用户名: 密码: 验证码:
双侧沟式一体化OCO工艺处理生活污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OCO工艺最初由丹麦Puritek A/S公司开发,由于装置形似英文字母"OCO"而得名,集厌氧、缺氧和好氧于一体,装置结构紧凑、占地面积小,为生物脱氮和除磷提供适宜的反应环境,可以同时去除COD、氮和磷,运行费用低且便于实施在线监测和自动控制。OCO工艺已在丹麦、法国、瑞典等国家得到了广泛应用。然而国际上有关OCO及其运行参数方面的文献依然很少,且该工艺在我国也很少应用。近年来,该工艺引起了我国的科研人员的研究兴趣,不少学者结合城市污水生物处理的特点,不断研发并推出各种基于OCO的改进工艺。
     本论文在对前期系列一体化OCO污水处理工艺进行对比研究的基础上,设计了双侧沟式一体化OCO工艺,探讨了反应器内水力混合特性以及各运行工况对污水处理效果的影响,并构建了动力学模型和BP神经网络预测模型。
     (1)介绍了一体化OCO工艺第一代到第四代反应器研发概况,包括:侧沟式一体化膜泥法OCO工艺、中心岛式一体化OCD工艺、中心岛式一体化OCO工艺、侧沟式一体化OCO工艺。系统地介绍了反应器设计参数、工艺特点,对反应器削减COD、脱氮除磷的运行效果进行比较,并在总结前几代一体化OCO工艺优缺点的基础上,设计了双侧沟式一体化OCO污水处理工艺。
     (2)以脉冲进样法对双侧沟式一体化OCO反应器进行水力特性试验,通过理想反应器的E(t)函数的组合来模拟反应器的停留时间分布,获得了反应器全混流所占比例为86.8%,平推流所占比例为13.2%;以连续进样法对该反应器的水力特性进行试验,并根据质量守恒定律建立水力模型进行分析,试验结果表明反应器内的液流流型为整体全混流和局部推流。上述结果与理论假设相符,所得反应器的水体流动特性符合设计的意图。
     (3)研究了溶解氧(DO)、水力停留时间(HRT)、进水COD/TN质量比(简称C/N比)、进水COD/TP质量比(简称C/P比)、污泥龄(SRT)等因素对工艺处理生活污水效果的影响,并找出适宜运行工况和运行参数:好氧区DO控制在2.0mg/L左右,可以保持缺氧区和厌氧区DO分别低于0.5mg/L和0.1mg/L; SRT为12d, HRT控制在12h(即进水流量为20L/11):C/N比为8:1左右,C/P比为50:1左右。为期60天的稳定运行结果表明,双侧沟式一体化OCO工艺对COD.NH4+-N、TN和TP具有很好的去除效果,去除率分别为95%、99%、81%和90%。
     (4)对双侧沟式一体化OCO工艺进行了生化动力学分析,推导了反应器生物脱氮削碳的动力学方程,并经过试验数据分析,求解出适合于反应器脱氮削碳的动力学参数;构建了出水水质的BP神经网络数学模型,并对工艺处理污水效能进行预测,预测结果与试验结果相吻合。
     (5)对双侧沟式一体化OCO工艺进行了放大试验(放大4倍)的初步研究,水力特性试验表明,反应器的全混流比为80.6%,平推流比为19.4%,反应器液流流型为整体全混流和局部推流;且在本试验装置进行了生活污水的试运行试验研究,结果表明,好氧区DO为2.0mg/L左右,SRT为12d,HRT控制在12h,C/N比为8:1左右,C/P比为50:1左右时,COD.NH4+-N、TN和TP的去除率分别为94%、99%、81%和93%。
     双侧沟式一体化OCO工艺能有效去除污水中碳、氮和磷等污染物而无需化学试剂辅助处理,本研究为该工艺在我国的推广应用提供了理论依据。
The OCO reactor was first developed by Degremont Puritek A/S Company (Denmark), and was named because the shape of the reactor is similar to the letters of the alphabet "OCO" Anaerobic zone, anoxic zone and aerobic zone were designed in one reactor within a small space which offered an appropriate condition for biological removals of nitrogen, phosphorus and COD at a lower cost, and an easy implementation of online monitor and automatic control. The OCO process was widely used in many European countries including Denmark, France, and Sweden and so on. However, there has been little documentation of the operation parameters about the OCO process, and little field application was built on the basis of the process in China. Currently, the overwhelming advantages of the integrated OCO process in municipal wastewater treatment have attracted many researchers in China who are dedicated to the modification of integrated OCO process.
