用户名: 密码: 验证码:
碱性钼尾矿及其影响水体中重金属迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含多金属硫化矿物的尾矿形成的碱性排水,仍会携带特定的重金属至水体而引发严重的环境污染。本文以辽西铝矿区为例,分析了其尾矿形成碱性排水的原因,建立了尾矿铝等重金属释放迁移模式,探讨了水体中重金属的迁移转化规律及生态风险等问题。为尾矿渗流水质评价、水体水质动力学模拟、污染控制及环境管理提供科学依据。
     尾矿矿物学地球化学研究表明,辽西钼尾矿为低硫低碳酸盐尾矿。尾矿库表层硫化矿物发生氧化,但碳酸盐等矿物的酸中和效应使尾矿形成碱性排水(Paste pH 7.3-8.24)。Fe、Cu和Zn以及SO42-在氧化带底部呈现含量峰值,分别是表层的1.4、2.4、3.2和3.4倍。重金属Mo的含量却随深度逐渐增大,钻孔2 m处含量是表层的2倍左右。重金属地球化学形态比例指示,硫化矿物氧化释放的Fe、Cu和Zn在迁移过程中受沉淀、络合吸附、同沉淀等机制控制。重金属Mo的迁移不受沉淀、络合吸附等机制控制。钻孔2 m处各金属的生物有效态含量比例顺序为:Mo>>Fe~Cu~Zn。碱性条件成为Fe、Cu和Zn等元素滞留于尾矿中的自然因素,但却有效地促进了Mo的释放迁移。
     尾矿释放动力学特征表明,重金属释放量受酸中和效应控制,释放的重金属以Mo为主。尾矿氧化时间、模拟液pH、温度、粒径和氧气浓度对尾矿释放重金属Mo的影响,进一步揭示了尾矿重金属Mo的释放迁移规律。钼尾矿酸碱潜力评价显示,尾矿未来不会呈酸性环境。这表明滞留于尾矿库氧化带底部的Fe、Cu和Zn未来也不会迁移出尾矿。重金属Mo将持续迁移出尾矿进入下游水体。
     流经矿区的女儿河重金属地球化学对比研究表明,矿区及下游各采样点Fe、Cu、Zn和Mo的含量一致大于参照点S0处的含量。水相Mo浓度高于生活饮用水卫生标准1.86-16.66倍。沉积物中各金属含量在矿区段呈现峰值,分别超过S0处含量7.30倍、10.75倍、11.42倍和494.33倍。沉积物中Fe、Cu和Zn元素的含量高值源于尾矿的降水冲蚀和风蚀,Mo的含量高值更主要源于尾矿的淋滤释放。水体中重金属Fe、Cu和Zn的分配系数>>Mo的分配系数。沉积物因吸附机制成为Fe、Cu和Zn元素的归宿,但不能完全吸附重金属Mo。水库还原环境可有效滞留Mo,但各采样点沉积物中重金属Mo生物有效态仍达18-58%。
     结论表明,酸碱条件是控制各重金属迁移转化的主要因素。碱性环境促进重金属Mo从钼尾矿中迁移释放,并易在河流水体中迁移。沉积物中的Mo具有中等以上的生态危害。
The alkaline mine drainage may be caused in mine tailings contained polymetallic sulfide minerals for depletion of carbonate minerals through consumption by acid-neutralization reactions. However, some special metals can also transport into water with the alkaline mine drainage in elevated levels and result in serious impact on environment. The paper, based on a case study on Molybdenum mine area in western Liaoning, analyses the forming causation of the alkaline mine drainage, establishes the release and transport model of heavy metals, investigates the migration and transformation of heavy metals in water and ecological risk caused by heavy metals. The results can provide scientific basis for seepage quality assessment, dynamics simulation of water quality, heavy metal pollution control and environmental management.
     The mineralogical and geochemical results showed Mo tailings in western Liaoning were low sulfide and low carbonates tailings. The sulfide minerals in surface tailings pond were oxidized but the alkaline mine drainage was formed because of carbonate neutralization (Paste pH 7.3-8.24). The hydrolytic equilibrium of HCO3- and CO32- controlled the acid-base environment. The peak concentrations of Fe, Cu, Zn and SO42- were presented at the bottom of oxidation zone, which were 1.4,2.4,3.2 and 3.4 times higher than that of in surface tailings pond, respectively. The Mo concentration increased gradually with depth and the Mo concentration at 2 m depth was 2 times higher than that of in surface tailings pond (1090-1146μg/g). Geochemical species of heavy metals indicated that precipitation, co-precipitation and complexing adsorption mechanism controlled Fe, Cu and Zn released from sulfide minerals in migration process, but not for Mo. The proportion of those four metals of bioavailable fraction at 2 m depth in tailings pond followed the order:Mo>>Fe~Cu~Zn. The alkaline conditions played a crucial role in retention of Fe, Cu and Zn, but promoted effectively the leaching and migration of Mo.
     The results of batch experiments of leaching kinetics with tailings demonstrated that elution quantity of heavy metals was controlled by neutralization of minerals and heavy metal Mo was major metal in leachate. Oxidation time, pH of simulated solution, temperature, particle size and O2 concentration had effect on the release of Mo from tailings, which further prove the release transport of Mo in tailings. The acid producing potential revealed that acidic condition in tailings would not been formed. Fe, Cu and Zn remaining in the bottom of oxidation zone would not leach from tailings ponds due to the alkaline conditions, but heavy metal Mo would leach from tailings ponds into environment downstream of Mo mining area.
     The geochemical results of samples from water body in mining area and downstream of mining area indicated that the concentrations of Fe, Cu, Zn and Mo in water were higher than in S0. Mo concentrations in aqueous phase were much higher than the health standard for domestic drinking water by 1.86-16.66 times. All the concentrations of heavy metals in sediments of mining area and downstream of mining area were higher than that of heavy metals at SO by 7.30,10.75,11.42 and 494.33 times, respectively. The high concentration values of heavy metals in sediments had a close relationship with Mo mining activity. The partition coefficients of heavy metals of Fe, Cu and Zn were higher than that of Mo. Sediments did not become the bearing medium for Mo but for Fe, Cu and Zn due to adsorption mechanism. The reduction condition in reservoir sediments played an important role for retention Mo, but the bioavailable Mo fraction presented 18-58% in the Nver River.
     The conclusions suggested that the pH condition controlled the migration and transformation of heavy metals in different phase. Heavy metal Mo migrated easily in mine tailings and in the Never River for the alkaline condition. The ecological risk from Mo was higher than medium grade in sediments.
引文
[1]陈永贵,张可能.中国矿山固体废物综合治理现状与对策[J].资源环境与工程,2005,19(04):311-313.
    [2]胡天喜,文书明,陈名洁,等.我国尾矿综合利用的一些进展[J].国外金属矿选矿,2006,15(04):15-18.
    [3]Concas A., Ardau C., Cristini A., et al. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site[J]. Chemosphere,2006,63:244-253.
    [4]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备,2001,2(2):42-46.
