用户名: 密码: 验证码:
南海中部深水区上层海洋潮流和环流特征分析与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先应用南海深海盆中3个ATLAS定点浮标的长周期温度和海流资料进行分析,探讨南海中部深水区温跃层及温度短周期振动与海流潮流的变化规律特征。然后利用HYCOM模式模拟了南海环流系统的季节变化,并结合T/P高度计资料分析了南海深海盆海区环流的季节变化规律和机制。
     南海深水区终年存在强度在0.1℃/m左右的温度跃层,且跃层受海面净热通量和中尺度涡的影响存在季节变化。进入春季,由于温度的回升,南海中部有双跃层现象的出现。南海深水区50米-500米水深,温度存在半日潮和全日潮周期的振动,而且以全日潮周期的振动为主导,说明南海中部内潮波的存在。两种周期的振动在时空上存在一定的变化。温度跃层的核心深度基本在50米-100米之间,该深度上温度半日潮或全日潮周期的振动的时空变化与温度跃层的时空结构是一致的。
     南海深水区海流的主要周期是日周期,惯性周期和半日周期。惯性周期在深海盆南部站点要更加显著。海流主要是顺时针旋转的,符合地转效应特征。海流中占主要的频率信号的强弱随深度变化,说明海流存在斜压性,是EOF分解所揭示的多种垂向模态存在的反映。潮流在南海深水区海流中占很大比重,尤其是在北部站点。全日分潮振幅最大,且随深度逐渐减小。潮流椭圆随水深也发生旋转,长短轴的大小也随之变化,这与海洋的密度层结结构有关。密度层结导致了海流的斜压性,会产生能量的传播和扩散,导致内潮的产生,影响南海深水区上层海洋的混合,从而影响该海区的环流结构。三个站点平均流的流速和流向存在季节变化,尤其是在ST1和ST2站点。总体来说,三个站点的平均流的流向变化与南海海盆中环流系统相一致。
     南海中部深水区上层流场存在显著的季节变化。冬季,海盆北部基本呈气旋式环流。黑潮入侵流相比其他季节要强一些。海盆南部有一个中尺度的气旋式环流。夏季海盆基本为一个反气旋式环流。在南海中部深海盆,东北向流很显著,在南部海区整个为一个反气旋式环流。海盆西侧海流存在显著的西向强化现象。春季和秋季出于季风转换季节,环流较弱。
     从海盆中层流场分布来看,仍存在一定的季节变化。在巴士海峡西侧形成一个终年存在的反气旋式环流,它可能是由其东侧巴士海峡处的太平洋水入侵诱发产生。海盆下层流场分布基本不存在季节变化,在12 N ,113E终年存在一个气旋式涡旋。吕宋海峡断面在500 m深度以浅,全年海峡中部和南部基本为西向流,即海水从吕宋海峡流入南海。海峡北部基本为东向流,海水流出南海。500 m以深,纬向流速基本为西向流,流速较小,说明中下层海水流入南海。秋季和冬季吕宋海峡100 m以浅流量明显大于春季和夏季,但在次表层和中层,四个季节海峡处流量差距不大。
     海面高度距平在冬季和夏季、春季和秋季的空间变化形态相反。冬季,南海海盆SSHA较其他季节低,在吕宋岛西侧19 N ,119E和越南东侧14 N ,112E各存在一个低值中心。夏季南海深海盆SSHA与冬季形式相反,在吕宋岛西北侧21 N ,116E和越南东侧14 N ,110E各有一个高值中心。
     模拟得到的SSH和SSHA与上层环流结构对应。冬季南海海盆西侧向南的沿岸流在Ekman输运的作用下海水在西岸堆积,海盆西侧SSH得到全年最高。吕宋岛西侧和越南东南侧存在两个气旋式环流,对应SSH在附近海域出现低值中心,SSHA出现负的距平区。夏季在整个海盆呈现东高西低的现象,海盆南部反气旋环流对应着正的距平区。
Current and temperature observations from three moored Autonomous Temperature Line Acquisition System (ATLAS) buoys are analyzed to examine the seasonal thermocline variability and tidal currents in the center deep basin of South China Sea (SCS). And HYCOM model is used to simulate the seasonal variation of ocean circulation in SCS, and in combination with T/P altimeter data, simulation results were used to analyze the character and mechanism of seasonal variation of ocean circulation and sea surface height (SSH) in SCS deep water area.