     Based on a comparative study for the early series of integral OCO process, a novel sewage treatment process, the integral OCO process with two side-ditch separators was designed. The hydraulic mixing characteristic and the effect of operating factors on sewage treatment efficiencies in the integral OCO reactor were investigated, the kinetics equations and prediction model by BP neural network methods were developed.
     The integrated OCO processes from the first generation to fourth generation reactor (integral side-ditch OCO reactor with biofilm and activated sludge, integrated OCD reactor with central island separator, integrated OCO reactor with central island separator, integral side-ditch OCO reactor) were developed by author as described in this study.. The design parameters, characteristics of these processes were described systematically, the performances on the removals of nitrogen and phosphorus were summarized, and the advantages and limitations were discussed concluding in the design of a novel reactor—the integrated OCO process with two side-ditch separators.
     Based on the pulse sampling method, hydraulic mixing characteristics test was conducted in the integrated OCO process with two side-ditch separators. A proportion of86.8%for the completely-mixed flow and another proportion of13.2%for the plug-flow were proven quantitatively by the combination of the function E (t) for the retention time distribution in the reactor. By using the continuous sampling method, the reactor was run in the whole completely-mixed flow and the local plug-flow, which were shown by the hydraulic model constructed on the basis of the law of mass conservation. These results were consistent with the theoretical assumptions and showed water flow characteristics in the reactor meet the design idea.
     The effect of dissolved oxygen (DO), hydraulic retention time (HRT), influent CODcr/TN mass ratio (C/N ratio), CODcr/TP mass ratio (C/P ratio) and sludge retention time (SRT) on treatment efficiencies by this process in domestic sewage were analyzed. The optimal operating parameters were listed as follows:DO concentration in aerobic was about2.0mg/L, and those in the anoxic zone and the anaerobic zone were lower than0.5mg/L and0.1mg/L, respectively; SRT was approximately12d, HRT was approximately12h (influent flow rate of20L/h), the C/N ratio was near8:1and the C/P ratio was approximately50:1. The stable operation results show that the integrated OCO process with two side-ditch separators has good removal efficiencies of COD, NHU+-N, TN and TP for60days, their removal rates were95%,99%,81%and90%, respectively.
     Based on kinetic analysis for removals of COD, NH4+-N, TN in the integral OCO reactor with two side-ditch separators, kinetic equations were built and kinetic constants were calculated suitable for removals of COD, NH4+-N, TN. The effluent water quality prediction model was constructed by BP neural network methods and used to predict sewage treatment efficiencies in the integral OCO process. The prediction results match with experimental data.
     Preliminary research for pilot experiment (expanded4times) was carried out in the integral OCO process with two side-ditch separators. Proportion of80.6%for the completely-mixed flow and another proportion of19.4%for the plug-flow were proved by hydraulic characteristics test in this reactor, and liquid flow patterns performance was the whole completely-mixed flow and the local plug-flow. This integral OCO reactor was used as trial operating research to treat domestic wastewater. When the preliminary research results showed:DO concentration in aerobic was near2.0mg/L, SRT was12d, HRT was12h, the C/N ratio was approximately8:1and the CODcr/TP mass ratio (C/P ratio) was near50:1, the good efficiencies for wastewater treatment by the pilot integral OCO reactor were achieved: the removal rates of COD, NH4+-N, TN and TP were94%,99%,81%and93%, respectively.
     The integral OCO process with two side-ditch separators is suitable to remove pollutants such as carbon, nitrogen and phosphorus from domestic wastewater without any auxiliary chemical reagents. This study can provide a theoretical basis for application of this integral OCO process in China.
引文
[1]中国人民共和国环境保护部.2011年中国环境状况公报.
    [2]涂建峰,郑丰.美国湖泊富营养化治理战略研究[J].水利水电快报,2007,28(14):5-7,11.
    [3]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(06):575-578.