    [5]付善明,周永章,高全洲,等.金属硫化物矿山环境地球化学研究述评[J].地球与环境,2006,34(3):23-29.
    [6]胡宏伟,束文圣,蓝崇钰,等.乐昌铅锌尾矿的酸化及重金属溶出的淋溶实验研究[J].环境科学与技术,1999,13(03):1-3.
    [7]蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性[J].中国环境科学,1996,16(06):461-465.
    [8]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥:合肥工业大学,2005.
    [9]Lee Churl Gyu, Chon Hyo-Taek, Jung Myung Chae. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea[J]. Applied Geochemistry,2001,16:1377-1386.
    [10]Silva Eduardo Ferreira Da, Almeida Salome F. P., Nunes Marcelo L., et al. Heavy metal pollution downstream the abandoned Coval da Mo mine (Portugal) and associated effects on epilithic diatom communities[J]. Science of the Total Environment, 2009,407:5620-5636.
    [11]Chon Hyo-Taek, Ahn Joo Sung, Jung Myung Chae. Heavy metal contamination in the vicinity of some base-metal mines in Korea; a Review[J]. Geosystem Eng.,1998,1(2):74-83.
    [12]Avila P. Freire, Santos Oliveira J. M., Silva E. Ferreira Da, et al. Geochemical signatures and mechanisms of trace elements dispersion in the area of the Vale das[J]. Journal of Geochemical Exploration,2005,85:17-29.
    [13]Rodri Guez L., Ruiz E., Alonso-Azca Rate J., et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of Environmental Management,2009,90:1106-1116.
    [14]Gregory G. Kipp, James J. Stone, Larry D. Stetler. Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota[J]. Applied Geochemistry, 2009,24:2246-2255.
    [15]Moreno-Jimenez Eduardo, Penalosa Jesus M., Manzano Rebeca, et al. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora[J]. Journal of Hazardous Materials,2009,162:854-859.
    [16]Heikkinen Paivi M., Raisanen Marja L. Trace metal and As solid-phase speciation in sulphide mine tailings-Indicators of spatial distribution of sulphide oxidation in active tailings impoundments[J]. Applied Geochemistry,2009,24:1224-1237.
    [17]沈照理,王焰新.水-岩相互作用研究的回顾与展望[J].地球科学,2002,27(2):128-133.
    [18]Dold Bernhard, Fontbote Lluis. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile[J]. Chemical Geology,2002,189:135-163.
    [19]Lin Zhixun. Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden[J]. The Science of the Total Environment,1997,198:13-31.
    [20]周建民,党志,蔡美芳,等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究,2005,18(3):5-10.
    [21]赵兴敏.典型重金属在包气带和含水层中的迁移转化特征[D].长春:吉林大学,2008.
    [22]路永正.自然水体多相介质中重金属的分布及迁移转化特征[D].长春:吉林大学,2006.
    [23]Blight G. E. Erosion losses from the surfaces of gold tailings[J]. J. S. Af,. Inst. Min. Metal, 1989,89(1):23-29.
    [24]David C., Kaith S. Developments in measurement and models for suspension-dominated wind erosion. Proceedings of International Soil Conservation Organization:Sustaining the Global Farm-Selected papers from the 10th International Soil Conservation Organization Meeting, Purdue University and the USDA-ARS National Soil Erosion Laboratory,2001[C]. West Lafayette.
    [25]Hochella M. F., White A. F. Mineral-water interface geochemistry; an overview[J]. Mineralogy and Geochemistry,1990,23(1):1-16.
    [26]Morin Kevin A., Hutt Nora M. Geochemical characterization of molybdenum leaching from rock and tailings at the Brenda minesite, British Columibia: Proceedings of the 1999 Workshop on Molybdenum Issues in Reclamation, Kamloops, British Columbia,1999[C].Minesite Drainage Assessment Group.
    [27]Aube Bernard C., Stroiazzo John. Molybdenum Treatment at Brenda Mines:ICARD 2000, Proceedings of the 5th International Conference on Acid Rock Drainage, SME, Littleton, Colorado. USA.,2000[C]. Society for Mining Metallurgy & Exploration.
    [28]Langedal Marianne. Dispersion of tailings in the Knabena—Kvina drainage basin, Norway,1: evaluation of overbank sediments as sampling medium for regional geochemical mapping [J]. Journal of Geochemical Exploration,1997,58:157-172.
    [29]Langedal Marianne. Dispersion of tailings in the Knabena—Kvina drainage basin, Norway,2: Mobility of Cu and Mo in tailings-derived fluvial sediments[J]. Journal of Geochemical Exploration,1997,58:173-183.
    [30]中国矿床编委会.中国矿床上册[M].北京:地质出版社,1989.
    [31]贾如宝.钼缺乏与钼过多生物学作用的研究进展[J].中国钼业,1995,19(4):49-53.
    [32]刘鹏,杨玉爱.大豆吸收钼的安全范围和吸收形态[J].应用与环境生物学报,2003,9(6):594-597.
    [33]Ferguson W. S., Lewis A. H., Watson S. J. The teart Pastures of somerset.1:The cause and cure of teartness[J]. J Agric Sci,1943,33:44-47.
    [34]龙晶,李三强,韩维民,等.洛河钼矿污染与家畜钼中毒研究(初报)[J].农业环境保护,1994,13(5):227-229.
    [35]Agarwal A. K. Crippling cost of Indian big dam[J]. New Scientist,1975,65:260-261.
    [36]Pyrzynska Krystyna. Determination of molybdenum in environmental samples[J]. Analytica Chimica Acta,2007,590:40-48.
    [37]Underwood E. J. Trace Elements in human and animal nutrition[M]. New York:Academic Press, Inc,1956.
    [38]Seelig Mildred S. Review:Relationships of copper and molybdenum to iron metabolism[J]. The American Journa of Cijizical neutritioin,1972,25:1022-1037.
    [39]Siegel L. M., Monty K. J. A Mechanism for the Copper-Molybdenum interrelationship II. Response of liver sulfide oxidase activity to nutritional factors[J]. The Journal of Nutrition, 1961,74:167-170.
    [40]0 Connor George A., Brobst Robert B., Chaney Rufus L., et al. A Modified Risk Assessment to Establish Molybdenum Standards[J]. J. Environ. Qual.,2001,30:1490-1507.
    [41]Martin J. M., Meyback M. Elemental mass-balance of material carried by major world rivers[J]. Chem.,1979,7(3):173-206.
    [42]Qu C. H., Chen C. Z., Yang J. R. Geochemistry of dissolved and particulate elements in the major rivers of China[J]. Estuaries,1993,6(3):475-487.
    [43]World Health Organization. WHO/SDE/WSH/03.04/11 Molybdenum in Drinking-water:Health criteria and other supporting information[S]. Geneva 27, Switzerland:Publications of the World Health Organization,1996.
    [44]D. K. Nordstrom Aqueous pyrite oxidation and the consequent formation of secondary minerals: Acid Sulfate Weathering, Madison, U.S.A,1982[C]. Soil Sci Soc Am.
