2000,45:288.
    [37] Ha N T T, An D K, Phong P V, Hoa P T M, Mai L H. Study and performance of humidity sensor based on the mechanical-optoelectronic principle for the measurement and control of humidity in storehouses [J].Sens. Actuator B,2000,66:200.
    [38]戴焯.传感器与检测技术[M].湖北:武汉理工大学, 2003.
    [39]栾桂冬,张金铎,金欢阳,等.传感器与应用[M].陕西:西安电子科技大学出版社, 2002.
    [40]徐开先.实用新型传感器及其应用[M].辽宁:辽宁科学技术出版社, 1995.
    [41]全宝富,邱法斌.电子功能材料及元器件[M].吉林:吉林大学出版社, 2001.
    [42]刘迎春,叶湘滨.现代新型传感器原理与应用[M].北京:国防工业出版社, 1998.
    [43] Sakai Y,Matsuguchi M,Sakai H,et al. Humidity sensor durable at high humidity using simultaneously crosslinked and quaternized poly(chloromethyl styrene) [J].Sens. Actuator B,1995,24-25:689.
    [44] Sakai Y,Matsuguchi M,et al. Humidity sensor using cross-linked poly(chloromethyl styrene), Proceeding of the Second East Asia Conference on Chemical Sensors [C],1995,Xi an:336.
    [45] Matsuguchi M,Umeda S, Sadaoka Y, Sakai Y. Characterization of polymers for a capacitate-type humidity sensor based on water sorption behavior [J].Sens. Actuator B,1998,49:179.
    [46] Sakai Y, Rao V L, Sadaoka Y, Matsuguchi M. Humidity sensor composed of a microporous film of polyethylene-graft-poly-(2-acrylamido-2-methlpropanesulfonate) [J].Polymer Bulletin,1987,18:501.
    [47] Sakai Y, Sadaoka Y, Matsuguchi M. Humidity sensors based on polymer thin films [J].Sens. Actuator B,1995,35-36:85.
    [48] Su P G, Huang S C. Humidity sensing and electrical properties of a composite material of Si02 and poly-[3-(methacrylamino)propyl]trimethyl ammonium chloride [J].Sens. Actuator B,2005,105:170.
    [49] Su P G, Sun Y L, Wang C S, Lin C C. Humidity sensing and electrical properties of hybrid films prepared from [3-(methacrylamino)propyl] trimethyl ammonium chloride, aqueous monodispersed colloidal silica and methyl methacrylate [J].Sens. Actuator B,2006,119(2):483.
    [50] Li Y, Yang M J, She Y. Humidity sensitive properties of crosslinked and quaternized poly (4-vinylpyridine-co-butyl methacrylate) [J].Sens. Actuator B,2005,107:252.
    [51] Li Y, Yang M J, Camaioni N, Casalbore-Miceli G. Humidity sensors based on polymer solid electrolytes: investigation on the capacitive and resistive devices construction [J].Sens. Actuator B,2001,77:625.
    [52] Li V, Yang M J, Casalbore-Miceli G, Camaioni N. Humidity sensitive properties and sensing mechanism ofπ-conjugated polymer p-diethyny[benzene-co-propargyl alcohol] [J].Sens. Actuator B,2002,85:73.
    [53] Yang M J, Li Y, Camaioni N, Casalbore-Miceli G, Martelli A, Ridolfi G. Polymer electrolytes as humidity sensors:progress in improving an impedance device [J].Sens. Actuator B,2002,8:229.
    [54] Li Y, Yang M J. A novel highly reversible humidity sensor based on poly(2-propyn-2-furoate) [J].Sens. Actuator B,2002,86:155.
    [55] Li Y, Yang M J. Bilayer thin film humidity sensors based on sodium polystyrenesulfonate and substituted polyacetylenes [J].Sens. Actuator B,2002, 87:184.
    [56] Li Y, Yang M J, She Y. Humidity sensors using in situ synthesized sodiumpolystyrenesulfonate/ZnO nanocomposites [J].Talanta,2004,62:707.
    [57] Casalbore-Miceli G, Yang M J, Li Y. A polyelectrolyte as humidity sensing material:Influence of the preparation parameters on its sensing property [J].Sens. Actuator B,2006,114:584.