    [4]杨龙.密云水库富营养化阈值与外源磷素输入响应关系研究[D]:首都师范大学,2009.
    [5]谢允田,魏民,吕军,等.南湖叶绿素a含量与湖水理化性质的多元分析[J].东北水利水电,1999,(01):45-47.
    [6]王晟,徐祖信.从生态学观点看湖泊藻类控制的技术体系[J].上海环境科学,2003,22(05):332-334,368.
    [7]孔繁翔,胡维平,谷孝鸿,等.太湖梅梁湾2007年蓝藻水华形成及取水口污水团成因分析与应急措施建议[J].湖泊科学,2007,19(04):357-358.
    [8]涂建峰,江小年,郑丰.欧洲湖泊富营养化治理战略研究[J].水利水电快报,2007,28(14):8-11.
    [9]郑丰,涂建峰,翁立达.日本湖泊富营养化治理战略研究[J].水利水电快报,2007,28(14):1-4.
    [10]环境保护部,发展改革委,财政部,水利部,重点流域水污染防治规划(2011-2015年),2012年5月16日.环发[2012]58号.
    [11]娄金生,谢水波,何少年,等.生物脱氮除磷原理与应用[M].湖南长沙:国防科技大学出版社,2002.
    [12]姜体胜,杨琦,尚海涛,等.温度和pH值对活性污泥法脱氮除磷的影响[J].环境工程学报,2007,01(09):10-14.
    [13]Holman JB, Wareham DG. COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process [J]. Biochemical Engineering Journal,2005,22(2):125-133.
    [14]Khin T, Annachhatre AP. Novel microbial nitrogen removal processes [J]. Biotechnology Advances,2004,22(7):519-532.
    [15]Ciudad G, Rubilar O, Munoz P, et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process[J]. Process Biochemistry, 2005,40(5):1715-1719.
    [16]Zhang D, Lu P, Long T, et al. The integration of methanogensis with simultaneous nitrification and denitrification in a membrane bioreactor[J]. Process Biochemistry, 2005,40(2):541-547.
    [17]Satoh H, Ono H, Rulin B, et al. Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors[J]. Water Research, 2004,38(6):1633-1641.
    [18]刘艳臣,施汉昌,王志强,等Carrousel氧化沟内DO变化规律及其优化控制条件[J].中国环境科学,2008,28(09):843-846.
    [19]姚秀清,韩明.SBR中异养硝化菌的分离与硝化特征[J].中国给水排水,2010,26(23):83-85.
    [20]Seifi M, Fazaelipoor MH. Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor[J]. Applied Mathematical Modelling,2012, 36(11):5603-5613.
    [21]Pochana K, Keller J, Lant P. Model development for simultaneous nitrification and denitrification[J]. Water Science and Technology, 1999,39(1):235-243.
    [22]Morgenroth E, Sherden T, Van Loosdrecht MCM, et al. Aerobic granular sludge in a sequencing batch reactor[J]. Water Research, 1997,31(12):3191-3194.
    [23]Zhao HW, Mavinic DS, Oldham WK, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J]. Water Research, 1999,33(4):961-970.
    [24]Wang X, Peng Y, Wang S, et al. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process[J]. Bioprocess and Biosystems Engineering, 2006,28(6):397-404.
    [25]郑猛,张培玉,王积伟,等.废水生物脱氮机制研究进展[J].环境工程,2011,29(S1):17-21.
    [26]张培玉,曲洋,于德爽,等.菌株qy37的异养硝化/好氧反硝化机制比较及氨氮加速降解特性研究[J].环境科学,2010,08(08):1819-1826.
    [27]郭艳丽,张培玉,于德爽,等.一株轻度嗜盐反硝化菌的分离鉴定及特性[J].应用与环境生物学报,2010,16(03):394-398.
    [28]张培玉,郭沙沙,于德爽,等.1株中度嗜盐硝化菌的鉴定及在高盐废水中的应用[J].安全与环境学报,2010,10(03):13-17.
    [29]Huang HK, Tseng SK. Nitrate reduction by Citrobacter diversus under aerobic environment[J]. Applied Microbiology and Biotechnology, 2001,55(1):90-94.