    [45]Lei Liangqi, Watkins Ron. Acid drainage reassessment of mining tailings, Black Swan Nickel Mine, Kalgoorlie, Western Australia[J]. Applied Geochemistry,2005,20:661-667.
    [46]Skousen Jeffrey G., Sexstone Alan, Ziemkiewicz Paul F. Acid mine drainage control and treatment[M]//Reclamation American Society Of Agronomy. Reclamation of Drastically Disturbed Lands.2000.
    [47]Shua W. S., Ye Z. H., Lan C. Y., et al. Acidification of lead zinc mine tailings and its effect on heavy metal mobility[J]. Environment International,2001,26:389-394.
    [48]Petruk W. Applied mineralogy to tailings and waste rock piles-sulfide oxidation reactions and remediation of acidic water drainage[M]//Applied mineralogy in the mining industry. Netherland: Elsevier,1992:201-225.
    [49]Rankama K., Sahama T. G. Geochemistry[M]. U.S.A.:The University of Chicago Press,1950.
    [50]Bussiere Bruno. Acid mine drainage from abandoned mine sites:Problematic and reclamation approaches[J]. Proc. of Int. Symp. on Geoenvironmental Eng. Hangzhou, China,2009,September 8-10.
    [51]Johnson D. Barrie, Hallberg Kevin B. Acid mine drainage remediation options:a review[J]. Science of the Total Environment,2005,228:3-14.
    [52]束文圣,张志权,蓝崇钰.广东乐昌铅锌尾矿的酸化潜力[J].环境科学,2001,22(03):113-117.
    [53]Shu W. S., Ye Z. H., Lan C. Y., et al. Acidification of lead zinc mine tailings and its effect on heavy metal mobility[J]. Environment International,2001,26:389-394.
    [54]Ochieng L., Harck T., Peters M. Net neutralisation potential in kimberley diamond tailings and slimes waste materials:The International Mine Water Conference, Pretoria, South Africa, 2009[C]. Document Transformation Technologies cc.
    [55]Chen Ailiang, Zhao Zhong Wei, Jia Xijun, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy,2009,97:228-232.
    [56]Lindsay Matthew B. J., Condon Peter D., Jambor John L., et al. Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage[J]. Applied Geochemistry,2009,24:2212-2221.
    [57]Castellote M., Andrade C. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE[J], Cement and Concrete Research,2008,38:1374-1384.
    [58]Gunsingera M. R., Ptaceka C. J., Blowesa D. W., et al. Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailings impoundment[J]. Applied Geochemistry,2006,8(21):1301-1321.
    [59]Lapakko K., Antonson D. A., Wagner J. R. Mixing of limestone with finely crushed acid producing rock:Fourth International Conference on Acid Rock Drainage, Vancouver, Canada, 1997[C].CANMET, Natural Resources Canada, Ottawa, Canada.
    [60]Jurjovec J., Ptacek C. J., Blowes D. W. Acid neutralization mechanisms and metal release in mine tailings:a laboratory column[J]. Geochimica et Cosmochimica Acta,2002,66(9):1511-1523.
    [61]Rafael Perez-Lopez, Miguel Nieto Jose, R Almod6var Gabriel. The use of alkaline residues for the inhibition of acid mine drainage processes in sulphide-rich mining wastes::9th International Mine Water Congress (IMWA 2005), Oviedo, Spain,2005[C].
    [62]Aube B., Eng.P., EnvirAube M. A. Sc. The science of treating acid mine drainage and smelter effluents[R]. CanadaSte-Anne-de-Bellevue, Quebec, Canada: EnvirAube,2004.
    [63]Costello Christine. Acid mine drainage:innovative treatment technologies[EB/OL]. www.clu-in.org.
    [64]Dold Bernhard. Basic concepts of environmental geochemistry of sulfide mine-waste[R]. Lima Peru:Centre d'Analyse Minerale, Universite de Lausanne, Switzerland,2005.
    [65]Blodau Christian. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds[J]. Science of The Total Environment,2006(369):307-332.
    [66]王长秋,马生凤,鲁安怀,等.黄钾铁矾的形成条件研究及其环境意义[J].岩石矿物学杂志,2005,24(06):607-611.
    [67]Bigham J. M., Carlson L., Murad E. Schwertmannite, a new iron oxydydroxysulfate from pyhasalmi, Finland, and other localities[J]. Mieral. Mag.,1994,58:641-648.
    [68]廖岳华,周立祥.极端酸性环境下形成的施威特曼石(schwertmannite).及其环境学意义[J].岩石矿物学杂志,200726(02):177-183.
    [69]王武名,鲁安怀,王长秋,等.尾矿酸浸液制备氢氧化铁过程中施威特曼石的形成于转变[J].矿物岩石学杂志,2009,28(6):581-586.
    [70]Bertine K. K. The deposition of molybdenum in anoxic waters[J]. Mar. Chem,1972,1(1):43-53.
    [71]戴玉华,饶运章,吴红,等.矿山酸性废水与重金属污染规律研究[J].黄金,2007,28(7):45-47.
    [72]Jia Yongfeng, Demopoulos George P. Coprecipitation of arsenate with iron(Ⅲ) in aqueous sulfate media Effect of time, lime as base and co ions on arsenic retention[J]. Water research, 2008,42(3):661-668.
    [73]Lin Zhixun. Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden[J]. The Science of Total Environment,1997,198:13-31.
    [74]Hingston F. J., POSNER A. M., QUIRK J. P. Anion adsorption by goethite and gibbsite[J]. Journal of Soil Science,2010,23:177-192.
    [75]Das Nigamananda, Jana Ranajit Kumar. Adsorption of some bivalent heavy metal ions from aqueous solutions[J]. Journal of Colloid and Interface Science,2009,293:253-262.
    [76]Bradl Heike B. Adsorption of heavy metal ions on soils and soils constituents[J]. Journal of Colloid and Interface Science,2004,277:1-18.
    [77]McGregor R. G., Blowes D. W. the physical chemical and mineralogical properties of three cemented layers within sulfide beating mine tailings[J]. Journal of Geochemical Exploration, 2002,76:195-207.
    [78]Graupner Torsten, Kassahun Andrea, Rammlmair Dieter, et al. Formation of sequences of cemented layers and hardpans within suffidebearing mine tailings[J]. Applied Geochemistry, 2007,22:2486-2508.
    [79]曾凡萍,肖化云,周文斌.乐安江河水和沉积物中Cu,Pb,Zn的时空变化特征及来源分析[J].环境科学研究,2007,20(6):14-20.
    [80]Parker Ronald L., Herbert Bruce E. History, Geochemistry and Environmental Impacts of Contaminants Released by Uranium Mining in South Texas:Proceedings of the 8th Annual South Texas Environmental Conference, Corpus Christi, Texas,2000[C]. Earlham College.
    [81]王晓蓉.环境化学[M].南京:南京大学出版社,1993.
    [82]文辉,高良敏,刘玉玲,等.高塘湖沉积物中重金属赋存状态研究[J].安徽农业科学,2009,37(24):11666-11669.