    [58]康昌鹤,唐省吾.气、湿敏器件及其应用[M].北京:科学出版社,1988.
    [59]王涛,张立德.纳米非晶氮化硅的极化行为及其机制[J].科学通报,1994,39(11):983.
    [60]张丽华,王子忱,赵纯.掺杂Sb3+的ZnO纳米晶敏感材料的性能[J].材料研究学报,1994,8(4):348.
    [61]林元华,张中太,袁方利. ZnO导电陶瓷的制备及其性能表征[J].半导体学报,l999,20(10):867.
    [62] Taurino A M, Capone S, Toccoli T, et aL. Nanostructured Ti02 thin film prepared by supersonic beams and their application in a sensor array for the discrimibation of VOC [J].Sens. Actuator B,2003,92:292.
    [63] Cun W, et a1. Preparation, characterization and photocatalytic activity of nano-sized ZnO/Sn02 coupled photocatalysts [J].Appl. Cata.: Environ.,2002,39(3):269.
    [64]张靖漓,卢跃东,吴国标. La1-xSrxFe03系电子陶瓷的湿敏特性的研究[J].无机材料学报,1992,7(1):37.
    [65]王兢,吴凤清,索辉.纳米LaFe03湿敏特性的研究[J].吉林大学自然科学学报,1999,1:83.
    [66] Wang J, Xu B K, Liu G F, Zhang J C, Zhang T. Improvement of nanocrystalline BaTiO3 humidity sensing properties [J].Sens. Actuator B,2000,66:159.
    [67] Wang J, Yan W P, Zhang J C, Qiu F B, Zhang T. Property analysis and humidity sensitivity of the composite material of BaTi03 and RMX [J].Mater. Chem. Phys., 2001,69:288.
    [68] Wang J, Lin Q H, Zhou R Q, Xu B K. Humidity sensors based on composite material of nano-BaTi03 and polymer RMX [J].Sens. Actuator B,2002,8l:248.
    [69] Wang J, Xu B K, Ruan S P, Wang S P. Preparation and electrical properties ofhumidity sensing films of BaTi03/polystrene sulfonic sodium [J].Mater. Chem. Phys., 2003,78:746.
    [70] Wang J, Wang X H, Wang X D. Study on dielectric properties of humidity sensing nanometer materials [J].Sens. Actuator B,2005,108:445.
    [71] Wang J, Wu F Q, et al.Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin [J].Sens. Actuator B,2005,99:586.
    [72] Wang X H, Ding Y F, e tal. Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance [J].Sens. Actuator B,2005,115:421.
    [73] Zhou X F, Jiang T, Zhang J, Wang X H, Zhu Z Q. Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film [J].Sens. Actuator B,2007,123(1):299.
    [74] Su P G, Sunb Y L, Lin C C. Novel low humidity sensor made of Ti02 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance [J].Talanta,2006,69:946.
    [75]牛德方,等.半导体传感器及其应用[M].大连:大连理工大学出版社,1993.
    [76]材料科学技术百科全书编辑委员会.材料科学技术百科全书(下卷) [M].北京:中国大百科全书出版社,1995.
    [77]邱碧秀.电子陶瓷材料[M].北京:世界图书出版公司,1990.
    [78]张彤,徐宝琨.用直流、交流方法分析高分子电阻型湿敏元件的敏感机理[J].传感技术学报,2001,1:129.
    [79] Yen Y C, Tseng T Y. Analysis of the d.c. and a.c. properties of K2O-doped porous Ba0.5Sr0.5Ti03 ceramic humidity sensor [J].J. Mater. Sci.,1989,24:2739.
    [80]李翰如.电介质物理导论[M].成都:成都科学技术出版社,1990.
    [81]张良莹,姚熹.电介质物理[M].西安:西安交通大学出版社,1991.
    [1] Noriali H, Hideaki S, Igor S, Kiyoyuki T. Electronic band structure and lattice distortion in perovskite transition-metal oxides [J].Physical B,1997,237-238:11.
    [2] Bi Z H, Cheng M J, Dong Y L, Wu H J, She Y C, Yi B L. Electrochemical evaluation of La0.6Sr0.4CoO3–La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2–La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells [J].Solid State Ionics,2005,176(7-8):655.