    [30]van Niel EWJ, Robertson LA, Kuenen JG. A mathematical description of the behaviour of mixed chemostat cultures of an autotrophic nitrifier and a heterotrophic nitrifier/aerobic denitrifier; a comparison with experimental data[J]. FEMS Microbiology Letters,1993,102(2):99-108.
    [31]Gupta AB. Thiosphaera pantotropha:a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification[J]. Enzyme and Microbial Technology, 1997,21(8):589-595.
    [32]王晓莲,彭永臻,等.A2/O法污水生物脱氮除磷处理技术与应用[M].北京:科学出版社,2009.
    [33]Kulkarni PM. Isolation, identification and removal of filamentous organism from SND based SBR degrading nitrophenols[J]. Biodegradation, 2012,23(3):455-463.
    [34]郭海燕,郭祯,柳志刚,等.不同曝气强度下SBMBBR和SBR脱氮除磷性能对比研究[J].环境科学学报,2012,32(03):568-576.
    [35]林燕,何义亮,李春杰,等.MBR同步硝化反硝化及异养硝化试验研究[J].环境科学与技术,2006,29(01):7-9,27,115.
    [36]郭建华.活性污泥微膨胀低能耗方法的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [37]Zhu G, Peng Y, Li B, et al. Biological removal of nitrogen from wastewater[J]. Reviews of Environmental Contamination and Toxicology, 2008,192:159-195.
    [38]Zeng RJ, Lemaire R, Yuan Z, et al. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor[J]. Biotechnology and Bioengineering,2003,84(2):170-178.
    [39]Broda E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift fur allgemeine Mikrobiologie, 1977,17(6):491-493.
    [40]van de Graaf AA, de Bruijn P, Robertson LA, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology, 1997,143(7):2415-2421.
    [41]Jaeschke A, Op den Camp HJM, Harhangi H, et al.16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs[J]. FEMS Microbiology Ecology, 2009,67(3): 343-350.
    [42]Kuypers MMM, Sliekers AO, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature,2003,422(6932):608-611.
    [43]Rysgaard S, Glud RN. Anaerobic N-2 production in Arctic sea ice[J]. Limnology and Oceanography, 2004,49(1):86-94.
    [44]Kuenen JG. Anammox bacteria: from discovery to application[J]. Nature Reviews Microbiology 2008,6(4):320-326.
    [45]van Niftrik LA, Fuerst JA, Damste JSS, et al. The anammoxosome:an intracytoplasmic compartment in anammox bacteria[J]. FEMS Microbiology Letters, 2004,233(1):7-13.
    [46]Voets JP, Vanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewaters[J]. Journal (Water Pollution Control Federation),1975,47(2):394-398.
    [47]Kornaros M, Dokianakis SN, Lyberatos G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances[J]. Environmental Science & Technology, 2010,44(19):7245-7253.
    [48]Abeling U, Seyfried CF. Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite[J]. Water Science & Technology, 1992, 26(5-6):1007-1015.
    [49]Peng YZ, Zhu GB. Biological nitrogen removal with nitrification and denitrification via nitrite pathway [J]. Applied Microbiology and Biotechnology, 2006,73(1): 15-26.
    [50]Katsogiannis AN, Kornaros M, Lyberatos G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs[J]. Water Science and Technology,2003,47(11):53-59.
    [51]Alleman JE. Elevated nitrite occurrence in biological wastewater treatment systems[J]. Water Science & Technology, 1984,17(2-3):409-419.
    [52]Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6):1371-1377.
    [53]Hao X, Heijnen JJ, Van Loosdrecht MCM. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Research,2002,36(19):4839-4849.
    [54]van Kempen R, Mulder JW, Uijterlinde CA, et al. Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001,44(1):145-152.
    [55]Gernaey K, Verschuere L, Luyten L, et al. Fast and sensitive acute toxicity detection with an enrichment nitrifying culture[J]. Water Environment Research, 1997,69(6): 1163-1169.
    [56]Henze M, Harremoes P.国家城市给水排水工程技术研究中心译.污水生物处理与化学处理技术[M].中国建筑工业出版社,1999.
    [57]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(06):6-11,11.
    [58]侯金良,康勇.城市污水生物脱氮除磷技术的研究进展[J].化工进展,2007,26(03):366-370,376.