     In the center deep basin of SCS, thermocline with intensity of 0.1℃/m exits for the whole year. The seasonal variation of the thermocline is mainly controlled by sea surface heat and geophysical vorticity. In spring, the double thermocline structure occurs in all the three buoy location in SCS a result of the back-rise of temperature.
     During the depth of 50m to 500m, there are two remarkable short-term period oscillations in temperature, which is diurnal and semi-diurnal period respectively, especially the diurnal period. These two period oscillation change both in spatial an time. And this indicates that internal tide exits in the central basin of SCS. The center depth of the thermocline is between 50m and 100m, and on that depth the spatial and time variations of semi-diurnal or diurnal period oscillation are in agreement with those in thermocline. In the central depth of thermocline, the diurnal (semi-diurnal) period oscillation in temperature is more obvious in the time zone where the intensity of thermocline is larger.
     Spectrum analysis of current data shows that diurnal and semi-diurnal tidal constituents play an important role in the total current, especially the diurnal tidal constituents. Inertial period is more evident in the southern part of SCS deep basin. Wavelet analysis reveals that the main period of current varies with depth, which indicates that the current is mainly baroclinic, as the results of EOF analysis. From north to south, the magnitude of diurnal tidal constituents to the total current decrease while that of semi-diurnal tidal constituents remain similar. The magnitude, direction and contribution of most tidal currents, except the semi-diurnal tidal current in the northern part, vary significantly with water depth. This indicates that the tidal current is mainly baroclinic in the SCS deep basin, the same as the result of Wavelet analysis and EOF analysis. The tidal ellipses whirl round along with depth, also with the length of major and minor axis. It has some relation with the structure of the density stratification. The density stratification causes the baroclinity of current, which may yield the energy transmission and dissipation and affect the generation of the internal tides and mixing of SCS at the upper layer. And it can make a large influence on the ocean circulation. Velocity and direction of the mean current varies with seasons at all three buoy location, especially at ST1 and ST2. In general, seasonal variation of the current direction at the three stations agrees with the basin circulation in SCS.
     Surface circulation of the SCS deep basin has remarkable seasonal variation. Northern part of the SCS deep basin is mainly dominated by a cyclonic circulation in winter. The Kuroshio intrusion current is stronger than other reasons. And a meso-scale cyclonic gyre exists in the southern part in winter. In summer, SCS deep basin is dominated by an anti-cyclonic gyre, and the northeast current is quit remarkable in the central deep area. In all the southern part of SCS deep basin, the circulation is mainly anti-cyclonic. Current in the western part of central SCS is quite strong because of the western intensification. In spring and autumn, the circulations are relatively weaker due to reversal of the SCS monsoon.
     Middle layer circulation has a little seasonal variation. But to the west of Bashi Channel, an anti-cyclonic eddy persists regardless of season, which may be caused by the Pacific water intrusion to the east of Bashi Channel. Around 12 N ,113E, a cyclonic eddy exists for the whole year and hardly changes with time in the bottom layer of SCS deep basin. Also the bottom circulation has little seasonal variation. In the Luzon strait section, zonal velocity is mainly westward above 500 m in the middle and southern part of the strait, which means that the water flows into SCS through the strait. And in the northern part, zonal velocity is mainly eastward which means that the water flows out SCS to the Pacific Ocean. Beneath 500 m, zonal velocity is small and mainly westward. This indicates that water flows into SCS in all the middle and bottom layers. In autumn and winter, flow through the Luzon strait above 100 m is much larger than it in spring and summer in surface layers. However, in subsurface and middle layer, flow is hardly changed all the year.