    [3] Kharton V V, Yaremchenko A A, Naumovich E N. Research on the electrochemistry of oxygen ion conductors in the former soviet union. II. perovskite-related oxides [J]. J. Solid State Electrochem.,1999,3(6):303.
    [4] Tao S W, Irvine J T S. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-δin relation to its potential as a solid oxide fuel cell anode material [J].Chem. Mater.,2004,16(21):4116.
    [5] Leontiou A A, Ladavos A K, Pomonis P J. Catalytic NO reduction with CO on La1?xSrx(Fe3+/Fe4+)O3±δperovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90) [J].Appl. Catal. A: Gen.,2003,241(1-2):133.
    [6] Hayakawa T, Harihara H, Andersen A G, Suzuki K, Yasuda H, Tsunoda T, Hamakawa S, York A P E, Yoon Y S, Shimizu M, Takehira K. Sustainable Ni/Ca1-xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas [J].Appl. Catal. A: Gen.,1997,149:391.
    [7] Skinner S J. Recent advances in perovskite-type materials for SOFC cathodes [J].Fuel Cells Bull.,2001,4(33):6.
    [8] Uhlenbruck, S.; Tietz, F. High temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells [J]. Mater. Sci. Eng. B,2004,107(3):277.
    [9] Takamura H, Enomoto K, Aizumi Y, Kamegawa A, Okada M. Preparation and oxygen permeability of Pr-Al-based perovskite-type oxides [J].Solid State Ionics, 2004, 175(1-4):379.
    [10] Holc J, Slune ?k o J, Hrovat M. Temperature characteristics of electrical properties of (Ba,Sr)TiO3 thick film humidity sensors [J].Sens. Actuator B,1995,26(1-3):99.
    [11] Kong L B, Shen Y S. Gas-sensing property and mechanism of CaxLa1-xFeO3 ceramics [J].Sens. Actuator B,1996,30:217.
    [12] Lukaszewicz J P, Miura N, Yamazoe N. A LaF3-based oxygen sensor with perovskite-type oxide electrode operative at room temperature [J].Sens. Actuator B,1990,1(1-6):195.
    [13] Brosha E L, Mukundan R, Brown D R, Garzon F H, Visser J H, Zanini M, Zhou Z, Logothetis E M. CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2 CoO3-δmetal oxides [J].Sens. Actuator B,2000,69(1-2):171.
    [14] Traversa E, Matsushima S, Okada G, Sadaoka Y, Sakai Y, Watanabe K. NO2 sensitive LaFeO3 thin films prepared by r.f. sputtering [J].Sens. Actuator B,1995,25(1-3):661.
    [15] Michel M, Ricardo I, Lahcen H, et al. Pulsed laser deposition of superionic ceramic thin films: deposition and applications in electrochemistry [J]. Appl. Surf. Sci.,1998,127-129:466.
    [16] Shao Z P, Li G T, Xiong G X, Yang W S. Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application [J].Powder Techn.,2002,122:26.
    [17]黄云辉,王哲明,朱涛,等.自掺杂锰基氧化物La1-xMnO3+δ的电化学制备[J].高等学校化学学报,2001,22(1):6.
    [18]祝宝军,贡涛,等.用SHS法合成SOFC阴极材料La1-xSrxMnO3 [J].湖南大学学报,2005,32(2):90.
    [19] Szabo V, Bassir M, van Neste A, Kaliaguine S. Perovskite-type oxides synthesized by reactive grinding Part IV. Catalytic properties of LaCo1?xFexO3 in methane oxidation [J].Appl. Catal. B: Environ.,2003,43:81.
    [20] Royer S, BérubéF, Kaliaguine S. Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3 [J].Appl. Catal. A:Gen.,2005,282:273.
    [21] Royer S, Duprez D, Kaliaguine S. Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1–xFexO3 [J].J. Catal.,2005,234:364.
    [22] Royer S, van Neste A, Davidson R, McIntyre S, Kaliaguine S. Methane Oxidation over Nanocrystalline LaCo1-XFeXO3: Resistance to SO2 Poisoning [J].Ind. Eng. Chem. Res.,2004,43:5670.