    [59]Comeau Y, Hall KJ, Hancock REW, et al. Biochemical model for enhanced biological phosphorus removal [J]. Water Research, 1986,20(12):1511-1521.
    [60]Arun V, MinoTM T, MatsuoTM T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems[J]. Water Research,1988,22(5):565-570.
    [61]Wentzel MC, Lotter LH, Ekama GA, et al. Evaluation of biochemical models for biological excess phosphorus removal [J]. Water Science & Technology, 1990, 23(4-6):567-576.
    [62]Smolders GJF, van der Meij J, van Loosdrecht MCM, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994,43(6):461-470.
    [63]Satoh H, Mino T, Matsuo T. Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes[J]. Water Science & Technology,1992,26(5-6):933-942.
    [64]Osborn DW, Nicholls HA. Optimisation of the activated sludge process for the biological removal of phosphorus [J]. Progress in Water Technology, 1978,10(1/2): 261-277.
    [65]Wanner J, Cech JS, Kos M. New process design for biological nutrient removal[J]. Water Science & Technology, 1992,25(4-5):445-448.
    [66]Kuba T, Smolders G, Loosdrecht MCMv, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor [J]. Water Science & Technology, 1993,27(5-6):241-252.
    [67]Kuba T, van Loosdrecht MCM, Heijnen JJ. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996,30(7):1702-1710.
    [68]Bortone G, Marsili Libelli S, Tilche A, et al. Anoxic phosphate uptake in the dephanox process[J]. Water Science and Technology, 1999,40(4-5):177-185.
    [69]魏玉,张捍民,杨凤林,等.反硝化除磷颗粒污泥的活性恢复及对生活污水处理能力[J].环境工程学报,2012,06(03):839-842.
    [70]安健,伏光辉,阮记明,等.反硝化除磷菌筛选及其特性研究[J].微生物学通报,2012,39(02):162-171.
    [71]万金保,王建永.反硝化除磷理论及运用现状[J].水处理技术,2008,34(03):7-10.
    [72]Chan CH, Lim PE. Evaluation of sequencing batch reactor performance with aerated and unaerated FILL periods in treating phenol-containing wastewater[J]. Bioresource Technology, 2007,98(7):1333-1338.
    [73]Daumer ML, Beline F, Guiziou F, et al. Effect of nitrification on phosphorus dissolving in a piggery effluent treated by a sequencing batch reactor [J]. Biosystems Engineering, 2007,96(4):551-557.
    [74]Tsang YF, Hua FL, Chua H, et al. Optimization of biological treatment of paper mill effluent in a sequencing batch reactor[J]. Biochemical Engineering Journal,2007, 34(3):193-199.
    [75]Ouyang CF, Juan CT. A study of a modified process for the intermittent cycle extended aeration system[J]. Water Science and Technology, 1995,31(9):173-180.
    [76]纪荣平,陈剑,俞元阳.改进的CASS工艺在小区生活污水处理工程中的应用[J].水处理技术,2011,37(05):117-119.
    [77]Yang PY, Wang Z. Integrating an intermittent aerator in a swine wastewater treatment system for land-limited conditions[J]. Bioresource Technology, 1999, 69(3):191-198.
    [78]张大群,王秀朵DAT-IAT工艺及设备的研究与应用[J].给水排水,2001,27(01):68-72,60.
    [79]Sponza DT, Atalay H. Simultaneous phosphorus, nitrogen and dinitrotoluene removals in batch anaerobic/anoxic/aerobic sequentials[J]. Process Biochemistry, 2005,40(1):25-34.
    [80]Sirianuntapiboon S, Yommee S. Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR)[J]. Journal of Environmental Management, 2006,78(2):149-156.
    [81]张自杰.排水工程(下册)[M].北京:中国建筑工业出版社,2002.
    [82]吴若愚,李勇,陈宇.改进A2/O工艺的研究现状与进展proceedings of the中国环境科学学会2009年学术年会论文集(第二卷),中国湖北武汉,[C].2009.
    [83]Hao X, Doddema HJ, van Groenestijn JW. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch[J]. Bioresource Technology,1997,59(2-3):207-215.
    [84]胡广杰,王素兰,魏锐,等.水解酸化—厌氧—改良Carrousel氧化沟组合工艺的启动试验研究[J].水处理技术,2012,38(10):79-82,86.