    [83]姚志刚,鲍征宇,高璞.湖泊沉积物中重金属的环境地球化学[J].地质通报,2005,24(10-11):997-1101.
    [84]汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社,2000.
    [85]彭安,王文华.水体腐植酸及其络合物Ⅰ.蓟运河腐植酸的提取及表征[J].环境科学学报,1981.1:126.
    [86]樊庆云,何江,薛红喜,等.南海湖沉积物重金属形态分布及其对水质影响的研究[J].沉积学报,2007,25(4):612-618.
    [87]李剑超,褚君达,丰华丽.河流底泥冲刷悬浮对水质影响途径的实验研究[J].长江流域资源与环境,2002,11(2):137-140.
    [88]沈永明,郑永红,吴修广.近岸海域污染物迁移转化的三维水质动力学模型[J].自然科学进展,2004,14(6):694-699.
    [89]Tessier A., Compbell PGC. Sequential extraction proeedure for the speciation of partieulate traee metals[J]. Anal Chem,1979,51(7):844-851.
    [90]冯素萍,梁亮,朱英,等.河流底泥沉积物的形态分析-Tessier形态分类法[J].山东大学学报(理学版),2004,39(6):101-107.
    [91]刘恩峰,沈吉,朱育新.重金属元素BCR提取法及在太湖沉积物研究中的应用[J].环境科学研究,2005,18(2):57-60.
    [92]G. Rauret, Lopez-Sanchez J. F., Sahuquillo A., et al. Improvement of the BCR three step sequential extraction procedure[J]. J. Environ. Monit.,1999,1:57-61.
    [93]章明奎,夏建强.土壤重金属形态对径流中重金属流失的影响[J].水土保持学报,2004,18(4):1-3.
    [94]Forstner U. Non-linear release of metals from aquatic sediments In:W. Salomons and W.M. Stigliani (Editors):Biogeodynamics of Pollutants in Soils and Sediments, Berlin,1995[C]. Springer.
    [95]Jain CK. Metal fractionation study on bed sediments of River Yamuna, India[J]. Water Res, 2004,38:569-578.
    [96]何江,李朝生,王新伟,等.黄河沉积物中重金属离子的形态转化及释放研究[J].南京大学学报(自然科学版),2003,39(6):739-744.
    [97]张立,袁旭音,邓旭.南京玄武湖底泥重金属形态与环境意义[J].湖泊科学,2007,19(1):63-69.
    [98]Cappuyns V., Swennen R., Vandamme A.,等. Environmental impact of the former Pb-Zn mining and smelting in East Belgium[J]. Journal of Geochemical Exploration,2006,88:6-9.
    [99]郭志军,王艳秋.乌金塘水库水体中钼污染现状及其防治对策[J].环境科学导刊,2007,26(4):59-60.
    [100]曲蛟,王红雨,袁星,等.钼矿尾矿区蔬菜地土壤中重金属含量分析与生态风险预警评估[J].安全与环境学报,2008,8(2):76-79.
    [101]曲蛟,袁星,王莉莉,等.钼矿区土壤中重金属污染状况的分析与评价[J].环境保护科学,2007,33(2):36-38.
    [102]于常武,许士国,陈国伟,等.水体中钼污染物的迁移转化研究进展[J].环境污染与防治,2008,30(9):70-74.
    [103]于常武,许士国,陈国伟,等.酸碱度温度对钼尾矿中Mo静态浸出的影响[J].环境科学与技术,2008,31(7)1-3.
    [104]于常武,许士国,陈国伟,等.矽卡岩型钼矿尾砂中重金属Mo的淋滤实验研究[J].生态环境,200817(2):636-640.
    [105]田豫才.辽西兰家沟钼矿区成矿构造、岩浆演化及成矿作用[J].矿产与地质,1999,13(71):135-140.
    [106]代军治,毛景文,谢桂青,等.辽西兰家沟钼矿床成矿流体特征及成因探讨[J].矿床地质,2007,26(4):444-454.
    [107]吴仕佑.国内罕见的兰家沟钼矿床辉钼矿特高富集地质特征的研讨[J].有色矿冶,1991,34(1):16-19.
    [108]陈建华,冯其明.钼矿的选矿现状[J].矿产保护与利用,1994,14(06):26-28.
    [109]袁致涛,赵利勤,韩跃新,等.混凝法处理朝阳新华钼矿尾矿水的研究[J].矿冶,2007,16(2):57-84.
    [110]辽宁省环保局.葫芦岛整合规范钼矿资源开发秩序[EB/OL]. [2007.5.16]. http://www.lnepb.gov.cn/hbj/web/html/100103/2007629/1183105543234.shtml.
    [111]苏梅,王云峰.葫芦岛让钼矿走上可持续开采之路[EB/OL]. [9-28]. http://news.qq.com/a/20070928/001761.htm.
    [112]Xu Bing, Yang Xiaobo, Gu Zhaoyan, et al. The trend and extent of heavy metal accumulation over last one hundred years in the Liaodong Bay, China[J]. Chemosphere,2009,75:442-446.
    [113]张汉波,段昌群,胡斌,等.不同年代废弃的铅锌矿渣堆中重金属的动态变化[J].农业环境科学学报,2003,20(1):67-69.
    [114]李小虎,汤中立,初凤友.大型金属矿山不同环境介质中重金属元素化学形态分布特征-以甘肃金昌市和白银市为例[J].地质科技情报,2008,27(4):95-100.
    [115]Arnason John G., Fletcher Barbara A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA[J]. Environmental Pollution, 2003,123:383-391.
    [116]徐志胜.洛南振兴铝业公司尾矿重金属富集机理研究[J].中国钼业,2007,31(5):20-25.
    [117]Lawrence R. W., Marchant P. B. Acid rock drainage prediction manual[G]. North Vancouver, 1991.
    [118]GBT 5070.2-2006生活饮用水标准检验方法水样的采集和保存[S].北京:中国标准出版社,2007.
    [119]Dold B., Eppinger K. J., Kolling M. Pyrite oxidation and the associated geochemical processes in tailings in the atacama desert, Chile:the influence of men controlled water input after disuse: Clean Technology for the Mining Industry, Santiago, University of Concepcion, Chile,1996[C].
    [120]国家地质矿产部.GB/T 14352.1-18-1993 钨矿石、钼矿石化学分析方法[S].中国标准出版社,1993.
    [121]国家地质矿产部.GB/T 6370.(1-51)-1986铁矿石化学分析方法[S].北京:中国标准出版社,1986.
    [122]Dold B. Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic settings-implications for acid mine drainage and element mobility[D]. Geneva:University of GenevaTerre & Environment,1999.
    [123]张文钲.钼矿选矿技术进展[J].中国钼业,2008,32(1):1-7.
    [124]Sracek O., Mihaljevic M., Kribek B., et al. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia[J]. Journal of African Earth Sciences,2010,57(1-2):14-30.
    [125]Xenidis Anthimos, Papassiopi Nymphodora, Komnitsas Kostas. Carbonate-rich mining tailings in Lavrion risk assessment and proposed rehabilitation schemes[J]. Advances in Environmental Research,2003,7:479-494.