    [23] Goldwasser M R, Rivas M E, Lugo M L, Pietri E, Pérez-Zurita J, Cubeiro M L, Griboval-Constant A, Leclercq G. Combined methane reforming in presence of CO2 and O2 over LaFe1-xCoxO3 mixed-oxide perovskites as catalysts precursors [J].Catal. Today,2005,107-108:106.
    [24] Ge X T, Liu Y F, Liu X Q. Preparation and gas-sensitive properties of LaFe1-yCoyO3 semiconducting materials [J].Sens. Actuator B,2001,79:171.
    [25] Troyanchuk I O, Karpinski? D V, Dobryanski? V M, Fedotova Y A, Szymczak H. The two-phase crystal structure and magnetic properties of the LaCo1–xFexO3–d system [J].J. Exp. Theor. Phys.,2005,100:1121.
    [26] Karpinsky D V, Troyanchuk I O, B?rner K, Szymczak H, Tovar M. Crystal structure and magnetic ordering of the LaCo1?xFexO3 system [J].J. Phys.:Condens. Matter., 2005,17:7219.
    [27] Berry F J, Gancedo J R, Marco J F, Ren X L. Synthesis and characterization of the reduction properties of cobalt-substituted lanthanum orthoferrites [J].J. Solid State Chem.,2004,177:2101.
    [28] Bedel L, Roger A C, Estournes C, Kiennemann A. Co0 from partial reduction of La(Co,Fe)O3 perovskites for Fischer–Tropsch synthesis [J].Catal. Today,2003, 85:207.
    [29] Berry F J, Ren X L, Gancedo J R, Marco J F. 57Fe M?ssbauer Spectroscopy Study of LaFe1?xCoxO3 (x=0 and 0.5) Formed by Mechanical Milling [J].Hyperfine Interactions,2004,156/157:335.
    [30] Berry F J, Ren X, Marco J F. Reduction properties of perovskite-related rareearth Orthoferrites [J].Czechoslovak J. Phys.,2005,55:771.
    
    [1] Kim T Y, Lee D H, Shim Y C, Bu J U, Kim S T. Effects of alkaline oxide additives on the microstructure and humidity sensitivity of MgCr2O4-TiO2 [J]. Sens. Actuators B,1992,9:221.
    [2] Katayama K, Hasegawa H, Noda T, Akiba T, Yanagida H. Effect of alkaline oxide addition on the humidity sensitivitiy of Nb2O5-doped TiO2 [J]. Sens. Actuators B,1990,2:143.
    [3] Neri G, Bonavita A, Galvagno S, Pace C, PatanèS, Arena A. Humidity sensing properties of Li-iron oxide based thin flms [J]. Sens. Actuators B,2001,73:89.
    [4] Neri G, Bonavita A, Milone C, Pistone A, Galvagno S. Gold promoted Li–Fe2O3 thin films for humidity sensors [J]. Sens. Actuators B,2003,92:326.
    [5] Yeh Y C, Tseng T Y. Electrical properties of K2O-doped Ba0.5Sr0.5TiO3 ceramic humidity sensor [J].IEEE Trans. Compon. Hybrids, Manuf. Technol.,1989,12:259.
    [6] Gusmano G, Bianco A, Montesperelli G, Traversa E. An EIS study of the humidity-sensitive electrical conduction of alkali-doped TiO2 films [J].Electrochim. Acta,1996,41:1359.
    [7] Yeh Y C, Tseng T Y. Analysis of the d.c and a.c properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor [J].J. Mater. Sci.,1989,24:2739.
    [8] Jain M K, Bhatnagar M C, Sharma G L. Effect of Li-doping on ZrO2–TiO2 humidity sensor [J].Sens. Actuators B,1999,55:180.
    [9] Aoki H, Azuma Y, Asaka T, Higuchi M, Asaga K, Katayama K. Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li2O and V2O5 [J].Ceramics International,2008,34:819
    [10] Katayama K, Hasegawa H, Noda T, Akiba T, Yanagida H. Effect of alkaline oxide addition on the humidity sensitivitiy of Nb2O5-doped TiO2 [J].Sens. Actuators A,1990,2:143.