    [85]李国会,朱明霞,郑永伟Carrousel氧化沟处理工业和生活混合污水的应用[J].环境工程,2009,27(02):63-64,68.
    [86]张信武Carrousel 2000氧化沟在生活污水处理中的应用[J].工业用水与废水,2012,43(06):85-87.
    [87]殷永泉,由丽娜,刘文军,等.DE型氧化沟在城市污水处理中的应用[J].给水排水,2006,32(09):8-11.
    [88]杨卓.T型氧化沟脱氮除磷功能及运行参数控制研究[D]:东南大学,2005.
    [89]张扬,陈豪,宋英豪,等Orbal氧化沟的应用及发展趋势[J].环境工程,2009,27(04):62-64,90.
    [90]吴为.改良水解/微孔曝气一体化氧化沟处理低碳氮比城市污水中试研究[D]:华中科技大学,2011.
    [91]夏世斌,刘俊新.立体循环一体化氧化沟处理城市污水研究[J].中国给水排水,2002,18(06):1-4.
    [92]李亚新.新型单级活性污泥脱氮除磷工艺-Schreiber工艺[J].中国给水排水,1996,12(02):45-46.
    [93]张大鹏,谢丽,宋乐平,等.循环流环型脱氮除磷工艺处理低浓度城镇污水[J].给水排水,2006,32(S1):35-38.
    [94]刘百仓,刘凤凯,万欣,等.CAS工艺与AOE工艺曝气池水质信息场的测量与分析[J].环境工程学报,2012,06(09):3085-3090.
    [95]高俊发,高霞娥.AOR工艺的设计研究[J].环境工程,2007,(04):7-9,12,12.
    [96]高俊发,高伟,田海燕,等.OOC工艺设计计算研究与分析[J].水处理技术,2007,33(05):85-87.
    [97]潘明,杭世珺.OCO污水处理工艺简介:proceedings of the中国土木工程学会水工业分会第四届理事会第一次会议,中国浙江宁波,2002[C].
    [98]Loosdrecht MCv, Benthum WAv, Heijnen JJ. Integration of nitrification and denitrification in biofilm airlift suspension reactors[J]. Water Science and Technology, 2000,41(4-5):97-103.
    [99]Zhang X, Zhou J, Guo H, et al. Nitrogen removal performance in a novel combined biofilm reactor[J]. Process Biochemistry, 2007,42(4):620-626.
    [100]Wanner J, Kucman K, Grau P. Activated sludge process combined with biofilm cultivation[J]. Water Research, 1988,22(2):207-215.
    [101]van Benthum WAJ, van der Lans RGJM, van Loosdrecht MCM, et al. The biofilm airlift suspension extension reactor-Ⅱ: Three-phase hydrodynamics [J]. Chemical Engineering Science, 2000,55(3):699-711.
    [102]王星骅,柳林,奚旦立.新型移动床膜生物反应器处理PVA废水的实验研究[J].环境科学与管理,2009,34(02):137-139,164.
    [103]White DM, Pilon TA, Woolard C. Biological treatment of cyanide containing wastewater[J]. Water Research, 2000,34(7):2105-2109.
    [104]Xia S, Liu J. An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment[J]. Process Biochemistry, 2004,39(9):1111-1117.
    [105]杨星宇.倒置A2/O型一体化氧化沟处理城镇污水技术研究[D]:贵州师范大学,2007.
    [106]刘祖文,黄家胜,宋存义.阶梯式跌水与微孔曝气一体化氧化沟性能研究[J].水资源保护,2008,24(05):62-65.
    [107]Tanwar P, Nandy T, Ukey P, et al. Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system[J]. Bioresource Technology, 2008,99(16):7630-7635.
    [108]张亚雷,赵建夫,吴勇,等AmOn一体化污水生物处理装置的开发[J].中国给水排水,2005,21(01):72-74.
    [109]赵芳芳,彭娜,蔡建安.新型A/O/A直流脱氮工艺处理焦化废水的研究[J].中国给水排水,2008,24(19):10-12.
    [110]丁永伟.活性污泥和生物膜复合工艺的特性及运行效能研究[D]:哈尔滨工业大学,2006.