    [126]Salomons W. Environmental impact of metals derived from mining activities:Processes, predictions, prevention[J]. Journal of Geochemicd Exploration,1995,52:5-23.
    [127]Frau Franco, Ardau Carla, Fanfani Luca. Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia, Italy)[J]. Journal of Geochemical Exploration,2009,100:105-115.
    [128]朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报,2005,25(3):414-422.
    [129]徐晓春,陈芳,王军,等.铜陵矿山酸性排水及固体废弃物中的重金属元素[J].岩石矿物学杂志,2005,24(6):591-597.
    [130]Dold B., Fontbote L. Element cycling and secondary mineralogy in porphyty copper tailings as a function of climate primary mieralogy and mineral processing[J]. Journal of Geochemical exploration,2001,74:3-53.
    [131]Lacelle Denis, Leveille Richard. Acid drainage generation and associated Ca-Fe-SO4 minerals in a periglacial environment, Eagle Plains, Northern Yukon, Canada:A potential analogue for low-temperature sulfate for mation on Mars[J]. Planetary and Space Science,2010,58(4):509-521.
    [132]Lindsay Matthew B. J., Condon Peter D., Jambor John L., et al. Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage[J]. Applied Geochemistry,2009,24:2212-2221.
    [133]Moncur M. C., Ptacek C. J., Blowes D. W., et al. Release, transport and attenuation of metals from an old tailings impoundment[J]. Applied Geochemistry,2005,20:639-659.
    [134]Morin K. A., Hutt N. M. Comparisons of AMD predictions with historical records:Proceedings of the Workshop on Acid Mine Drainage, Darwin, Northern Territory, Australia, Australian Centre for Minesite Rehabilitation Research,1997[C]. Australian Centre for Minesite Rehabilitation Research.
    [135]Rodri Guez L., Ruiz E., Alonso-Azca Rate J., et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J].Journal of Environmental Management,2009,90:1106-1116.
    [136]Xu N., Christodoulatos C., Braida W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite[J]. Chemosphere,2006,62:1726-1735.
    [137]Cook S. J. Distribution and dispersion of molybdenum in lake sediments[J]. Journal of Geochemical Exploration,2000,71:13-50.
    [138]Lapakko K. Metal Mine Rock and Waste characterization tools:an overview, Reg. No.2188452. VAT Reg. No. GB 440494850[R].International Institute for Environment and Development, 2002.
    [139]Tack F. M., Verloo M. G. Chemical speciation and fractionation in soil and sediment heavy metal analysis a review[J]. International Journal of Environmental Analytical Chemistry, 1995,59:225-238.
    [140]Liu Feng, Liu Jianguo, Yu Qianfeng, et al. Chemical speciation and mobility of heavy metals in municipal solid waste incinerator fly ash[J]. Journal ofEnvironmental Sciences, 2004,16(6):885-888.
    [141]Yang Zhifeng, Wang Ying, Shen Zhenyao, et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J]. J Hazard Mater,2009,166(2-3):1186-1194.
    [142]Kovacs Elza, Dubbin William E., Janos Tamas. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing[J]. Environmental Pollution,2006,141:310-320.
    [143]Slowey Aaron J., Johnson Stephen B., Newville Matthew, et al. Speciation and colloid transport of arsenic from mine tailings[J]. Applied Geochemistry,2007,22:1884-1898.
    [144]Hansen Henrik K., Yianatos Juan B., Ottosen Lisbeth M. Speciation and leachability of copper in mine tailings from porphyry copper mining Influence of particle size[J]. Chemosphere, 2005,60:1497-1503.
    [145]Sammut M. L., Noack Y., Rose J. Zinc speciation in steel plant atmospheric emissions[J]. Journal of Geochemical Exploration,2006,88:239-242.
    [146]Landa E. R. Leaching of Molybdenum and Arsenic from uranium ore and mill tailings[J]. Hydrometallurgy,1984,13:203-211.
    [147]顾国平,章明奎.蔬菜地土壤有效态重金属提取方法的比较[J].生态与农村环境学报,2006,22(4):67-70.
    [148]尚爱安,刘玉荣,梁重山.土壤重金属的生物有效性研究进展[J].土壤,2000,6:294-300.
    [149]Dreesen Davld R., Williams Joel M. Mobility and Bioavailability of Uranium Mill Tailings Contaminants[J]. Environ. Scl. Technol.,1982,16(10):709-713.
    [150]Moncur M. C., Jambor J. L., Ptacek C. J., et al. Mine drainage from the weathering of sulfide minerals and magnetite[J]. Applied Geochemistry,2009,24:2362-2373.
    [151]罗正鸿,李黎,洪文晶,等.黄铜矿在酸性介质中的溶解行为研究[J].现代化工,2007,27(增 刊(2)):153-155.
    [152]卢龙,王汝成,薛纪越,等.黄铁矿氧化速率的实验研究[J].中国科学D辑地球科学,2005,35(5):434-440.
    [153]Peretyazhko T., Zachara J. M., Boily J. F., et al. Mineralogical transformations controlling acid mine drainage chemistry[J]. Chemical Geology,2009,262:169-178.
    [154]Kleinman R. L. P., Crerar D. A., Pacelli R. R. Biogeochemistry of acid mine drainage and a method to control acid formation[J]. Mining Engineering,1981,33(3):300-305.
    [155]Bowell R. J., Rees S. B. Geochemical Predictions of Metal Leaching and Acid Generation: Geologic controls and baseline assessment:The Great Basin and Beyond:Geological Society of Nevada Symposium ProceedingsGeology and ore Deposits 2000:The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno/Sparks,2000[C]. SRK North America.
    [156]Evangelou V. P., Huang X. Infrared spectroscopy evidence of an iron(II)-carbonate complex on the surface of pyrite[J]. Spetrochimica Acta,1994,50 (A):1333.
    [157]Moses C. O., Nordstrom D. K., Herman J. S. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J].Geochim Coschim Acta,1987,51:1561-1571.
    [158]Holmes P. A., Cruridwell F. K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen An electro-chemical study[J]. Geochim Cosmochim Atca,2000,64(2):263-274.
    [159]Protection U. S. Environmental. Acid minge drainage prediction[R]. Washington, DC:Office of Solid Waste, Special Waste Branch,1994.
    [160]Nelson M.B. Kinetics and mechanisms of the oxidation of ferrous sulfide[D]. Stanford University, Palo Alto, CA.,1978.
    [161]Jennings Stuart R., Dollhopf Douglas J., Inskeepb William P. Acid production from sulde minerals using hydrogen[J]. Applied Geochemistry,2000,15:35-243.
    [162]符剑刚,钟宏.具有发展前景的辉钼矿湿法分解工艺[J].稀有金属与硬质合金,2003,31(4):22-26.
    [163]符剑刚,钟宏,吴江丽,等.常温常压条件下辉钼矿的湿法浸出[J].金属矿山,2004,28(12):35-38.
    [164]赵中伟.辉铝矿湿法浸出过程某些理论问题之浅见[J].稀有金属与硬质合金,1995(121):1-4.