    [11] Kim T Y, Lee D H, Shim Y C, Bu J U, Kim S T. Effects of alkaline oxide additives on the microstructure and humidity sensitivity of MgCr2O4-TiO2 [J].Sens. ActuatorsB,1992,9:221.
    [12] Gusmano G, Bianco A, Montesperelli G, Traversa E. An EIS study of the humidity sensitive electrical conduction of alkali-doped TiO2 thin films [J].Electrochem. Acta,1996,41,1359.
    [13] Traversa E, Baroncini M, Bartolomeo E D, Gusmano G, Innocenzi P, Mrtucci A, Bearzotti A. Electrical humidity response of sol–gel processed undoped and alkali-doped TiO2–Al2O3 thin films [J].J. Eur. Ceram. Soc.,1999,19:753.
    [14] Ying J R, Wan C R, He P J. Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors [J].Sens. Actuators B,2000,62:165.
    [15] Li Z Y, Zhang H N, Zheng W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc.,2008,130:5036.
    [16]恽正中.表面与界面物理[M].四川:电子科技大学出版社,1993.
    [17]袁疆鹰,刘博华,常爱民,丛秀云,阴卫华,王天雕. LiAlTiO4系多孔湿敏陶瓷导电机理的研究[J].功能材料,1993,23(3):160.
    [18]徐开先.实用新型传感器及其应用[M].辽宁:辽宁科学技术出版社,1995.
    [19]张良莹,姚熹.电介质物理[M].西安:西安交通大学出版社,1991.
    [20]刘莹,刘崇进,浓家瑞,等. [J].传感器技术,1998,17(5):7.
    [21] Watanabe M, Rikukawa M, Sanui K, Ogata N. Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method [J].J. Appl. Phys.,1985,58(2):736.
    [22] Tsuchida E, Kobayashi N, Ohno H. Single-ion conduction in poly [(oligo (oxyethylene methacrylate)-co-(alkali-metal methacrylates)] [J].Macromolecules, 1988,21:96.
    [23]彦百平,朱秉升.湿敏电导的机理[J].西安交通大学学报,1997,31(8):39.
    [24] Anderson J H, Parks G A. The electrical conductivity of silica gel in the presence of adsorbed water [J].J. Phys. Chem.,1968,72:3662.
    [25] Faia P M, Furtado C S, Ferreira A J. AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensors [J].Sens. Actuators B,2005,107:353.
    [1] Sun T, Donthu S, Sprung M, Aquila K D, Jiang Z, Srivastava A, Wang J, Dravid V. Effect of Pd doping on the microstructure and gas-sensing performance of nanoporous SnOx thin films [J]. Acta Materialia,2009,57(4):1095.
    [2] Chaudhari G N, Jagtap S V, Gedam N N, Pawar M J, Sangawar V S. Sol-gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor [J].Talanta,2009,78(3):1136.
    [3] Khan R, Kim T J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts [J].J. Hazard. Mater.,2009,163(2-3):1179.
    [4] Ratana T, Amornpitoksuk P, Ratana T, Suwanboon S. The wide band gap of highly oriented nanocrystalline Al doped ZnO thin films from sol–gel dip coating [J].J. Alloys Comp., 2009,470(1-2):408.
    [5]Sharma R,Sehrawat K, Wakahara A, et al. Epitaxial growth of Sc-doped ZnO films on Si by sol–gel route [J].Appl. Surf. Sci.,2009,255(11):5781.
    [6] Valavan S E. Effect of seed layer on the ferroelectric properties and leakage current characteristics of sol–gel derived vanadium doped PbZr0.53Ti0.47O3 films [J].J. Mater. Sci.: Mater. Electron.,2009,20:555.
    [7] Kong J, Deng HM, Yang P X, et al. Synthesis and properties of pure and antimony-doped tin dioxide thin films fabricated by sol-gel technique on silicon wafer [J].Mater. chem. phys.,2009,114(2-3):854.
    [8] Wang H P, Xu S Q, Zhang B, et al. Synthesis and microwave dielectric properties of CaO–MgO–SiO2 submicron powders doped with Li2O–Bi2O3 by sol–gel method [J].Mater. Res. Bull.,2009,44(3):619.
    [9] Ghosh T, Dutta M, Mridha S, et al. Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin films [J]. J. Electrochem. Soc.,2009,156(4):285.