    [111]杨运平.活性污泥—接触氧化气提式内循环一体化反应器处理生活污水试验研究[D]:重庆大学,2007.
    [112]吴晟旻,范伟平,沈珈琦,等.生物膜与A/O工艺耦合快速降解氨氮[J].环境污染治理技术与设备,2006,07(04):50-55.
    [113]邹晨,邓彪,乌兰,等.悬浮填料A2/O工艺硝化特性研究[J].中国给水排水,2009,25(13):58-60.
    [114]张望军.OCO工艺对城市污水的处理[J].给水排水,2000,26(03):1-2.
    [115]姬跃国.OCO工艺的处理特点[J].工业用水与废水,2001,32(03):48-49.
    [116]许晓毅,罗固源,唐刚,等.OGO工艺处理城市污水的脱氮除磷效能与水力特性的试验研究[J].环境科学学报,2006,26(08):1295-1301.
    [117]吕庆洪.一体化氧化沟流态研究及一体化OCO工艺试验[D]:四川大学,2004.
    [118]李德豪,殷旭东,高桂枝.COD浓度和进水流量比对一体化工艺脱氮除碳的影响[J].环境工程学报,2009,03(08):1360-1364.
    [119]侯琳,陈敏东,李德豪,等.厌氧/一体化工艺处理生活污水运行特性研究[J].环境科学与技术,2008,31(09):113-116.
    [120]马志华,李德豪,周如金,等.侧沟式一体化OCO工艺中DO和C/N对同步硝化反硝化的影响[J].环境工程学报,2012,06(05):1513-1517.
    [121]李德豪,周锡堂,林培喜,等.一体化OCO工艺处理生活污水研究[J].给水排水,2004,30(08):17-20.
    [122]李德豪,殷旭东,刘勇弟,等.影响侧沟式膜泥法一体化OCO工艺脱氮效率的因素研究[J].环境工程学报,2009,03(04):644-648.
    [123]周如金,李德豪,陈少华,等.一体化弯道多斗沉淀池:中国CN2788883[P].
    [124]周雹,周丹.A2/O除磷脱氮工艺设计计算(上)[J].给水排水,2003,29(03):26-29.
    [125]周雹,周丹.A2/O除磷脱氮工艺设计计算(下)[J].给水排水,2003,29(04):15-19.
    [126]周群英,王士芬.环境过程微生物学[M].北京:高等教育出版社,2009.
    [127]殷旭东,李德豪,高桂枝,等.溶解氧对一体化膜泥法工艺脱氮削碳的影响[J].环境科学与技术,2009,32(10):145-148.
    [128]侯琳,陈敏东,李德豪.新型一体化生物反应器的同步脱氮除磷影响因素研究 [J].中国给水排水,2008,24(03):21-25.
    [129]殷旭东,李德豪,高桂枝.新型一体化生物反应器脱氮的影响因素研究[J].环境工程学报,2009,03(10):1778-1782.
    [130]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [131]Mizonov V, Berthiaux H, Gatumel C, et al. Influence of crosswise non-homogeneity of particulate flow on residence time distribution in a continuous mixer[J]. Powder Technology, 2009,190(1):6-9.
    [132]温沁雪,唐致文,陈志强,等.A20工艺好氧末段溶解氧变化对脱氮除磷影响[J].环境工程学报,2011,05(05):1041-1046.
    [133]郭昌梓,程飞,孙根行.溶解氧对氧化沟生物脱氮除磷的影响[J].环境工程,2011,29(05):28-31.
    [134]马艳娜,王素兰,李瑞,等.A2/O工艺强化脱氮效果中试研究[J].水处理技术,2012,38(08):80-83,87.
    [135]李瑞,王素兰,马艳娜,等.城市污水脱氮除磷中试研究及其影响因素分析[J].环境工程,2012,30(06):34-38.
    [136]吴昌永,彭永臻,王然登,等.溶解氧浓度对A2/O工艺运行的影响[J].中国给水排水,2012,28(03):5-9.
    [137]孙迎雪,胡银翠,孙云祥,等.反硝化生物滤池深度脱氮机理[J].环境工程学报,2012,06(06):1857-1862.