    [165]顾珩,李洪桂,刘茂盛.辉铝矿湿法浸出新工艺研究[J].中国钼业,1997,21(5):29-32.
    [166]朱传贵,陈礼运,汪洋,等.钼渣中有价钼的回收[J].中国铝业,2000,24(2):40-41.
    [167]寿庭木.碱浸渣中钼的回收[J].在生产铝酸钠的过程中,1993,16(2):1-3.
    [168]彭建蓉,杨大锦,陈加希,等.原生钼矿加压碱浸试验研究[J].稀有金属,2007,31:110-113.
    [169]Kwong Y.. T. J., Whitley W. G. Heavy metal transport in northern drainage systems:Proceedings 9th International Northern Research Basin Symposium/Workshop, Canada,1993[C]. Northern hydrology.
    [170]Carroll Kenneth C., Artiola Janick F., Brusseau Mark L. Transport of molybdenum in a biosolid-amended alkaline soil[J]. Chemosphere,2006,65:778-785.
    [171]Wedepohl K. H. Handbook of Geochemistry II-2, Molybdenum 42[M]. Heidelberg, New York: Springer Verlag,1972.
    [172]Lahann R. W. molybdenum hazard in land disposal of sewage sludge[J]. Water, Air, and Soil Pollution,1976,6:3-8.
    [173]Schemel L. E., Kimball B. A., Bencala K. E. Colloid formation and metal Transport through two mixing zones affected by acid mine drainage near Silverton[J]. Appl. Geochem.,2000, 15:1003-1018.
    [174]Dellwig Olaf, Beck Melanie, Lemke Andreas, et al. Non-conservative behaviour of molybdenum in coastal waters Coupling geochemical, biological, and sedimentological processes[J]. Geochimica et Cosmochimica Acta,2007,71:2745-2761.
    [175]Alary J., Bourbon P., Esclassan J., et al. Zinc, Lead, Molybdenum contamination in the vicinity of an electric steelworks and environmental response to pollution abatement by bag filter[J]. Water, Air, and Soil Pollution,1983,20;137-145.
    [176]Stumm W., Morgan J. J. Aquatic chemistry an introduction emphasizing chemical equilibria in natural waters[G]. New York:Wiley-interscience,1981.
    [177]Ferreiro E. A., Helmy A. K., Bussetti S. G. Molybdate sorption by oxides of aluminium and iron[J]. Earth and Environmental Science (general),1985,148(5):559-566.
    [178]Goldberg S., Forster H. S., Godfrey C. L. Molybdenum Adsorption on Oxides, Clay Minerals, and Soils[J]. Soil Science Society of America Journal,1996,60(2):425-432.
    [179]McGregor R. G., Blowes D. W., Jambor J. L., et al. The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada[J]. Journal of Contaminant Hydrology,1998,33:247-271.
    [180]Sapsfbrd D. J., Bowell R. J., Dey M., et al, Humidity cell tests for the prediction of acid rock drainage[J]. Minerals Engineering,2009,22:25-36.
    [181]GB/T 5750-1985生活饮用水标准检验法[S].北京:中国标准出版社,1985.
    [182]李秋华,林秋奇,韩博平.东大中型水库电导率分布特征及其受N,P营养盐的影响[J].生态环境,2005,14(1):16-20.
    [183]陈天虎,冯军会,徐晓春,等.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志,2002.,21(3):288-302.
    [184]马少健,胡治流,陈建华,等.硫化矿尾矿重金属离子溶出实验研究[J].广西大学学报(自然科学版),2002,27(4).
    [185]蒋小辉,卢毅屏,冯其明,等.强氧化剂常温浸出黄铜矿及机理探讨[J].有色金属,2008,60(1-):62-66.
    [186]张德诚,朱莉,罗学刚.低温下氧化亚铁硫杆菌浸出黄铜矿[J].化工进展,2008,27(1):125-130.
    [187]蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿、黄铜矿和磁黄铁矿的生物氧化作用研究[J].科学通报,2007,52(15):1802-1813.
    [188]马少健,王桂芳,陈建新,等.硫化矿尾矿堆的温度变化和动态淋溶规律研究[J].金属矿山,2004,38(10):59-62.
    [189]Dagenhart T. V. The acid mine drainage of Contrary Creek, Louisa county,Virginia factors causing variations in stream water chemistry[D]. University of Virginia,1980.
    [190]Maest A. S., Nordstrom D.K., LoVetere S. H. Questa baseline arid pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 2004-5063[R].U.S. Geological Survey Bereau,2004.
    [191]Miller J. R., Miller S. M. O. The water column-concentration and load[D]. Miller J. R., Miller S. M.O.,译.Dordrecht:Springer,2007.
    [192]Younger P. L., Blachere A. First-flush, reverse first-flush and partial first-flush:Dynamics of short-and long-term changes in the quality of water flowing from deep mine systems[R].MEND, 2004.
    [193]Durum W. H. Relation of the mineral constituents in solution to stream flow, Saline River near Russel, Kansas[J]. American Geophysical Union Transactions,1953,34(3):435-442.
    [194]Gunnerson C. G. Streamflow and water quality in the Columbia River basin[J]. Journal of the Sanitary Engineering Division, American Society for Civil Engineers, 1967,5626(93):1-16.
    [195]Breemen Van N. Effects of redox processes on soil acidity[J]. Neth. J. Agric. Sci., 1987,37:271-279.
    [196]Craw D. Geochemical changes in mine tailings during a transition to pressure-oxidation process discharge, Macraes mine, New Zealand[J]. Journal of Geochemical Exploration,2003,80:81-94.
    [197]Skousen J. G., Smith R. M., Sencindiver J. C. The development of the Acid-Base Account[J]. Green Lands,1990,20(1):32-37.
    [198]Sobek A. A., Schuller W. A., Freeman J. R.600/2-78-054 Field and Laboratory Methods Applicable to Overburdens and Minesbils[S]. U.S.A:Springfield, Va.:NTIS, 1978.
    [199]Lawrence R. W. Laboratory procedure for the prediction of long-term weathering characteristics of mining wastes[R]. Vancouver:Annual Meeting of the Geological Association of Canada and Mineralogical Association of Canada,1990.
    [200]Lawrence R. W., Wang Y. Detemination of neutralization potential in the prediction of acid rock drainage[D]. Vancouvre:Process of the Forth International Conference On Acid Rock Drainage, 1997.
    [201]Lawrence R. W., Scheske Michael. A method to calculate the neutralization potential of mining wastes[J]. Environmental Geology,1997,32(2):100-106.
    [202]Lapakko K. Evaluation of neutralization potential determinations for metal mine waste and a proposed alternative[R].Pittsburgh, PA,1994.
    [203]Lawrence R. W., Sadeghnobari A. Investigation of predictive techniques for acid mine drainage[R].Energy Mines and Resources, Canada, MEND Report 1,1989.
    [204]GB/T 14352.1-14352.18-93钨矿石、钼矿石化学分析方法高温燃烧碘量法测定全硫量[s].北京:中国标准出版社,1993.