     Simulated sea surface height anomaly (SSHA) is completely opposite between winter and summer, as well as between spring and autumn. In winter, SSHA in the deep basin reach the lowest value of the year. There are two negative SSHA centers in the western of Luzon around 19 N ,119Eand east to Vietnam near 14 N ,112E, respectively. Oppositely, in summer near the similar area there are two positive SSHA centers in 21 N ,116Eand 14 N ,110E.
     The simulated SSH and SSHA correspond with the current field exactly. In winter, SSH in the western of deep basin reaches it highest value of a year because of Ekman Transports; Luzon cold eddy and the cyclonic gyre on the southeast of Vietnam coast is corresponded with two negative SSHA centers and a low SSH center. In summer, SSH in the eastern part is higher than that in the western part, and the anti-cyclonic gyre in the southern part of deep basin is corresponded with a positive SSHA center.
引文
[1] Liu Q., Y. Jia, Peter C. Chu, et al.. Seasonal and intraseasonal thermocline variability in the central South China Sea. Geophys. Res. Lett., 2001, Vol. 28 (23): 4467-4470
    [2]高荣珍,王东晓等.南海上层海洋热结构的年循环与半年循环.大气科学,2003,Vol.27(3):345-353
    [3]周发琇,张亚妮,黄菲.南海上层水温的准双周(10-20d)变化.热带海洋学报,2004,Vol.23,No.4:1-23
    [4]臧楠.南海SST日变化特征及夏季风爆发对SST日变化的影响:[硕士学位论文].青岛:中国海洋大学,2005
    [5]黄瑞新.论大洋环流的能量平衡.大气科学,1998,22(4):562-574
    [6] Huang, R. X., 1998. Mixing and available potential energy in a Boussinesq oncean. J. Phys. Oceanog., 28(4),669-678
    [7] Munk, W. H., 1997. Once again: once again-tidal fricton. Progress in Oceanography 40,7-35
    [8] Munk, W., Wunsch,C.,1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research I 45,1977-2010
    [9] Tian, J. W., L. Zhou, et al.. Estimates of M 2internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 2003, Vol. 30 (17), 1889
    [10] Cai, S., Q. Huang, X. Long. Three-dimensional numerical model study of the residual current in the South China Sea. Oceanogr. Acta, 2003, Vol. 26(5-6), 597-607
    [11] Mazzega, P., M. Berge. Ocean tides in the Asian semi-enclosed sea from TOPEX/POSEIDON. J. Geophys. Res., 1994, 99 (C12), 24867-24881
    [12]方国洪,曹德明,黄企洲.南海潮汐潮流的数值模拟.海洋学报, 1994, 16(4):1-12
    [13] Fang, G., Y. K. Kwok, K. Yu, et al.. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res., 1999, 19, 845-869
    [14] Cai, S., X. Long, et al.. Tide model evaluation under different conditions. Cont. Shelf Res., 2006, 26, 104-112
    [15]杜岩,王东晓,陈荣裕,等.南海西边界ADCP观测海流的垂直结构.海洋工程, 2004, 22(2):31-38
    [16]邱章,徐锡祯,龙小敏.南海北部以观测点内潮特征的初步分析.热带海洋, 1996, 15(4):63-67