    [138]Zeng W, Li L, Yang Y, et al. Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A2O) process at ambient temperatures[J]. Bioresource Technology, 2010,101(21):8074-8082.
    [139]Munch EV, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Research, 1996,30(2):277-284.
    [140]Sato K, Masunaga T, Wakatsuki T. Characterization of treatment processes and mechanisms of COD, phosphorus and nitrogen removal in a Multi-Soil-Layering system[J]. Soil Science & Plant Nutrition, 2005,51(2):213-221.
    [141]Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Research, 1999,33(8): 1871-1883.
    [142]北京市市政工程设计研究总院.给水排水设计手册第5册-城镇排水第二版[M].北京:中国建筑工业出版社,2005.
    [143]朱海霞,陈林海,张大伟,等.活性污泥微生物菌群研究方法进展[J].生态学报,2007,27(01):314-322.
    [144]Lee DS, Jeon CO, Park JM. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Water Research, 2001,35(16):3968-3976.
    [145]赵鹏芳.添加阿科蔓的A2/O工艺对生活污水脱氮除磷效果研究[D]:北京工业大学,2012.
    [146]方茜,张可方,林金銮.硝酸盐对反硝化聚磷菌除磷性能的影响[J].中国给水排水,2010,26(15):64-67,71.
    [147]Chuang S-H, Ouyang C-F. The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system[J]. Water Research,2000,34(8):2283-2290.
    [148]Henze M. Capabilities of biological nitrogen removal processes from wastewater[J]. Water Science and Technology, 1990,23(4-6):669-679.
    [149]Zielinska M, Bernat K, Cydzik-Kwiatkowska A, et al. Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations [J]. Journal of Environmental Sciences, 2012,24(6): 990-998.
    [150]Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation in batch reactors[J]. Biodegradation, 2001,12(5):359-366.
    [151]Jenkins MB, Bowman DD, Ghiorse WC. Inactivation of Cryptosporidium parvum Oocysts by Ammonia[J]. Applied and Environmental Microbiology, 1998,64(2): 784-788.
    [152]王建华,陈永志,彭永臻.低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷[J].中国环境科学,2010,(09):1195-1200.
    [153]张朝升,林峰,荣宏伟,等.C/N对Carrousel 2000氧化沟同步脱氮除磷的影响研究[J].环境工程学报,2009,03(03):451-454.
    [154]Liu Y, Tay JH. Factors affecting nitrite build-up in nitrifying biofilm reactor[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2001,36(6):1027-1040.
    [155]李相昆,张杰,黄荣新,等.反硝化聚磷菌的脱氮除磷特性研究[J].中国给水排水,2006,22(03):35-39.
    [156]Makinia J, Rosenwinkel K-H, Swinarski M, et al. Experimental and model-based evaluation of the role of denitrifying polyphosphate accumulating organisms at two large scale WWTPs in northern Poland[J]. Water Science & Technology, 2006,54(8): 73-81.
    [157]Randall CW, Barnard JL, Stensel HD. Design and retrofit of wastewater treatment plants for biological nutrient removal[M]. Lancaster, Pennsylvania: Technomic Publishing Company, 1992.
    [158]许晓毅.同心圆活动导流墙式反应器处理生活污水的试验研究[D]:重庆大学, 2007.
    [159]顾夏声.废水生物处理数学模型(第二版)[M].北京:清华大学出版社,1993.
    [160]Arsov R, Ribarova I, Nikolov N, et al. Two-phase anaerobic technology for domestic wastewater treatment at ambient temperature[J]. Water Science and Technology, 1999,39(8):115-122.
    [161]May RJ, Dandy GC, Maier HR, et al. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems[J]. Environmental Modelling & Software, 2008,23(10-11):1289-1299.
    [162]Hanbay D, Turkoglu I, Demir Y. Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks[J]. Expert Systems with Applications, 2008,34(2):1038-1043.
    [163]Oliveira-Esquerre KP, Seborg DE, Mori M, et al. Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill: Part Ⅱ. Nonlinear approaches[J]. Chemical Engineering Journal, 2004, 105(1-2):61-69.
    [164]Son-il R,侯德刚,张振家,等.基于BP人工神经网络的生化处理水水质预测[J].现代化工,2009,(12):66-68,70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700