    [205]Stewart Warwick A., Miller Stuart D., Roger Smart. Advances in acid rock drainage (ARD) characterisation of mine wastes:the 7th International Conference on Acid Rock Drainage (ICARD),Montavesta Road,Lexington,KY 40502,2006[C]. Published by the American Society of Mining and Reclamation (ASMR).
    [206]SEMF Pty Ltd. waste rock assessment[R].King Island Scheelite Ltd,2005.
    [207]Morin Kevin A., Hutt Nora M. Environmental geochemistry of minesite drainage Practical theory and case[R]. Vancouver, British Columbia, Canada:Environmental geochemistry of minesite drainageMinesite Drainage Assessment Group/Grupo Estudio del Drenaje de Minas,2001.
    [208]杨丽莉,张登峰,曾向东.沉积物中重金属释放规律研究[J].安徽农业科学,2007,35(27):8630-8631.
    [209]刘小真,周文斌,胡利娜,等.抚河南昌段底泥重金属污染特征研究[J].环境科学与技术,2008,31(5):30-34.
    [210]杨清伟,束文圣,李慧.乐昌铅锌矿区水道底泥中的重金属潜在生态风险评价[J].中国给水 排水,2008,24(2):106-108.
    [211]Fernandez-Caliani J.C., Barba-Brioso C., de La Rosa J. D. Mobility and speciation of rare earth elements in acid minesoils and geochemical implications for river waters in the southwestern Iberian margin[J].Geoderma,2009,149:393-401.
    [212]Wichard T., Mishra B., Kraepiel A. M. L., et al. Molybdenum speciation and bioavailability in soils[J]. Geochimica et Cosmochimica Acta,2009,72(12):1019.
    [213]Haneef Mian M., Yanful Ernest K. Tailings erosion and resuspension in two mine tailings ponds due to wind waves[J]. Advances in Environmental Research,2003,7(4):745-765.
    [214]Birch Linda, Hanselmann Kurt W., Bachofen Reinhard. heavy metal comservation in Lake Cadagno sediments:Historical records of anthropogenic emissions in a meromictic alpine lake[J]. Water Research,1996,30(3):679-687.
    [215]GeHlinas Yves, Lucotte Marc, Schmit Jean-Pierre. History of the atmospheric deposition of major and trace elements in the industrialized st lawrence valley[J]. Atmospheric Environment, 2000,34:1797-1810.
    [216]Johnson D. Barrie, Hallberg Kevin B. The microbiology of acidic mine waters[J]. Research in Microbiology,2003,154:466-473.
    [217]Macklin M. G., Brewer P. A., Hudson Edwards K. A., et al. A geomorphological approach to the management of rivers contaminated by metal mining[J]. Geomorphology,2006,79:423-447.
    [218]Kim Myoung-Jin, Ahn Kyu-Hong, Jung Yejin. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea[J]. Chemosphere,2002,49(3):307-312.
    [219]王一先,白正华.矿山尾砂表生地球化学过程实验研究[J].矿物学报,2003,23(1):51-56.
    [220]Petrunic Barbara M.T.,Al Tom A., Weaver Louise, et al. Identification and characterization of secondary minerals formed in tungsten mine tailings using transmission electron microscopy[J]. Applied Geochemistry,2009,24:2222-2233.
    [221]Hammarstroma J. M., Seal Ⅱ R. R., Meierb A. L., et al. Secondary sulfate minerals associated with acid drainage in the eastern US recycling of metals and acidity in surficial environments[J]. Chemical Geology, 2005,215:407-431.
    [222]Kolovos K. G. waste ammunition as secondary mineralizing raw material in portland cement production[J]. Cement & Concrete Composites,2006,28:133-143.
    [223]何准.基于硫酸盐还原生物矿化的尾矿库原位修复技术研究[D].合肥:合肥工业大学,2009.
    [224]余水静,彭艳平.硫酸盐还原菌处理矿山酸性废水的研究进展[J].现代矿业,2009,2(11):63-67.
    [225]杨建设,黄玉堂,吴楚施,等.温度和pH对硫酸盐还原菌活性的影响[J].茂名学院学报,20006,16(4):1-3.
    [226]Gould W. D., Kapoor A. Chapter 10. The microbiology of acid mine drainage[R]. Canada: Vancouver:2003.
    [227]Sen A. M., Johnson D. B. Acidophilic sulphate-reducing bacteria candidates for bioremediation of acid mine drainage:Biohydrometallurgy and the Environment Toward the Mining of the 21st Century,1999[C]. Elsevier, Amsterdam.
    [228]Jong Tony, Parry David L. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis[J]. J. Environ. Monit,2004,6:278-285.
    [229]霍广生,赵中伟,吴宝林.铝的硫化反应热力学分析[J].中南工业大学学报,2001,32(3):259-261.
    [230]任军俊,肖利萍.硫酸盐还原菌处理废水的研究进展与展望[J].水资源与水工程学报,2009,20(2):52-56.
    [231]李亚新,苏冰琴.硫酸盐还原菌和酸性矿山废水的生物处理[J].环境污染治理技术与设备,2000,1(5):1-10.
    [232]胡凯光,汪爱河,冯志刚,等.硫酸盐还原菌及在处理硫酸盐废水中的作用[J].铀矿冶,2007,26(1):48-52.
    [233]郑强.硫酸盐还原菌在硫酸盐废水处理中的应用[J].山西建筑,2009,35(25):197-199.
    [234]宋东涛,李吉进,聂俊华,等.膨润土对土壤腐殖质特性的影响[J].生态环境,2008,17(2):722-726.
    [235]Bertine K. K. The deposition of molybdenum in anoxic waters[J]. Mrs. Chem.,2010,1(1):43-53.
    [236]Amrhein C., Mosher P. A., Brown A. D. The effects of redox on Mo, U, B, V, and As solubility in evaporation pond soils[J]. Soil Sci.,1993,155:249-255.
    [237]Helz G. R., Miller C. V., Charnock J. M., et al. Mechanism of molybdenum removal from the sea and its concentration in black shales EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996,60(19):3631-3642.
    [238]Nordstrom D. Kirk. Acid rock drainage and climate change[J]. Journal of Geochemical Exploration,2008,100:97-104.
    [239]朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山.环境修复的启示[J].环境科学学报,2005,25(3):414-422.
    [240]胡宏伟,姜必亮,蓝崇钰,等.广东乐昌铅锌尾矿废弃地酸化控制研究[J].中山大学学报(自然科学版),1999,38(3):68-71.
    [241]石贵勇,周永章,杨志军,等.广东河台金矿尾矿库金属硫化物环境地球化学效应[J].矿产与地质,2004,18(6)579-582.
    [242]张鑫,周涛发,袁峰,等.铜陵矿区水系沉积物中重金属存在形态特征研究[J].地球科学进展,2004,19(6):461-466.
    [243]谭凯旋,郝新才.湖南湘西金矿尾矿-水相互作用的动力学[J].大地构造与成矿学,1998,22(2):156-162.
    [244]徐争启.攀枝花钒钛磁铁矿区重金属元素地球化学特征[D].成都:成都理工大学,2009.