    [17]刘秦玉,杨海军,贾英来,甘子均.南海海面高度季节变化的数值模拟[J].海洋学报, 2001, 23(2): 9-17
    [18] Zhengyu Liu, Haijun Yang, Qinyu Liu. Regional Dynamics of Seasonal Variability in the South China Sea[J].Journal of Physical Oceanography, 2001,31:272-284
    [19] Wei Zexun, Fang Guohong, Choi Byung-Ho, Fang Yue, He Yijun, Sea surface height and transport stream function of the South China Sea from a variable-grid global ocean circulation model[J]. Science inChina(Series D),2003,46(2):139-148
    [20] Dale W L. Wind and drift currents in the South China Sea [J]. Deep Sea Res, 1956 , 43(4): 445~466
    [21] Wyrtki K .Scientific results of marine investigations of South China Sea and the Gulf of Thailand 1959~1961——physical oceanography of Southeast Asia waters. NAGA Report 2. Calif:Scripps Inst of Oceanogr,1961. 1-195
    [22]徐锡祯,邱章,陈惠昌。南海水平环流概述。中国海洋湖沼学会水文气象学会学术会议论文集。北京:科学出版社,1980. 137-145
    [23] Fang G, Fang W, Fang Y, et al. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr Taiwan, 1998, 37: 1-16
    [24] Shaw, P. T. and S. Y. Chao (1994), Surface circulation in the South China Sea, Deep Sea Res., I 41(11-12), 1663-1683
    [25]李立.南海上层环流观测研究进展.台湾海峡, 2002, 21(1):114-125
    [26]杨海军,刘秦玉.南海海洋环流研究综述.地球科学进展, 1998, 13(4):364-368
    [27] Yang, H., Q. Liu, et al.. A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea[J]. J. Geophys. Res., 2002, 107(c7), 22-1-22-14
    [28]蔡树群,苏纪兰等.冬季南海上层环流动力机制的数值研究.海洋学报,2001,23(5):14-23
    [29]曾庆存,李荣凤,季仲贞,等.南海月平均流的计算.大气科学,1989,13(2):127-138
    [30]苏纪兰,刘先炳.南海环流的数值模拟[A].海洋环流研讨会论文选集[C].北京:海洋出版社, 1992. 206-215
    [31] Chao S.Y., Shaw P.T., Wang J.. Wind relaxation as a possible cause of the South China Sea warm current. J. Oceanography, 1995, 51:111-132
    [32]黄企洲,郑有任. 1992年3月南海东北部和巴士海峡的海流.中国海洋学文集(6).北京:海洋出版社, 1996. 42-52
    [33]袁叔尧,邓九仔.南海北部冬季和夏季逆风流机制初探: I季风逆风流诊断方程及其诊断判据.热带海洋, 1996, 15(3):44-51
    [34]蔡树群,王文质.南海东北部及台湾海峡环流机制的数值研究.热带海洋, 1997, 16(1):7-14
    [35]袁叔尧,邓九仔.巴士海峡水质点运动路径的分布特征.海洋与湖沼, 1990, 30(2):219-223
    [36]薛惠洁,柴扉,侍茂崇.南海东北部黑潮的入侵流套及其环流.中国海洋学文集.北京:海洋出版社,2001:23-37
    [37]王江伟.南海海洋环流的诊断计算:[硕士学位论文].青岛:中国海洋大学,2004
    [38] Isobe, Atsuhiko; Namba, Takaya. The Circulation in the Upper and Intermediate Layers of the South China Sea. Journal of Oceanography, 2001,57(1): 93-104
    [39]叶英,董波.美国东部近岸海流观测资料的初步分析.海洋预报, 2005, 22(1):22-30
    [40]葛哲学,陈仲生. Matlab时频分析技术及其应用.第一版.北京:人民邮电出版社,2006.9-13,180-215
    [41]方欣华,杜涛.海洋内波基础和中国海内波.第一版.青岛:中国海洋大学出版社,2005:33-51
    [42] Foreman, M. G.. G.. (1978), Manual for tidal currents analysis and prediction, Pac. Mar. Sci. Rep. 78-6, 77 pp, Inst. Of Ocean Sci., Patricia Bay, Sidney, B. C.