    [10] Lou X C, Zhao X J, Feng J M, et al. Electrochromic properties of Al dopedB-subsituted NiO films prepared by sol-gel [J].Progress in organic coatings,2009,64(2-3):300.
    [11] Sun X H, Feng P, Zou J, et al. The dielectric and tunable properties of Mn doped (Ba0.6Sr0.4)0.925K0.075TiO3 thin films fabricated by sol-gel method [J]. J. Appl. Phys.,2009,105(3):034104.
    [12] Lipińska L, Rzepka A, Ryba-Romanowski R, Klimm D, Ganschow S, Diduszko R. Nd(III) and Yb(III) ions incorporated in Y4Al2O9 obtained by sol-gel method: synthesis, structure, crystals and luminescence [J].Cryst. Res. Technol.,2009,44(2):146.
    [13] Alkoy E M, Shiosakiy T. Investigation of the Effect of Cerium Doping on the Electrical Properties and Leakage Current Behavior of Lead Zirconate Thin Films Derived by the Sol-Gel Method [J]. J. Am. Ceram. Soc.,2009,92(2):396.
    [14] Anderson J H, Parks G A. The electrical conductivity of silica gel in the presence of adsorbed water [J].J. Phys. Chem.,1968,72:3662.
    [1] Cosentino I C, Muccillo E N S, Muccillo R. The influence of Fe2O3 in the humidity sensor performance of ZrO2:TiO2-based porous ceramics [J]. Mater. Chem. Phys., 2007,103:407.
    [2] Yeh Y C, Tseng T Y. Analysis of the d.c and a.c properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor [J].J. Mater. Sci.,1989,24:2739.
    [3] Jain M K, Bhatnagar M C, Sharma G L. Effect of Li-doping on ZrO2–TiO2 humidity sensor [J].Sens. Actuators B,1999,55:180.
    [4] Cosentino I C, Muccillo E N S, Muccillo R. Development of zirconia-titania porous ceramics for humidity sensors [J].Sens. Actuators B,2003,96:677.
    [5] Aoki H, Azuma Y, Asaka T, Higuchi M, Asaga K, Katayama K. Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li2O and V2O5 [J].Ceramics International,2008,34:819.
    [6] Yeh Y C, Tseng T Y, Chang D A. Electrical properties of porous titania ceramic humidity sensors [J].J. Am. Ceram. Soc.,1989,72:1472.
    [7] Katayama K, Hasegawa K, Takahashi T, Akiba T, Yanagida H. Humidity-sensitivity of Nb2O5-doped TiO2 ceramics [J].Sens. Actuators A,1990,24:55.
    [8] Katayama K, Hasegawa H, Noda T, Akiba T, Yanagida H. Effect of alkaline oxide addition on the humidity sensitivitiy of Nb2O5-doped TiO2 [J].Sens. Actuators A,1990,2:143.
    [9] Yeh Y C, Tseng T Y, Chang D A. Electrical properties of TiO2-K2Ti6O13 porous ceramic humidity sensor [J].J. Am. Ceram. Soc.,1990,73:1992.
    [10] Kim T Y, Lee D H, Shim Y C, Bu J U, Kim S T. Effects of alkaline oxide additives on the microstructure and humidity sensitivity of MgCr2O4-TiO2 [J].Sens. Actuators B,1992,9:221.
    [11] Traversa E. Ceramic sensors for humidity detection: the state-of-the-art and future developments [J].Sens. Actuators B,1995,23:135.
    [12] Slunec? k o J, Holc J, Hrovat M, et al. Thick film humidity sensors based on(Ba,Sr)TiO3 porous ceramic doped with MgO and CaO [J].Sens. Actuators B,1992,7:439.
    [13] Kim D U, Gong M S. Thick films of copper-titanate resistive humidity sensor [J].Sens. Actuators B,2005,110:321.
    [14] Faia P M, Furtado C S, Ferreira A J. Humidity sensing properties of a thick-film titania prepared by a slow spinning process [J].Sens. Actuators B,2004,101:183.
    [15] Faia P M, Furtado C S, Ferreira A J. AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensors [J].Sens. Actuators B,2005,107:353.