    [245]徐争启,庹先国,倪师军,等.攀枝花矿区水系沉积物的组成及其环境效应[J].金属矿山,2007,44(06):75-79.
    [246]徐争启,滕彦国,庹先国,等.攀枝花市水系沉积物与土壤中重金属的地球化学特征比较[J].生态环境,2007,16(3):739-743.
    [247]刘成.德兴铜矿酸性废水成因的研究[J].有色矿山,2001,30(4):49-53.
    [248]张国平,刘丛强,杨元根,等.贵州省几个典型金属矿区周围河水的重金属分布特征[J].地球与环境,2004,32(1):82-85.
    [249]李侠,张益谦.金堆城钼矿固体废物对水环境的污染[J].地下水,2006,28(5):64-66.
    [250]王心义,杨建,郭慧霞.矿区煤矸石堆放引起土壤重金属污染研究[J].煤炭学报, 2006,31(6):809-812.
    [251]肖唐付,洪业汤,郑宝山,等.黔西南Au-As-Hg-Tl矿化区毒害金属元素的水地球化学[J].地球化学,2000,29(6):571-577.
    [252]戴志敏,尹华群,曾晓希,等.云南东川黄铜矿酸性浸矿废水中微生物群落分析[J].现代医学生物进展,2007,7(11):1608-1611.
    [253]GB/T 14353.1-93 GB/T 14353.1-93铜矿石、铅矿石和锌矿石化学分析方法[S].北京:中国标准出版社,1993.
    [254]GB/T 14353.3-93 GB/T 14353.3-93铜矿石、铅矿石和锌矿石化学分析方法锌的测定[S].北京:中国标准出版社,1993.
    [255]GB 9834-88 GB 9834-88土壤有机质测定法[S].北京:中国标准出版社,1988.
    [256]Ministry of Health of China. GB 5749-2006 Standards for Drinking Water Quality[S]. Beijing: 2006.
    [257]Syrovetnik K., Malmstrom M. E., Neretnieks I. Accumulation of heavy metals in the Oostriku peat bog, Estonia:Determieans of sequential leaching[J]. Environmental Pollution, 2007,147:291-300.
    [258]Gong C., Donahoe R. J. An experimental study of heavy metal attenuation and mobility in sandy loam soils[J]. Appl. Geochem.,1997,12:243-254.
    [259]Sanchez-Chardi Alejandro, Marques Carla Cristina, Nadal Jacint, et al. Metal bioaccumulation in the greater white-toothed shrew, Crocidura russula, inhabiting an abandoned pyrite mine site[J]. Chemosphere,2007,67:121-130.
    [260]黄本生,李西萍,范舟,等.河流重金属随水-悬浮物-底泥迁移转化模型[J].中国安全科学学报,2008,18(12):23-28.
    [261]Vicente-Martorell Juan J., Galindo-Riano Maria D., Garcia-Vargas Manuel, et al. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary[J]. Journal of Hazardous Materials,2009,162:823-836.
    [262]Roychoudhury Alakendra N., Starke Michael F. Partitioning and mobility of trace metals in the Blesbokspruit Impact assessment of dewatering of mine waters in the East Rand South Africa[J]. Applied Geochemistry,2006,21:1044-1063.
    [263]霍文毅,陈静生.我国部分河流重金属水—固分配系数及在河流质量基准研究中的应用[J].环境科学,1997,18(4):10-13.
    [264]许欧泳,陈静生,周佳义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    [265]庞玲,张科利,朱明,等.泥沙沉降速度实验研究方法回顾与评述[J].人民黄河,2006,28(5):50-52.
    [266]阿拉姆 S.水利工程的泥沙影响及其对策[J].水利水电快报,2000,21(1):20-23.
    [267]杨邦柱.小水库泥沙淤积量测算方法研究[J].水利水电科技进展,2004,24(2):26-28,70.
    [268]Goldberg Sabine, Criscentib Louise J., Turnerc David R., et al. Adsorption-desorption processes in subsurface reactive transport modeling[J]. Soil Science Society of America,2007,6:407-435.
    [269]Brookins D. G. Eh-pH Diagrams for Geochemistry[M]. Berlin:Springer,1988.
    [270]Grim R. E. Clay Minerology[M]. New York:McGrww-Hill,1968.
    [271]Grim R. E. Clay Minerology[M]. New York:McGrww-Hill,1953.
    [272]Liu Aiguo, Gonzalez Richard D. Modeling Adsorption of Copper(Ⅱ), Cadmium(Ⅱ) and Lead(Ⅱ) on Purified Humic Acid[J]. Langmuir,2000,16:3902-3909.
    [273]朱丽珺,张金池,俞元春,等.胡敏酸吸附重金属Cu2+Pb2+Cd2+的特征及影响因素[J].农业环境科学学报,2008,27(6):2240-2245.
    [274]Grossl P., Eick M., Sparks D., et al. Arsenate and chromate retention mechanisms on goethite 2. kinetic evaluation using a pressure-jump relaxation technique[J]. Environ. Sci. Technol, 1997,31:321-326.
    [275]Schindler PW, Gamsjager H. Acid-base reactions of the TiO2 (Anatase)-water interface and the point of zero charge of TiO2 suspensions[J]. Colloid & Polymer Science,2005,250(7):759-763.
    [276]Stuinrn W., Nuang C. P., Jenkins S. L. Specific chemical interaction affecting the stability of dispersed systems[J]. Crtw. Chem. Ada,1970,42:223-245.
    [277]James A. D., James O. L. Surface ionization and complexation at the oxide/water interface Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions [J]. Journal of Colloid and Interface Science,1978,67(1):90-107.
    [278]Stevenson F. J., Fitch A., Brar M. S. Stability constants of Cu(Ⅱ)-humate:Complexes comparison of select models[J]. Soil Science,1993,155:77-91.
    [279]Nyquist Johanna, Greger Maria. A field study of constructed wetlands for preventing and treating acid mine drainage[J]. ecological engineering,2009,35:630-642.
    [280]Mayesa W. M., Battyb L. C., Youngera P. L., et al. Wetland treatment at extremes of pH:A review[J]. Science of the Total Environment, 2009;407:3944-3957.
    [281]Kelly J., Champagne P., Michel F. Mitigation of alkaline mine drainage in a natural wetland system[J]. Geo-Environment and Landscape Evolution Ⅱ:Monitoring, Simulation, Management and Remediation,2006,1:115-124.
    [282]McCabe O. M., Otte M. L. Revegtation of metal mine tailings under wetland conditions:Proc. of the 14th Annu. Natl. Meeting. Vision 2000:An Environmental Commitment. Am. Soc. for Surface Mining and Reclamation, Austin, TX., Austin, Texas,1997[C]. Elsevier.
    [283]Skousen J. G., Sexston Alan, Farbutt Keith, et al. Wetlands for Treating Acid mine Drainage[J]. Green Lands,1991,21(3):31-39.
    [284]Sheoran A. S., Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands[J]. Minerals Engineering,2006,19:105-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700