    [43] Godin, G.. (1972), The analysis of tides, Univ. of Toronto Press, Toronto, Ont., Canada
    [44] Wu, Z., X. Lu, et al.. Simulation of barotropic and baroclinic tides in the South China Sea. Acta Oceanogr. Sinica, 2005, Vol. 24, No. 2:1-8
    [45] Prince, J.F., R. A. Weller and R. Pinkel (1986), Diurnal cycling: observation and models of the upper ocean response to diurnal heating, cooling and wind mixing, J. Geophys. Res., 91(C7), 8411-8427
    [46] Teague, W. J., H. T. Perkins, Z. R. Hallock, et al. (1998), Current and tide observations in the southern Yellow Sea, J. Geophys. Res., 103, 27783-27793
    [47]赵俊生,耿世江,孙洪亮,张自历.北黄海内潮对潮流垂直结构的影响.海洋学报, 1990, 12(6):677-692
    [48] Prandel, D. (1982), The vertical structure of tidal currents, Geophys. Astrophys. Fluid Dyn., 22, 29-49
    [49] Simpson John H. (1998), Tidal processes in shelf seas, THE SEA, Vol. 10, The global coastal ocean: Processes and Methods, Brink, K.H. and Robinson, A.R. Editors, pp. 113-150, New York
    [50] Ye, A. L., I. S. Robinson (1983), Tidal dynamics in the South China Sea, Geophysical Journal of the Royal Astronomical Society, 72, 691-707
    [51] Lagerloeof G.S.E., R.L. Berstein. Empirical orthogonal function analysis of advanced very high resolution radiometer sea surface temperature patterns in Santa Barbara Chanel[J]. J. Geophysical Research, 1988, 93(C6):6863-6873
    [52] Norden E,Huang Z S f Steven R,Long,et a1,1998,.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non—stationary time series analysis[J].Proc.R.Soc.Lond.A.,454:899—995
    [53]王卫强,陈宗镛,左军成.经验模态法在中国沿岸海平面变化中的应用研究[J].海洋学报,1999, 21(6):102-109
    [54] Nitani H.Beginning of the Kuroshio[A].Stommel H ,Yoshida K.Kuroshio l Its Physical aspects[c].Tokyo l Univ.of Tokyo Press,1972.129~ 163
    [55]袁耀初,刘勇刚,苏纪兰,等. 1997年夏季台湾岛以东与东海黑潮[A].中国海洋学文集(12)[C].北京:海洋出版社,2000 . 11-20
    [56]张蕴斐,张占海等.海潮环流的数值模拟.海洋学报, 2003, 25(3)
    [57]魏泽勋,乔方利,方国洪,崔秉昊,方越,王新怡.2004:全球大洋环流诊断模式研究[J].海洋科学进展,22(1):1-14
    [58]蔡怡,李毓湘.南海冬季环流数值模拟[J].热带海洋,1999,18(2):48-55
    [59] Halliwell Jr., G.R., Bleck, R., and Chassignet, E.P.. Atlantic Ocean simulations performed using a new Hybrid Coordinate Ocean Model (HYCOM). EOS, Fall AGU Meeting. 1998
    [60] Halliwell Jr., G.R., Bleck, R., and Chassignet, E.P., and Smith,L.T. . Mixed layer model validation inAtlantic Ocean simulations using the Hybrid Coordinate Ocean Model (HYCOM). EOS,80,OS304. 2000
    [61] Bleck, R.. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, 2002, 4: 55-88
    [62] Chassignet, E. P., L. T. Smith Jr., G. R. Halliwell Jr., and R. Bleck, North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 2003, 33: 2504–2526
    [63] Thacker, W. C., and O. E. Esenkov, Assimilating XBT data into HYCOM. Journal of Atmospheric and Oceanic Technology, 2002, 19: 709-724
    [64] Thacker, W.C., S.-K. Lee, and G.R. Halliwell, Jr., Assimilating 20 years of Atlantic XBT data into HYCOM: a first look. Ocean Modeling, 2004, 7: 183-210
    [65] Halliwell Jr., G.R., Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid Coordinate Ocean Model (HYCOM). Ocean Modelling, 2004, 7: 285-322
    [66] Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, How does solar attenuation depth affect the ocean mixed layer? Water turbidity and atmospheric forcing impacts on the simulation of seasonal mixed layer variability in the turbid Black Sea. J. Climate, 2005, 18: 389-409