    [16] Saha D, Giri R, Mistry K K, Senqupta K. Magnesium chromate-TiO2 spinel tape cast thick film as humidity sensor [J].Sens. Actuators B,2005,107:323.
    [17] Montesperelli G, Pumo A, Traversa E, Gusmano, Bearzotti A, Montenero A, Gnappi G. Sol—gel processed TiO2-based thin films as innovative humidity sensors [J].Sens. Actuators B,1995,25:705.
    [18] Bearzotti A, Bianco A, Montesperelli G, Traversa E. Humidity sensitivity of sputtered TiO2 thin films [J].Sens. Actuators B,1994,19:525.
    [19] Gusmano G, Montesperelli G, Nunziante P, Traversa E, Montenero A, Braghini M, Mattogno G, Bearzotti A. Humidity-sensitive properties of titania films prepared using the sol-gel process [J].J. Ceram. Soc. Jpn.,1993,101:1095.
    [20] Traversa E, Gnappi G, Montenero A, Gusmano G. Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors [J].Sens. Actuators B,1996,31:59.
    [21] Yoshimura N, Sato S, Itoi M, Taguchi H. Electrical and humidity sensitive characteristics of TiO2 and TiO2?SnO2 films prepared by sol-gel method [J].Sozai Busseigaku Zashi,1990,3:47.
    [22] Gusmano G, Bianco A, Montesperelli G, Traversa E. An EIS study of the humidity sensitive electrical conduction of alkali-doped TiO2 thin films [J].Electrochem. Acta,1996,41,1359.
    [23] Kuyyadi P B, Mahaveer K J. Sol–gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application [J].Sens. Actuators B,2008,128:407.
    [24] Chow L L, Yuen M M F, Chan P C H, Cheung A T. Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias [J].Sens. Actuators B,2001,76:310.
    [25] Tai W, Oh J H. Preparation and humidity sensing behaviors of nanocrystalline SnO2/TiO2 bilayered thin films [J].Thin Solid Films,2002,422:220.
    [26] Tai W, Kim J G, Oh J H, Humidity sensitive properties of nanostructured Al-doped ZnO:TiO2 thin film, [J].Thin Solid Films,2003,96:477.
    [27] Traversa E, Baroncini M, Bartolomeo E D, Gusmano G, Innocenzi P, Mrtucci A, Bearzotti A. Electrical humidity response of sol–gel processed undoped and alkali-doped TiO2–Al2O3 thin films [J].J. Eur. Ceram. Soc.,1999,19:753.
    [28] Radeva E I, Martev I N, Dechev D A, Ivanov N, Tsaneva V N, Barber Z H.Sensitivity to humidity of TiO2 thin films obtained by reactive magnetron sputtering [J].Surface Coatings Technology,2006,201:2226.
    [29] Tai W P, Kim J G, Oh J H, Kim Y S. Preparation and humidity sensing behaviors of nanostructured potassium tantalate: titania films [J].Sens. Actuators B,2005, 105:199.
    [30] Yadav B C, Pandey N K, Srivastava A K, Sharma P. Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods [J].Meas. Sci. Technol.,2007,18:260.
    [31] Kuyyadi P B, Mahaveer K J. Effect of polyethylene glycol additive in sol on the humidity sensing properties of a TiO2 thin film [J].Meas. Sci. Technol., 2007,18:2991.
    [32] Tai W P, Oh J H. Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films [J].Sens. Actuators B,2002,85:154.
    [33] Ying J R, Wan C R, He P J. Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors [J].Sens. Actuators B,2000,62:165.
    [34] Su P G, Sun Y L, Lin C C. Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance [J]. Talanta,2006,69:946.
    [35] Li Z Y, Zhang H N, Zheng W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc.,2008,130:5036.
    [36]曲宝涵. TiO2系多孔陶瓷材料湿敏性能及导电机理的研究[D].合肥:中国科学技术大学无机材料专业,1991.
    [37]袁疆鹰,刘博华,常爱民,丛秀云,阴卫华,王天雕. LiAlTiO4系多孔湿敏陶瓷导电机理的研究[J].功能材料,1993,23(3):160.
    [38] Anderson J H, Parks G A. The electrical conductivity of silica gel in the presence of adsorbed water [J].J. Phys. Chem.,1968,72:3662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700