    [67] Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, A new solar radiation penetration scheme for use in ocean mixed layer studies: an application to the Black Sea using a fine-resolution Hybrid Coordinate Ocean Model (HYCOM) . J. Phys. Oceanogr., 2005, 35: 13-32
    [68] Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM. J. Phys. Oceanogr., 2005, 35: 33-54
    [69] Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, Stability-dependent exchange coefficients for air-sea fluxes. J. Atmos. Oceanic. Technol., 2005, 22, 1080-1094
    [70] Kara, A. B., H. E. Hurlburt, A. J. Wallcraft, and M. A. Bourassa, Black Sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales. J. Climate, 2005, 18: 5266—5293
    [71] Kara, A. B., H. E. Hurlburt, A. J. Wallcraft, and M. A. Bourassa, CORRIGENDUM for Black Sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales. J. Climate, 2006, 19: 494-495
    [72] Lee, S.-K., D. B. Enfield, and C. Wang, Ocean general circulation model sensitivity experiments on the annual cycle of Western Hemisphere Warm Pool. J. Geophys. Res., 110, C09004, 2005, doi:10.1029/2004JC002640
    [73] Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, A.J. Wallcraft, E.J. Metzger, B.O. Blanton, C. Lozano, D.B. Rao, P.J. Hogan, and A. Srinivasan, Generalized vertical coordinates for eddy-resolving global and coastal ocean forecasts. Oceanography, 2006, 19: 20-31
    [74] Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, P.J. Hogan, A.J. Wallcraft, and R. Bleck, Ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). In: Ocean Weather Forecasting: An Integrated View of Oceanography, Chassignet, E.P., and J. Verron (Eds.), Springer, 2006: 413-426
    [75] Wallcraft, A., Halliwell, G., Bleck, R., Carroll, S., Kelly, K., Rushing, K., Hybrid Coordinate Ocean Model(HYCOM) User’s Manual: Details of the numerical code. , 2002
    [76] Large, W.G., McWilliams, J.C. and Doney, S.C., Oceanic vertical mixing: A review and a model with a non-local boundary layer parameterization. Rev. Geophys., 1994, 32:363-403
    [77] Large, W.G., Danabasoglu, G., Doney, S.C., and McWilliams, J.C., Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. phys. Oceanogr. 1997, 27: 2418-2447
    [78] Kara,A.B., Pochford, P.A., and Hurlburt, H.E., Efficient and accurate bulk parameterizations of air-sea fluxes for use in general circulation models. J. Atmos. Ocean Tech., 2000, 17: 1421-1438
    [79] A. Wallcraft, S. N. Carroll, K. A. Kelly, and K. V. Rushing. Hybrid Coordinate Ocean Model (HYCOM) User’s Guide. 2003
    [80] Shaji, C., C. Wang, G.R. Halliwell, Jr., and A.J. Wallcraft, Simulation of tropical Pacific and Atlantic Oceans using a hybrid coordinate ocean model. Ocean Modelling, 2005, 9: 253-282
    [81] Bleck, R., and D. Boudra, Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 1981, 11: 755-770
    [82] Halliwell, G., R. Bleck, and E. Chassignet, 1998: Atlantic Ocean simulations performed using a new hybrid-coordinate ocean model. EOS, Trans. AGU, Fall 1998 AGU meeting
    [83] Kim Y. Y., Qu T. D., Jensen Tommy, et a1. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high—resolution OGCM [J]. J. Geophys. Res.,2004,109;C03040

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700